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1. Introduction

With the advances of experimental techniques in fabrication and investigation of nano-scale
structures, confined atomic systems become practical and useful models for the illustration
of interesting phenomena arising from a system in dimensions comparable to the electronic
de Broglie wavelength. The confined atomic models are widely used to study a variety of
physical systems, such as impurities in quantum dots (Lin & Ho (2011)), atoms encapsulated
in fullerenes (Connerade et al. (1999); Dolmatov et al. (2004)), and atoms under high pressure

(de Groot & ten Seldam (1946); Michels et al. (1937)). In this article, we focus on the quantum
confinement occurring in quantum dots. The emphasis is placed on the variation of electronic
structures and photoionization properties of atomic impurities under the spatial confinement
effect of quantum dots.

As a quantum confinement system, the quantum dot has attracted considerable attention
due to not only its theoretical but also practical significance. In addition to the analogies
of discrete structure in their optical and electrical features between a quantum dot and an
atom, the coupled quantum dots provide a model to mimic molecules with tunable bonds
(Alivisatos (1996); Schedelbeck et al. (1997)). On the other hand, the quantum dots also serve
as contrast agents in bioimaging for biotechnological applications (Michalet et al. (2005)). It is
well known that the quantum dot with atomic impurities is a suitable model for studying the
semiconductor heterostructures. Recently, the enhancement of semiconductor nano-crystal
performance due to the impurities has been reported in the literature (Cao (2011)), which
indicates, for instance, that magnetic impurities can be doped to tune optical and magnetic
properties.

The physical properties of confined atomic systems are greatly influenced by confinement
potentials, which are unable to be determined through the direct measurement of experiment.
Although ab initio calculations can comprehensively deal with the interaction in confined
atomic systems, they may not provide a direct and simple physical interpretation. The usage
of semi-empirical model potentials to mimic the interaction of confined atom and surrounding
environment provides an efficient way to study the complex systems. The appropriate
models, which might not treat the system comprehensively but take the important interaction

into account, give a clear physical insight into complex problems. The confinement potentials
associated with the structures of quantum dots are often modelled by the rectangular potential

7

www.intechopen.com



2 Will-be-set-by-IN-TECH

well

VRECT(r) =

{−V0 r ≤ R;
0 r > R,

(1)

or the harmonic oscillator (parabolic) potential.

VHO(r) = −V0 +
V0

R2
r2, (2)

where R determines the size of quantum dot, and V0 gives the strength of confinement. The
rectangular potential well has a simple but unrealistic form due to the non-parabolic shape at
the center of quantum dots. Although the harmonic oscillator potential fulfils the parabolic
property, the infinite depth and range of potential restrict the calculation of continuum states
and fail to describe the charging of quantum dots with the finite number of electrons.

The Woods-Saxon potential given as

VWS(r) =
V0

1 + exp [(R − r)/γ]
, (3)

where γ controls the slope of confinement potential, also has been used in the study of
confined quantum system (Costa et al. (1999); Xie (2009)). It should be noted that the
Woods-Saxon potential turns to be the rectangular potential well as γ → 0. Another
confinement potential flexible to model the different type of quantum dots is the so called
power-exponential potential (Ciurla et al. (2002)),

VEP(r) = −V0 exp [−(r/R)p] . (4)

With the change of parameter p, the shape of potential is modified from the Gaussian potential
p = 2 to the rectangular potential well p = ∞.

In this work, the systems of atomic impurities in spherical quantum dots characterized by

finite oscillator (FO) and Gaussian potentials (Adamowski et al. (2000a;b); Kimani et al. (2008);
Winkler (2004)) are investigated using the method of complex-coordinate rotation (Ho (1983);
Reinhardt (1982)) in a finite-element discrete variable representation (FE DVR) (Balzer et al.
(2010); Rescigno & McCurdy (2000)). The finite oscillator potential VFO and Gaussian potential
VG are defined as

VFO(r) = −A

(

1 +
B√
A

r

)

exp(− B√
A

r) (5)

and
VG(r) = −C exp(−r2/D2), (6)

where A and C are the confining strength of potentials, and the radii of dots are characterized
inherently by 1/B and D for FO and Gaussian potentials, respectively. Figure 1 shows
the examples of both potentials. The Gaussian potential being a special case of the

power-exponential potential (Ciurla et al. (2002)) has a soft boundary of the potential. The
one-electron energy spectrum for a Gaussian potential has been calculated by Adamowski
et al. (Adamowski et al. (2000a;b)) using the variational method with Gaussian-type basis
functions. The finite oscillator potentials as weakly confining potentials of quantum dots
have been used to study the two-electron quantum dots by Winkler (Winkler (2004)), and
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later applied to few-electron quantum dots (Kimani et al. (2008)). Both potentials have
r2-dependence near the center of quantum dots, which is the typical character of harmonic
oscillators. It should be noted that the impurity is not taken into account for the quantum
dots in above-mentioned investigations.

Fig. 1. Comparison of finite oscillator potential with Gaussian potential.

For the investigations of electronic structure and optical properties of atomic impurities
in quantum dots, many efforts have been devoted to study hydrogenic impurity states in
spherical quantum dots described by finite and infinite potential wells. The state energies of
hydrogen impurity in spherical quantum dots with the infinite and finite well of rectangular
potentials are explored by Chuu et al. (Chuu et al. (1992)), Yang et al. (Yang et al. (1998)), and
Huang et al. (Huang et al. (1999)). Photoionization cross sections and oscillator strengths

of hydrogenic impurities in spherical quantum dots are also obtained for the infinite and
finite rectangular well models by Ham and Spector (Ham & Spector (n.d.)), Şahin (Şahin
(2008)), and Stevanović (Stevanović (2010)). Recently, Lin and Ho (Lin & Ho (2011)) study the
photoionization of hydrogen impurities in spherical quantum dots using the finite oscillator
and Gaussian potentials. Chakraborty and Ho (Chakraborty & Ho (2011)) adopt the finite
oscillator potential to describe the quantum dot for exploring the autoionization resonance
states of helium impurities in quantum dots. In the present work, the alkali-metal atoms
as impurities in the quantum dots are studied. On the basis of the finite oscillator and
Gaussian models, the energy levels and photionization cross sections subject to the quantum
confinement effect are illustrated.

The chapter is organized as follows. In Sec. 2, the FE DVR approach and complex-coordinate
rotation method associated with the current work are described. The energy spectrum and
photoionization cross sections varying with the different conditions of quantum dots for the
lithium and sodium impurities are presented and discussed in Sec. 3. Section 4 summarizes
this work and gives conclusions. Atomic units are used throughout unless otherwise noted.
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2. Theoretical method

2.1 Finite-element discrete variable representation

The finite-element discrete variable representation (FE DVR) is a hybrid computation scheme
taking advantage of the finite-element approach and the discrete variable representation to
obtain the sparse kinetic-energy matrices and the diagonal representation of potential-energy
matrices. Using this hybrid approach, the kinetic-energy matrix is block diagonal with matrix
elements in compact expressions, and the potential-energy matrix elements are given by
the potential values at grid points. This method has been implemented to investigate a
variety of interesting physical problems, such as quantum-mechanical scattering problems
(Rescigno & McCurdy (2000)), bright solitons in Bose-Einstein Condensates and ultracold
plasmas (Collins et al. (2004)), non-equilibrium Greenąęs function calculations (Balzer et al.
(2010)), and photoionization of impurities in quantum dots (Lin & Ho (2011)).

In the present work, the method of FE DVR which is detailed in references
(Rescigno & McCurdy (2000)) and (Balzer et al. (2010)) is adopted to obtain the Hamiltonian
matrix elements for atoms confined by quantum dots. Within the framework of FE DVR, the
interval [0,Rmax] is divided into ne finite elements, in which each element between [xi, xi+1]
is further subdivided by ng Gauss quadrature points (see Fig. 2). Taking advantage of the
standard Gauss-Lobatto points xm and weights wm (Michels (1963)), we define the generalized
Gauss-Lobatto points,

xi
m =

1

2
[(xi+1 − xi)xm + (xi+1 + xi)], (7)

and weights,

wi
m =

wm

2
(xi+1 − xi). (8)

It should be noted that xi
1 = xi and xi

ng
= xi+1 because x1 = −1 and xng = 1. In calculations,

the integrals are approximated by Gauss-Lobatto quadrature,

∫ xi+1

xi
ψ(r)dr ≃ ψ(xi)wi

1 +
ng−1

∑
m=2

ψ(xi
m)w

i
m + ψ(xi+1)wi

ng
. (9)

The wave functions are expanded in terms of local basis functions (see Fig. 2),

χi
m(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

[ f i
ng
(x) + f i+1

1 (x)]
√

(wi
ng

+ wi+1
1 )

for m=1 (bridge);

f i
m(x)
√

wi
m

for else (element),

(10)

where the Lagrange interpolating polynomials or so-called Lobatto shape functions f i
m(x) are

given as

f i
m(x) =

⎧

⎪

⎨

⎪

⎩

∏
m′ �=m

(x − xi
m′ )

(xi
m − xi

m′ )
for xi ≤ x ≤ xi+1;

0 for x < xi or x > xi+1.

(11)
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The bridge basis function χi
1(x) in Eq. (10) is in charge of connecting the adjacent elements to

ensure the continuity of wave functions at end points of each finite element.

Based on the properties of the Lobatto shape functions and the approximation of
Gauss-Lobatto quadrature for integrals, the matrix elements of kinetic-energy operator, T =

− 1
2

d2

dx2 , in FE DVR are evaluated by analytic formulas,

Ti1,i2
m1,m2

= 〈χi1
m1
|T|χi2

m2
〉 = 1

2
(δi1,i2

+ δi1,i2±1)
∫ ∞

0
dx

d

dx
χi1

m1
(x)

d

dx
χi2

m2
(x)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

2

δi1,i2
T̃i1

m1,m2
√

wi1
m1

wi2
m2

(m1 > 1, m2 > 1);

1

2

(δi1,i2
T̃i1

ng,m2
+ δi1,i2−1T̃i2

1,m2
)

√

wi2
m2
(wi1

ng
+ wi1+1

1 )
(m1 = 1, m2 > 1);

1

2

(δi1,i2
T̃i1

m1,ng
+ δi1,i2+1T̃i1

m1,1)
√

wi1
m1
(wi2

ng
+ wi2+1

1 )
(m1 > 1, m2 = 1);

1

2

(δi1,i2
(T̃i1

ng,ng
+ T̃i1+1

1,1 ) + δi1,i2−1T̃i2

1,ng
+ δi1,i2+1T̃i1

ng,1)
√

(wi1
ng

+ wi1+1
1 )(wi2

ng
+ wi2+1

1 )
(m1 = m2 = 1),

(12)

in which the term T̃i
m1,m2

is defined as

T̃i
m1,m2

= ∑
m

d f i
m1
(xi

m)

dx

d f i
m2
(xi

m)

dx
wi

m. (13)

According to Eq. (11), the first derivatives of the Lobatto shape functions at the quadrature
points are given as

d f i
m1
(xi

m)

dx
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

(xi
m1

− xi
m)

∏
m′ �=m1,m

(xi
m − xi

m′ )

(xi
m1

− xi
m′ )

for m1 �= m;

1
2wi

m1

(δm1,ng − δm1,1) for m1 = m.

(14)

The matrix of the local potential-energy operator V(x) in FE DVR has a diagonal
representation with matrix element values equal to potential values at grid points, i.e.,

V i1,i2
m1,m2

=
∫ ∞

0
dxχi1

m1
(x)V(x)χi2

m2
(x) = δi1,i2

δm1,m2Ṽ i1
m1

, (15)

with

Ṽ i
m =

⎧

⎪

⎨

⎪

⎩

V(xi
m) for m > 1;

V(xi
ng
)wi

ng
+ V(xi+1

1 )wi+1
1

wi
ng

+ wi+1
1

for m = 1.
(16)
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Fig. 2. Interval between 0 and Rmax divided into ne finite elements with ng Gauss quadrature
points and selected local basis functions (bridge and element functions) distributed in each
finite element.

2.2 The method of complex coordinate rotation

The radial Schrödinger equation for the atomic impurity in spherical quantum dots is given
as

[

− 1

2

d2

dr2
+ V(r)

]

φ(r) = Eφ(r), (17)

where V(r) is defined as

V(r) =
l(l + 1)

2r2
+ Ua(r) + VQD(r), (18)

where Ua is the atomic potential, and VQD is given by VFO for the confinement of finite
oscillator potential (see equation (5)) or VG for the Gaussian potential (see equation (6)).
Within the framework of the complex scaling approach, the real coordinate r is transformed
to complex coordinate z by the mapping

z = reiΘ, (19)
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which turns the generalized Gauss-Lobatto points and weights in Eqs. (7) and (8) to be
complex, i.e.,

xi
m → xi

meiΘ, (20)

and
wi

m → wi
meiΘ. (21)

The integrations of kinetic- and potential-energy matrix elements are performed along the
complex path instead of the real axis. It turns out that the calculations of Eqs. (12) and (16)
by the complex quadrature points and weights are equivalent to the usage of the real points
and weights with the complex scaled operators. In other words, to obtain the complex scaled
matrix elements, we can perform the transformation of the operators in advance,

− 1

2

d2

dr2
→ − e−2iΘ

2

d2

dr2
(22)

and
V(r) → V(reiΘ), (23)

followed by the implementation of integrals in real quadrature points and weights.

Through the standard diagonalization procedure, complex eigenvalues and eigenvectors are
obtained. In the dipole approximation, the photoionization cross sections can be obtained by
the optical theorem

σ(ω) =
4πω

c
Im(α−(ω)), (24)

where ω is the photon energy and c is the speed of light, i.e., the inverse fine-structure
constant. The negative frequency component of the polarizability α−(ω) (Buchleitner et al.
(1994); Rescigno & McKoy (1975)) calculated along the complex path C is given as

α−(ω) =
∫

dϑ

∫

dϕ

∫

C
dz z2ψ†

0(z, ϑ, ϕ)μ(z, ϑ, ϕ)ψ−(z, ϑ, ϕ), (25)

where μ is the component of the dipole operator along the direction of light polarization. The
initial wave function ψ0 with energy E0 and the final scattered wave function ψ− fulfill the
equation

[H(z, ϑ, ϕ)− E0 − ω]ψ−(z, ϑ, ϕ) = μ(z, ϑ, ϕ)ψ0(z, ϑ, ϕ). (26)

3. Results and discussion

3.1 Lithium impurities in quantum dots

The method of complex coordinate rotation combined with the FE DVR approach are applied
to investigate the state energies and photoionization cross sections of lithium impurities in the
spherical quantum dots. The model potentials (Schweizer et al. (1999)), which are given as

Ua(r) = − 1

r

[

Z̃ + (Z − Z̃ exp(−a1r) + a2r exp(−a3r))
]

, (27)

are adopted to simulate the alkali metals for the interaction of multi-electron core with the
single valence electron. The parameters ai (i = 1, 2, 3) of model potentials optimized by
a least-square fit to experimental energies are listed in Table 1 for the lithium and sodium
atoms. The energies of ground and first few excited states obtained by this model potential
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for the lithium atom are compared to the experimental data (Ralchenko et al. (2011)) in Table 2.
Although the calculated ground-state energy of lithium atom is not as precise as the energy of
excited states, the photoionization cross sections of free lithium atom as shown in Table 3 are
in good agreement with other theoretical predictions.

Atom Z̄ Z a1 a2 a3

Li 1 3 3.395 3.212 3.207
Na 1 11 7.902 23.51 2.688

Table 1. Parameters of model potentials for lithium and sodium atoms.

Theory Experiment
Present work Sahoo & Ho NIST

1s22s -0.197331 -0.198141 -0.198142
1s22p -0.130068 -0.130235
1s23s -0.074123 -0.074182
1s23p -0.057232 -0.057236

Table 2. Energies of ground and excited states for lithium model potential are compared with
experimental values. Results of Sahoo & Ho refer to (Sahoo & Ho (2006)). Experimental data
by NIST refer to (Ralchenko et al. (2011)).

ε Present results Sahoo & Ho Peach et al.

0.01 1.568 1.470 1.565
0.03 1.638 1.551 1.640
0.05 1.653 1.575 1.659
0.10 1.557 1.500 1.571
0.50 0.568 0.562 0.580
1.00 0.218 0.217 0.218

Table 3. Photoionization cross sections (in units of Mb) of free lithium atom as functions of
photoelectron energies ε (in atomic units). Results of Sahoo & Ho refer to (Sahoo & Ho
(2006)). Data by Peach et al. refer to (Peach et al. (1988)).

In the present work, the energy levels of lithium impurities with the principal quantum
number n = 2–3 and angular momentum quantum number l = 0–1 for the valence electron
are calculated for the quantum dots modelled by the FO and Gaussian potentials. In Fig. 3,
the 1s22s and 1s23s state energies of lithium impurities varying with the dot radii, 1/B and
D for the FO and Gaussian potential, respectively, from 10−1 to 103 a.u. are displayed for the
several confining strengths of potentials, A and C. Since the cases of 1/B = D = 0 correspond
to the free lithium atoms, the levels belonging to different confining strengths merge into one
of the free lithium levels as the dot radii approach zero. With increasing the dot radii, the
level energies are decreased until reaching a limit, which is equal to the energy of free lithium
atom combined with the confining strength of potential, A or C. In other words, the total
energy is then shifted down by an amount of A or C for the FO and Gaussian potentials,
respectively. As long as the dot radii are small such that the confinement effect is negligible,
the level energies are close to the energies of free atoms. The increased dot radii leading to the
stronger confinement of quantum dots cause the wave function trapped into the inner region
of a deeper potential well. As a result, the corresponding energies are decreased. For a specific
confining strength of potential, A = C = 0.5 a.u., the energy variations of levels 1s22s, 1s22p,
1s23s, and 1s23p with quantum dot radii ranging from 10−1 to 103 a.u. are shown in Fig. 4.
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The rapidly downward shifts in 1s2np levels caused by the confinement effect have analogy
to the 1s2ns levels.

(a) Finite oscillator model (b) Gaussian model

Fig. 3. Energies of 1s22s and 1s23s states as functions of quantum dot radii (1/B or D in
atomic units) for several confining strengths of potentials (A or C in atomic units).

(a) Finite oscillator model (b) Gaussian model

Fig. 4. State energies of 1s2nl (n = 2–3 and l = 0–1) as functions of quantum dot radii (1/B or
D) for the confining strengths of potentials A = C = 0.5 a.u.

The influence of quantum dot size on the photoionization cross sections of ground-state
lithium impurities is demonstrated in Fig. 5 for the FO and Gaussian potentials with the
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confining strengths of potentials A = C = 0.5. The cross sections varying with the selected
radii of quantum dots show the drastic change for photon energies near the ionization
threshold. As observed in Fig. 5 for the both models of quantum dots, the cross sections
of 1/B = D = 0.3 are close to the data of the free lithium case (1/B = D = 0) for high
photoelectron energies, but reduced for low photonelectron energies. With increasing the size
of quantum dot, the cross sections are gradually enhanced, and reach maximum values at
1/B ∼ 1.5 and D ∼ 3.0 for the FO and Gaussian model, respectively. As the dot radius is
further increased, the cross sections are deceased from the maximum values gradually.

(a) Finite oscillator model (b) Gaussian model

Fig. 5. Photoionization cross sections as functions of photoelectron energies for several radii
(1/B and D in atomic units) of quantum dots with confining strengths of potentials
A = C = 0.5.

One of striking properties due to the quantum confinement effect is the appearance of
resonance-like profile in the photoionization cross sections as functions of quantum dot radii
for a given photon energy. In Figs. 6, the cross sections as functions of confining strengths
A and dot radii 1/B of the FO potentials are displayed for photon energies ω = 1 and 3
a.u., respectively. For a given A, the occurrence of resonance-like structure demonstrates the
constructive interference between the ground and continuum states due to the wave functions
altered by the confinement effect of quantum dots. It is noticed that the peak of resonance-like
profile rises with increasing the confining strength of potential. For the Gaussian potentials,
the photoionization cross sections as functions of confining strengths C and dot radii D are
shown in Fig. 7. The variation of cross sections with the confining strengths of potentials and
dot radii resembles the results of the FO potentials, and the resonance-like profile of cross
sections is also revealed. The numerical data of photoionization cross sections varying with
the photoelectron energies are listed in Tables 4 and 5 for the FO and Gaussian potentials,
respectively.

3.2 Sodium impurities in quantum dots

To investigate the state energies and photoionization cross sections of sodium impurities in
the spherical quantum dots, we utilize the model potential in Eq. (27) with parameters given
in Table 1 to describe the interaction of multi-electron core with the single valence electron for
the sodium atom. The energies of ground and first few excited states calculated by this model
potential for the sodium atom are compared to the experimental data (Ralchenko et al. (2011))
in Table 6.
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(a) Photon energy ω = 1 a.u. (b) Photon energy ω = 3 a.u.

Fig. 6. Photoionization cross sections as functions of confining strengths (A in atomic units)
and quantum dot radii (1/B in atomic units) for finite oscillator potentials.

(a) Photon energy ω = 1 a.u.
(b) Photon energy ω = 3 a.u.

Fig. 7. Photoionization cross sections as functions of confining strengths (C in atomic units)
and quantum dot radii (D in atomic units) for Gaussian potentials.

In Fig. 8, the energies of levels 2p63s and 2p64s of sodium impurities varying with the dot
radii, 1/B and D for the FO and Gaussian potential, respectively, in between 10−1 and 103 a.u.
are presented for the several confining strengths of potentials, A and C. The levels associated
with different confining strengths of potentials merge into one of the free sodium levels for the
dot radii approaching zero. On the contrary, the level energies split to different energy limits
corresponding to the combined energy of free sodium atom with the confining strengths of
potential as the radius of quantum dot is large. For a specific confining strength of potential,
A = C = 0.5 a.u., the energy variations of levels 2p63s, 2p63p, 2p64s, and 2p64p with quantum
dot radii ranging from 10−1 to 103 a.u. are shown in Fig. 9.

In Fig. 10, the photoionization cross sections of ground-state sodium impurities in spherical
quantum dots characterized by the FO and Gaussian models of confining strengths A = C =
0.5 are presented. The variation of cross sections with selected radii of quantum dots shows
the influence of quantum confinement on the photoionization. As observed in Fig. 10 for the
both model potentials with small parameters 1/B and D, the photoionization cross sections
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ωp 1/B = 0.8 1/B = 3.0 1/B = 5.0 1/B = 10

0.2 4.79447(-2) 6.26482(-2) 4.75992(-2) 3.13920(-2)

0.4 2.84476(-2) 3.70083(-2) 2.85878(-2) 1.96808(-2)

0.6 1.80247(-2) 2.36864(-2) 1.86717(-2) 1.32830(-2)

0.8 1.21964(-2) 1.61640(-2) 1.29792(-2) 9.46338(-3)

1.0 8.68848(-3) 1.15891(-2) 9.45430(-3) 7.02362(-3)

1.5 4.35280(-3) 5.87191(-3) 4.93428(-3) 3.78125(-3)

2.0 2.52575(-3) 3.43660(-3) 2.94528(-3) 2.29925(-3)

2.5 1.60966(-3) 2.20681(-3) 1.91726(-3) 1.51494(-3)

3.0 1.09482(-3) 1.51144(-3) 1.32609(-3) 1.05669(-3)

3.5 7.81176(-4) 1.08537(-3) 9.59280(-4) 7.69130(-4)

4.0 5.78273(-4) 8.08194(-4) 7.18347(-4) 5.78660(-4)

Table 4. Photoionization cross sections (in a2
0) as functions of photoelectron energies ωp (in

atomic units) for finite oscillator potentials of A = 0.3 a.u. and 1/B = 0.8, 3.0, 5.0 and 10 a.u.
a(b) denotes a × 10b .

ωp D = 0.8 D = 3.0 D = 5.0 D = 10

0.2 4.41468(-2) 7.40039(-2) 5.46382(-2) 3.12982(-2)

0.4 2.64195(-2) 4.42053(-2) 3.21495(-2) 1.96037(-2)

0.6 1.67271(-2) 2.81879(-2) 2.06879(-2) 1.32432(-2)

0.8 1.12819(-2) 1.90666(-2) 1.42416(-2) 9.44659(-3)

1.0 8.00689(-3) 1.35329(-2) 1.03097(-2) 7.01908(-3)

1.5 3.97977(-3) 6.70843(-3) 5.34077(-3) 3.78682(-3)

2.0 2.29879(-3) 3.87066(-3) 3.17933(-3) 2.30576(-3)

2.5 1.46226(-3) 2.46429(-3) 2.06729(-3) 1.52060(-3)

3.0 9.94378(-4) 1.67902(-3) 1.42909(-3) 1.06132(-3)

3.5 7.10053(-4) 1.20178(-3) 1.03348(-3) 7.72856(-4)

4.0 5.26265(-4) 8.92958(-4) 7.73777(-4) 5.81669(-4)

Table 5. Photoionization cross sections (in a2
0) as functions of photoelectron energies ωp (in

atomic units) for Gaussian potentials of C = 0.3 a.u. and D = 0.8, 3.0, 5.0 and 10 a.u. a(b)
denotes a × 10b .

Theory Experiment

Present work Sahoo & Ho NIST

2p63s -0.188860 -0.188857 -0.188858

2p63p -0.111520 -0.111600

2p64s -0.071672 -0.071578

2p64p -0.050985 -0.050934

Table 6. Energies of ground and excited states for sodium model potential are compared with
experimental values. Results of Sahoo & Ho refer to (Sahoo & Ho (2006)). Experimental data
by NIST refer to (Ralchenko et al. (2011)).

slightly deviate from the data of the free sodium case (1/B = D = 0). With increasing the
size of quantum dots, the humps of cross sections are enlarged. For 1/B and D larger than
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(a) Finite oscillator model (b) Gaussian model

Fig. 8. Energies of 2p63s and 2p64s states as functions of quantum dot radii (1/B or D in
atomic units) for several confining strengths of potentials (A or C in atomic units).

(a) Finite oscillator model (b) Gaussian model

Fig. 9. State energies of 2p6nl (n = 3–4 and l = 0–1) as functions of quantum dot radii (1/B
or D) for the confining strengths of potentials A = C = 0.5 a.u.
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5, the hump disappears and cross sections are reduced with the further increase of quantum
dot radii. The existence of a Cooper minimum in the photoionization cross sections of free
sodium atoms is well known (Cooper (1962); Marr & Creek (1968)). It is particular interesting
to notice that the Cooper minimum is shifted back and forth and vanished eventually from
the threshold energy with the change of quantum dot size.

(a) Finite oscillator model (b) Gaussian model

Fig. 10. Photoionization cross sections as functions of photoelectron energies for several radii
(1/B and D in atomic units) of quantum dots with confining strengths A = C = 0.5.

Although the photoionization cross sections vary enormously and intricately with the size
of quantum dots for photon energies near the threshold energy, the cross sections exhibit
regular variation and resonance-like behavior for higher photon energies. In Figs. 11, the
cross sections as functions of confining strengths A and dot radii 1/B of the FO potentials are
displayed for photon energies ω = 1 and 3 a.u., respectively. For a given confining strength of
potential A, the resonance-like profile can be seen for photoionization cross sections varying
with the dot radii 1/B. The positions of resonance peak are shifted with the change of
confining strength A. Because the photoionization cross sections are increased monotonically

(a) Photon energy ω = 1 a.u. (b) Photon energy ω = 3 a.u.

Fig. 11. Photoionization cross sections as functions of confining strengths (A in atomic units)
and quantum dot radii (1/B in atomic units) for finite oscillator potentials.
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with increasing the confining strength A for a given dot radius 1/B, the peak of resonance
rises with increasing the confining strengths of potentials.

(a) Photon energy ω = 1 a.u. (b) Photon energy ω = 3 a.u.

Fig. 12. Photoionization cross sections as functions of confining strengths (C in atomic units)
and quantum dot radii (D in atomic units) for Gaussian potentials.

For the Gaussian model, the photoionization cross sections as functions of confining strengths
C and dot radii D are shown in Fig. 12. The variation of cross sections with the confining
strengths of potentials and dot radii resembles the results of the FO potentials, and the
resonance-like profile of cross sections is also revealed. To make the comparisons of FO model
to the Gaussian model for the identical confining strengths A = C, the numerical data of
photoionization cross sections varying with the photoelectron energies are listed in Tables 7
and 8 for the selected radii of quantum dots.

ωp 1/B = 0.8 1/B = 3.0 1/B = 5.0 1/B = 10

0.2 3.74494(-3) 7.64326(-3) 7.91640(-3) 5.90620(-3)

0.4 4.44278(-3) 7.25065(-3) 6.51128(-3) 4.71764(-3)

0.6 3.81066(-3) 5.99769(-3) 5.19782(-3) 3.79446(-3)

0.8 3.15905(-3) 4.91032(-3) 4.21919(-3) 3.12203(-3)

1.0 2.64072(-3) 4.07371(-3) 3.50190(-3) 2.62573(-3)

1.5 1.80224(-3) 2.74326(-3) 2.38394(-3) 1.83387(-3)

2.0 1.32701(-3) 2.00153(-3) 1.75935(-3) 1.37624(-3)

2.5 1.02749(-3) 1.54056(-3) 1.36656(-3) 1.08106(-3)

3.0 8.23278(-4) 1.22982(-3) 1.09860(-3) 8.75958(-4)

3.5 6.76071(-4) 1.00775(-3) 9.05143(-4) 7.25869(-4)

4.0 5.65586(-4) 8.42125(-4) 7.59630(-4) 6.11833(-4)

Table 7. Photoionization cross sections (in a2
0) as functions of photoelectron energies ωp (in

atomic units) for finite oscillator potentials of A = 0.3 a.u. and 1/B = 0.8, 3.0, 5.0 and 10 a.u.
a(b) denotes a × 10b .

195Photoionization Cross Sections of Atomic Impurities in Spherical Quantum Dots

www.intechopen.com



16 Will-be-set-by-IN-TECH

ωp D = 0.8 D = 3.0 D = 5.0 D = 10

0.2 3.93638(-3) 6.91812(-3) 9.30767(-3) 6.05882(-3)

0.4 4.41554(-3) 7.77475(-3) 7.57303(-3) 4.77588(-3)

0.6 3.70173(-3) 6.76452(-3) 5.94424(-3) 3.82507(-3)

0.8 3.02736(-3) 5.63360(-3) 4.75905(-3) 3.14297(-3)

1.0 2.50772(-3) 4.69180(-3) 3.91035(-3) 2.64251(-3)

1.5 1.68942(-3) 3.13333(-3) 2.62412(-3) 1.84642(-3)

2.0 1.23644(-3) 2.25964(-3) 1.92403(-3) 1.38660(-3)

2.5 9.54678(-4) 1.72367(-3) 1.48954(-3) 1.08981(-3)

3.0 7.64071(-4) 1.36737(-3) 1.19525(-3) 8.83429(-4)

3.5 6.27312(-4) 1.11558(-3) 9.83654(-4) 7.32305(-4)

4.0 5.24941(-4) 9.29355(-4) 8.24908(-4) 6.17421(-4)

Table 8. Photoionization cross sections (in a2
0) as functions of photoelectron energies ωp (in

atomic units) for Gaussian potentials of C = 0.3 a.u. and D = 0.8, 3.0, 5.0 and 10 a.u. a(b)
denotes a × 10b .

4. Conclusions

The lithium and sodium impurities in spherical quantum dots are investigated using the
method of complex-coordinate rotation in the finite-element discrete variable representation.
Utilizing the FO and Gaussian potentials to mimic the environment of quantum dots, we
study the energy spectra and photoionization of alkali metal impurities under the influence
of quantum confinement effect. The level energies of impurities in the quantum dots are
calculated for the both FO and Gaussian potentials in a variety of dot radii and confining
strengths of potentials. The downward shift of impurity energy toward the combined energy
of the free atom and the amplitude of the confining strength of potential is exhibited. The
quantum confinement effect on the impurity energies due to the FO model is compared to the
Gaussian model. The photoionization cross sections as functions of photoelectron energies
are presented for the selected dot radii. The sensitivity of cross sections near the threshold
energies to the dot radii demonstrates the significance of quantum confinement effect on
the photoionization. The photoionization cross sections varying with different dot radii and
confining strengths of potentials are given for specific photon energies. The enhancement of
the constructive interference between the ground and continuum states due to the quantum
confinement leads to the resonance-like profile for the cross sections varying with the dot radii
at a given photon energy. The positions of resonance peak are associated with the confining
strength. It is noted that the Cooper minimum existing in the photoionization cross sections
of sodium impurities is shifted back and forth in energy positions and vanished eventually
from the threshold because of the effect of quantum confinement.

This work is financially supported by the National Science Council of Taiwan.
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Stevanović, L. (2010). Oscillator strengths of the transitions in a spherically confined hydrogen
atom, Journal of Physics B: Atomic, Molecular and Optical Physics 43: 165002.

Winkler, P. (2004). Electron interaction in weakly confining quantum dot potentials,
International Journal of Quantum Chemistry 100: 1122–1130.

Xie, W. (2009). A study of two confined electrons using the Woods-Saxon potential, Journal of
Physics: Condensed Matter 21: 115802.

Yang, C.-C., Liu, L.-C. & Chang, S.-H. (1998). Eigenstates and fine structure of a hydrogenic
impurity in a spherical quantum dot, Physical Review B 58: 1954–1961.

198 Fingerprints in the Optical and Transport Properties of Quantum Dots

www.intechopen.com



Fingerprints in the Optical and Transport Properties of Quantum
Dots
Edited by Dr. Ameenah Al-Ahmadi

ISBN 978-953-51-0648-7
Hard cover, 468 pages
Publisher InTech
Published online 13, June, 2012
Published in print edition June, 2012

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

The book "Fingerprints in the optical and transport properties of quantum dots" provides novel and efficient
methods for the calculation and investigating of the optical and transport properties of quantum dot systems.
This book is divided into two sections. In section 1 includes ten chapters where novel optical properties are
discussed. In section 2 involve eight chapters that investigate and model the most important effects of
transport and electronics properties of quantum dot systems This is a collaborative book sharing and providing
fundamental research such as the one conducted in Physics, Chemistry, Material Science, with a base text
that could serve as a reference in research by presenting up-to-date research work on the field of quantum dot
systems.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

C.Y. Lin and Y.K. Ho (2012). Photoionization Cross Sections of Atomic Impurities in Spherical Quantum Dots,
Fingerprints in the Optical and Transport Properties of Quantum Dots, Dr. Ameenah Al-Ahmadi (Ed.), ISBN:
978-953-51-0648-7, InTech, Available from: http://www.intechopen.com/books/fingerprints-in-the-optical-and-
transport-properties-of-quantum-dots/photoionization-cross-sections-of-atomic-impurities-in-spherical-
quantum-dots



© 2012 The Author(s). Licensee IntechOpen. This is an open access article
distributed under the terms of the Creative Commons Attribution 3.0
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/3.0

