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1. Introduction 

The aquatic environments receive a significant number of human microbial pathogens from 
point and non-point sources of pollution. Point-source pollution enters the environment 
at different locations, through a direct route of discharge of treated or untreated domestic 
sewage, industrial effluent and acid mine drainage (State of the Environment Report 
[SER], 2002). Non-point (or diffuse) sources of pollution comprises up to 80 % of the 
pollution entering major river systems thus are of significant concern with respect to the 
dissemination of pathogens and their indicators in water systems. They may be 
attributable to the run-off from urban and agricultural areas, leakage from sewers and 
septic systems, insecticides and herbicides from agricultural land, and sewer overflows 
(Stewart et al., 2008). Although majority of pathogenic microbes can be eliminated by 
sewage treatment, many end up in the effluent which is then discharged into receiving 
bodies of water.  These pathogenic microbes have been implicated in human diseases 
linked with the use of contaminated water and food. Adequate sanitation and clean water, 
being two critical factors in ensuring human health, protects against a wide range of 
water-related diseases. These include diarrhoea, cholera, trachoma, dysentery, typhoid, 
hepatitis, polio, malaria, and filariasis (United Nations Department of Public Information 
[UNDPI], 2005).  

Water is a vital natural resource because of its basic role to life, quality of life, the 
environment, food production, hygiene, industry, and power generation (Meays et al., 
2004). With the rapid increase in world population and increased urbanisation, there is a 
massive strain on the existing water supply and sanitation facilities (UNDPI, 2005). In the 
developing world, poor access to safe water and inadequate sanitation continues to be a 
danger to human health (World Health Organisation [WHO], 2004). The water situation, in 
the African continent, has attracted a lot of concern from all sectors of government as it is 
estimated that more than 300 million out of the 800 million people who live on the continent 
are in water-scarce environments (United Nations Educational, Scientific and Cultural 
Organisation [UNESCO], 2004). In Northern Africa, the present water supply is unstable as 
population growth and economic development have surpassed the traditional water 
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management practices, leading to water scarcity and pollution to a varying degree 
(UNESCO, 2004).  According to Beukman and Uitenweerde (2002), Southern Africa faces 
very serious water challenges with an estimated half of the population lacking access to 
portable water and sanitation facilities. They further hinted that, by 2025, countries like 
Mozambique, Namibia, Tanzania and Zimbabwe will face more water pressures.  

The scarcity of water does not only threaten food security, but also the production of energy 

and environmental integrity. This often results in water usage conflicts between different 

communities, and water contamination when humans and animals share the same source 

of water (Kusiluka et al., 2005). According to the Department of Water Affairs – DWA 

(2000), South Africa is a water scarce region, with 450mm rainfall per annum. This is 

lower than the world’s 860mm average rainfall. Of the forty-four million people who live 

in South Africa, 12 million people were without access to portable water supply prior to 

1994 (Momba et al., 2006).  Although the South African government is making significant 

progress in ensuring the supply of potable water to all communities, 3.3 and 15.3 million 

inhabitants of South Africa are still identified to be living without access to potable water 

and adequate sanitation facilities (Council for Scientific and Industrial Research [CSIR], 

2008). A total of 80% of the population live in the rural areas with the unavailability of 

potable basic water supplies and proper sanitation facilities (Kasrils, 2004; Reitveld et al., 

2009).  

Due to the scarcity of water in South Africa, extensive exploitation of water resources such 

as dams, pools, unprotected rivers and springs for domestic and other water uses, is 

common, particularly in the rural communities where access to potable water supply is 

limited (Younes and Bartram, 2001). In many developing countries with inadequate 

sanitation, faecal contaminations of environmental waters by enteric pathogens are very 

common and river water is major source of microbial pathogens (Sharma et al., 2010). In this 

study, we report the use of conventional identification, and multiplex PCR (m-PCR) method 

that permits the simultaneous detection of water-borne Salmonella, Shigella, E. coli, and 

Klebsiella bacteria spp. from rivers in the North West province of South Africa. The major 

rivers in the province include the Molopo, Groot Marico, Elands, Hex, and Crocodile Vaal, 

Skoonspruit, Harts and Mooi. These rivers are grouped into five catchment areas, which 

include the Crocodile and Elands, Marico and Hex, Marico and Molopo, Mooi and Vaal, and 

the Harts (SER, 2002; Department of Water Affairs [DWA], 2007). The water quality in these 

rivers has been impaired partly due to the frequent contamination of water sources with a 

number of pathogenic microorganisms from human as well as animal activities, which 

result in the spread of diarrhoeal diseases (Meays et al., 2004). 

1.1 Bacterial pathogens in the aquatic environment 

Microbial pathogens in water include viruses, bacteria, and protozoa (Girones et al., 2010). 

Currently, pathogenic bacteria have been identified as the major etiological agent in the 

majority of the waterborne outbreaks worldwide (WHO 2003; Liang et al., 2006). Bacillary 

dysentery caused by Shigella bacteria alone is responsible for approximately 165 million 

cases of bacterial diarrhoeal diseases annually. Of this, 163 million are in developing 

countries and 1.5 million in industrialized ones accounting for an estimated 1.1 million 

death cases each year (Sharma et al., 2010). Most members of the genus Arcobacter have been 
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isolated from different environmental water sources including surface and ground water. 

Their presence has been correlated with that of faecal pollution indicators (Collado et al., 

2008; Fong et al., 2007; Ho et al., 2006) as well as meat mainly from poultry, pork and beef 

(Collada et al., 2009; Houf, 2010; Wesley and Miller, 2010). Some members of the genus 

Arcobacter, like A. butzleri, A. cryaerophilus, and A. skirrowii, have been implicated in animal 

and human diarrhoeal cases, suggesting a faecal oral route of transmission to humans and 

animals (Gonzalez et al., 2007). Helicobacter pylori on the other hand, found to be present in 

surface water and wastewater has been implicated in gastritic, peptic, and duodenal ulcer 

diseases (Linke et al., 2010; Queralt et al., 2005).  

Biofilms in drinking water distribution systems have been reported as possible reservoirs of 

H. pylori and attempts to culture these cells from water samples have proven unsuccessful 

(Linke et al., 2010; Percival and Thomas, 2009).  Due to the fastidious nature of this 

bacterium, the lack of standard culture methods for environmental samples, and the 

controversy in its ability to survive in an infectious state in the environment, very few 

quantitative studies have been reported (Percival and Thomas, 2009). Legionella pneumophila 

is a ubiquitous bacterium in natural aquatic environments that can also persist in human-

controlled systems containing water, such as air conditioning and plumbing infrastructures 

(Steinert et al., 2002). Furthermore, Vibrio vulnificus, an opportunistic human pathogen that 

cause gastroenteritis, severe necrotizing soft-tissue infections and primary septicaemia, has 

been found present in fish, shell fish, water, and wastewater. Infection generally, is 

associated with the ingestion of contaminated seafood and water (Harwood et al., 2004; 

Igbinosa et al., 2009). More so, the presence of enteric bacteria of the genera Salmonella, 

Shigella, E.coli and Klebsiella in water has been identified as a major threat to human health 

and causative agents for many diseases (Leclerc et al., 2001). 

Salmonellae are the most frequent agents of bacterial gastroenteritis and typhoid in humans 

and a prime example of a water- and shell fish-transmitted human pathogen. It is frequently 

isolated from the marine environment where it can remain viable for several hours (Malorny 

et al., 2008; Westrell et al., 2009). Contamination with Salmonella has been reported in surface 

water used for recreational purposes, source of drinking water (Till et al., 2008) and  

irrigation (Gannon et al. 2004) underlining the possible risk associated to the use of such 

contaminated water. The typhoid caused by Salmonella enterica serotype Typhi remains an 

important public health problem in developing countries and the burden of typhoid fever 

worldwide is further compounded by the spread of multiple drug resistant S. typhi (Kim 

2010; Lynch et al., 2009; Srikantiah et al., 2006).  The runoff from fields with animal 

husbandry, and untreated sewage disposal contribute to the presence of Salmonella in 

natural water resources (Jenkins et al., 2008; Moganedi et al., 2007). Low numbers of 

Salmonella in food, recreational, surface and potable water sources may pose a public health 

risk given that their infective dose can be as low as 15–100 CFU (Cobbold et al., 2006; Seo et 

al., 2006).  

Species of Shigella and enteroinvasive Escherichia coli (EIEC) are important human pathogens 

identified as the major cause of bacillary dysentery (Wanger et al., 1988; Szakál et al., 2003). 

The infective dose of Shigella cells is very low (101-104 organisms), whereas EIEC strains 

require a larger infectious dose (between 106 and 1010 organisms) (Rowe and Gross, 1984). 

Both Shigella spp. and EIEC carry a large invasion plasmid and express a similar set of 
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proteins. Both of them are transmitted by direct contact from human to human or via 

contaminated food and water (Parsot, 1994; Rowe and Gross, 1984). Clinical features of 

bacillary dysentery caused by EIEC that resemble shigellosis include fever, severe 

abdominal cramps, malaise, toxemia, and watery diarrhea. The serotype E. coli O157:H7, an 

emergent pathogen of faecal origin frequently isolated from waters, has been implicated in 

food and water-borne disease outbreaks (Bavaro, 2009).  

Bacteria of the genus Klebsiella are ubiquitous in nature and are a frequent cause of 

nosocomial infections (Horan et al., 1988). Their non-clinical habitats encompass the 

gastrointestinal tract of mammals as well as environmental sources such as soil, surface 

waters, and plants (Bagley, 1985). Environmental isolates have been described as being 

indistinguishable from human clinical isolates with respect to their biochemical reactions 

and virulence (Matsen et al., 1974). While the medical significance of Klebsiella obtained in 

the natural environment is far from clear, such habitats are thought to be potential reservoirs 

for the growth and spread of these bacteria which may colonize animals and humans 

(Knittel et al., 1977). Of the five identified Klebsiella species, K. oxytoca and K. Pneumonia, 

remain the most clinically important opportunistic pathogen, implicated in community-

acquired pyogenic liver abscess and bacterial meningitis in adults (Casolari et al., 2005; 

Haryani et al., 2007; Keynan and Rubinstein, 2007), has been reported to be present in water 

(Syposs et al., 2005).  

1.2 Methods used in detection of bacterial pathogens in water 

Detection, differentiation, and identification of bacteria can be performed by numerous 

methods, including phenotypic, biochemical and immunological assays, and molecular 

techniques. These traditional methods for the detection and enumeration of bacterial 

pathogens have largely depended on the use of selective culture and standard biochemical 

methods. This classical microbiological methodology relies on the cultivation of specific 

bacteria, for example plate counts of coliforms. Drawbacks of these methods include firstly, 

pathogenic bacteria, which normally occur in low numbers, tend to incur large errors in 

sampling and enumeration (Fleischer, 1990). Secondly, culture-based methods are time-

consuming, tedious; detect only one type of pathogen, and no valid identification of the 

pathogen (Szewzyk et al., 2000). Thirdly, many pathogenic microbes in the environment, 

although viable, are either difficult to culture or are non-culturable (Roszak and Colwell, 

1987). Sometimes too, it is often difficult to achieve appropriate enrichment, which makes 

the work even more tedious.  

Moreover, concentrations may be too low for cultural detection but still be high enough to 

cause infection. These limitations therefore make routine examination of water samples for 

pathogens like Vibrio cholerae, Shigella dysenteriae, Aeromonas spp. and Campylobacter spp., 

difficult. Instead, bacterial indicator species like Escherichia coli, which is a normal flora 

present in very high numbers in the gut of warm-blooded animals, is widely used as an 

indicator of faecal pollution, to estimate the risk of exposure to other pathogenic microbes 

present in animal or human wastes (Lund, 1994). However, Escherichia coli as well as some 

bacterial species like Enterococcus faecalis, once released into freshwater bodies, enter a 

viable but non-culturable (VBNC) state and express different set of activities, including 

virulence traits (Lleo et al., 2005). As a result, the current methodology is unsuitable for 
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the detection of bacterial pathogens in water and the assessment of their virulence 

potential. Therefore, a molecular detection method is needed, since such methods are 

highly specific and sensitive.  

Molecular methods used are typically based on the detection and quantification of specific 

segments of the pathogen’s genome (DNA or RNA). To achieve this, the specific segments 

are subjected to in vitro amplification. These methods allow researchers to speedily and 

specifically detect microorganisms of public health concern (Girones et al., 2010). Recently, 

molecular techniques, specifically nucleic acid amplification procedures, immunocapturing, 

fluorescence in-situ hybridization (FISH), and polymerase chain reaction (PCR) have 

provided highly sensitive, rapid and quantitative analytical tools for detecting specific 

pathogens in environmental samples (Watson et al., 2004). These techniques are used to 

evaluate the microbiological quality of food and water, as well as microbial source-tracking 

(Albinana-Gimenez et al., 2009; Field et al., 2003; Hundesa et al., 2006). Most applied 

molecular techniques are based on protocols of nucleic acid amplification, of which the 

polymerase chain reaction (PCR) is the most commonly used.  

PCR is a molecular tool that allows for the amplification of target DNA fragments using 

oligonucleotide primers in a chain of replication cycles catalysed by DNA polymerase (Taq 

polymerase) (Rompré et al., 2002). This tool is used for microbial identification and 

surveillance with high sensitivity and specificity (Watterworth et al., 2005). It has 

successfully been applied for the detection and identification of pathogenic bacteria in 

clinical and environmental samples, as well as for the investigation of food and water-

borne disease outbreaks (Harakeh et al., 2006; Haryani et al., 2007; Hsu and Tsen, 2001; 

Riyaz-Ul-Hassan et al., 2004; Shabarinath et al., 2007). The use of quantitative PCR (qPCR) 

is rapidly becoming established in the environmental sector since it has been shown, in 

many cases, to be more sensitive than either the bacterial culture method or the viral 

plaque assay (He and Jiang, 2005). However, molecular protocols, unlike traditional 

culture-based methods, do not distinguish between viable and non-viable organisms 

hence the need for more information before replacing the current conventional methods 

by molecular ones.  

Molecular techniques for the specific detection and quantification of bacterial pathogens also 

offer several advantages over conventional methods: high sensitivity and specificity, speed, 

ease of standardization and automation. As with the viruses, direct PCR amplification of 

some bacterial pathogens from water samples is difficult due to the presence of only low 

numbers of these bacteria in environmental sources. Therefore, an enrichment step is 

usually required prior to performing a PCR (Noble and Weisberg, 2005). Improved 

detection of pathogenic E. coli (Ogunjimi and Choudary, 1999) by immuno-capture PCR, 

and the sensitive detection of Salmonella (Hoorfar et al., 2000) and Campylobacter (Nogva et 

al., 2000) by real-time PCR have also been developed; but these procedures are all mono-

specific and are either laborious or very expensive for routine use in water testing 

laboratories. More recent improvements have allowed simultaneous detection of several 

microorganisms in a single assay (Maynard et al., 2005; Straub et al., 2005; Marcelino et al., 

2006). The use of such multiplex polymerase chain reaction (m-PCR) has provided rapid and 

highly sensitive methods for the specific detection of pathogenic microbes in the aquatic 

environment (Kong et al., 2002).  
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1.3 Multiplex polymerase chain reaction (m-PCR) 

Following the application of PCR in the simultaneous amplification of multiple loci in the 

human dystrophin gene (Chamberlain et al., 1998), multiplex PCR has been firmly 

established as a general technique. To date, the application of multiplex PCR in pathogen 

identification, gender screening, linkage analysis, template quantitation, and genetic disease 

diagnosis is widely established (Chehab and Wall, 1992; Kong et al., 2002; Serre et al., 1991; 

Shuber et al., 1993). For pathogen identification, PCR analysis of bacteria is advantageous, as 

the culturing and typing of some pathogens has proven difficult or lengthy. Bacterial 

multiplexes indicate a particular pathogen among others, or distinguish species or strains of 

the same genus. An amplicon of sequence conserved among several groups is often 

included in the reaction to indicate the presence of phylogenetically or epidemiologically 

similar, or environmentally associated, bacteria and to signal a functioning PCR. Multiplex 

assays of this set-up distinguish species of Legionella (Bej et al., 1990), Mycobacterium (Wilton 

and Cousin, 1992), Salmonella (Chamberlain et al., 1998), Escherichia coli, and Shigella (Bej et 

al., 1991) and major groups of Chlamydia (Kaltenboek et al., 1992) from other genus members 

or associated bacteria. It has also been shown that multiplex PCR remains the ideal 

technique for DNA typing because the probability of identical alleles in two individuals 

decreases with the number of polymorphic loci examined. Reactions have been developed 

with potential applications in paternity testing, forensic identification, and population 

genetics (Edwards et al., 1991, 1992; Klimpton et al., 1993). Multiplex PCR can be a two-

amplicon system or it can amplify 13 or more separate regions of DNA. It may be the end 

point of analysis, or preliminary to further analyses such as sequencing or hybridization. 

The steps for developing a multiplex PCR and the benefits of having multiple fragments 

amplified simultaneously, however, are similar in each system (Edwards and Gibbs, 

1994). 

1.4 Aim/Objectives of the study 

To detect the presence of pathogenic Escherichia coli, Klebsiella, Salmonella, and Shigella 

species in water samples obtained from rivers in the North-West Province of South Africa, 

conventional typing and multiplex PCR methods were applied to enriched cultures. The 

objectives of the study were to use conventional methods to check for the presence and 

molecular tools to confirm the identity of Escherichia, Klebsiella, Salmonella, and Shigella 

species in river water. Our prognosis is that the results will emphasize the need for a rapid 

and accurate detection method for water-borne disease outbreaks and bacterial pathogens in 

water to protect human health. 

2. Materials and methods 

A total of 54 water samples were collected using sterile 500mL McCartney bottles, 

downstream, midstream, and upstream of the Crocodile, Elands, Hex, Mooi, Vaal, Molopo, 

Groot Marico, Harts and Skoonspruit rivers between November 2007 and March 2008 (Fig. 

1).  These rivers form the five major catchments in the province, which are the Crocodile and 

Eland, Marico and Hex, Marcio and Molopo, Mooi and Vaal, and Harts catchments. Samples 

collected were transported on ice to the laboratory for analysis. 
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Fig. 1. A cross-section of the North West province map showing the rivers and dams 
sampled 

2.1 Bacterial reference strains 

Bacterial strains used for the experimental work (Table 1) were American Type Culture 
Collection (ATCC) cultures. The strains were grown on Nutrient Agar (Biolab, Merck, South 
Africa) under aerobic conditions at 37°C for 24 hours.     
 

Bacterial Strains Source 
 

Reference Mdh IpaH IpaB GapA 

Salmonella paratyphi ATCC 9150 This study − − + − 

Salmonella typhi ATCC 14028 Hsu and Tsen, 2001 − − + − 

Shigella boydii ATCC 9207 Wang et al., 1997 − + − − 

Shigella sonnei ATCC 25931 Wang et al., 1997 − + − − 

Klebsiella pneumonia ATCC 15611 Lu et al., 2000 − − − + 

K. oxytoca ATCC 43086 This study − − − + 

Escherichia coli ATCC 25922 Lu et al., 2000 − − − − 

Table 1. Bacterial strains used in the study for evaluation of primer specificity 
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2.2 Selective isolation of Salmonella, Shigella, E. coli and Klebsiella  

Water analysis for Salmonella, Shigella, E. coli and Klebsiella bacteria, was done using the 

spread plate method (American Public Health Association [APHA], 1998). In brief, 1mL of 

each water sample was enriched in 9mL of 2% buffered-peptone water (Biolab, Merck 

Diagnostics, South Africa) and serial dilutions performed. Aliquots of 0.1mL of each 

dilution were plated out on Eosin Methylene Blue (EMB) agar plates (Biolab, Merck 

Diagnostics, South Africa) for the presumptive isolation of E. coli and Klebsiella, and on 

Salmonella-Shigella agar for Salmonella and Shigella isolation. All plates were incubated at 

37oC for 24 hours. Presumptive isolates were sub-cultured on fresh media plates 

incubated at 37oC for 24hours and then preserved on 2.3% w/v Nutrient agar plates for 

further analysis.  

2.3 Bacterial Identification using triple sugar iron (TSI) agar test  

All 2992 and 1180 presumptive isolates on EMBA and SSA plates, respectively were Gram 

stained using the method of Cruikshank et al., (1975) to confirm their morphology as Gram 

negative rod-shaped bacteria. All Gram negative isolates were subjected to the TSI test, a 

biochemical test, which distinguishes the Enterobacteriaceae from other intestinal Gram-

negative bacilli by the ability of the organisms to catabolise the sugars glucose, lactose and 

sucrose present at different concentrations in the medium, and the production of acid and 

gas (Prescott, 2002). The test was performed as previously recommended (United States 

Pharmacopeia Convention; Inc., 2001). Briefly, isolates were streak-plated on TSI agar slopes 

and incubated at 37oC for 24hours. The results were interpreted as previously determined 

by Forbes and Weissfeld (1998).  

2.4 Differentiation of Salmonella, Shigella, E. coli and Klebsiella using conventional 
serological assay 

All Salmonella, Shigella, E. coli and Klebsiella candidate isolates obtained from culture plates 

and identified by Triple Sugar Iron [TSI] agar test, were differentiated by conventional 

serotyping (Ballmer et al., 2007). To test for surface antigens, E. coli Poly D1–D8; Shigella 

boydii Poly C, C1, C2 and C3, Shigella dysenteriae Poly A Types 1, 2, 3, 4, 5, 6, 7, Shigella sonnie 

Poly D Phase I and II, Shigella flexneri Poly B Types I, II, III, IV, V, VI; Salmonella O Poly O 

(Factors A–G, O2, O4, O7, O8, O9, O9, 46, O3, 10, O1, 3, 4) and O1 (Factors O11, O13, O6, 14, 

O16, O18, O21, O35), Salmonella H Poly Phase 1 and 2; and Klebsiella Capsular Types 1, 2, 3, 

4, 5, 6 antisera (Inqaba Biotech, South Africa) were used. 

2.5 DNA extraction 

Genomic DNA was extracted from all positive bacteria cells inoculated in 5mL Luria 

Bertani (LB) broth (Merck, South Africa) following overnight incubation at 37oC in a 

shaker (Doyle and Doyle, 1990). The pellets obtained were re-suspended in 50µL of sterile 

distilled water. The concentration of the extracted DNA in solution was determined 

spectrophotometrically (UV Visible spectrophotometer model S-22, Boeco, Germany) by 

measuring the absorbance at 260 nm. The DNA in solution was used as a template for 

multiplex PCR.  
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2.6 Oligonucleotide primers and multiplex PCR method 

Oligonucleotide primers used in the study were synthesized by Inqaba Biotech, South 

Africa. Sequences of the four PCR primer pairs for m-PCR, their corresponding gene targets 

and size of the expected amplifications are as shown (Table 2). The malate dehyrogenase 

gene (Mdh) of E. coli (Hsu and Tsen, 2001; Wose Kinge and Mbewe, 2011), the invasive 

pasmid antigen B gene (IpaB) of Salmonella spp. (Kong et al., 2002), the invasive plasmid 

antigen gene H (IpaH) of Shigella spp. (Kong et al., 2002; Wose Kinge and Mbewe, 2010), and 

the glyceralehye-3-phospahate dehydrogenase gene (GapA) genes for Klebsiella spp. 

(Diancourt et al., 2005; Wose Kinge and Mbewe, 2011) were simultaneously detected by 

multiplex polymerase chain reaction (m-PCR) assays. DNA from 50µL extract from enriched 

cultures was used for PCR amplification in a final volume of 25µL. The reaction mixture 

consisted of 2X PCR Master mix (0.05µL Taq DNA polymerase, 4mM MgCl2, 0.4mM dNTPs) 

(Fermentas, Inqaba Biotechnical Industries (Pty) Ltd, South Africa), 0.3µM of IpaB, 0.2µM of 

IpaH and 1.0µM each of Mdh and GapA genes.  PCR amplification was performed in a 

Peltier Thermal Cycler (model-PTC-220 DYADTM DNA ENGINE; MJ Research Inc. USA) 

under the following conditions: heat denaturation at 94°C for 3 min, followed by 34 cycles of 

denaturation at 94°C for 30 s; annealing at 60°C for 60 s and extension at 72°C for 1 min. This 

was followed by a final extension step at 72°C for 7 min and 4°C hold. To create a negative 

control template DNA was excluded. 

 

Organism Target 
gene 

Primer Primer sequence (5′→3′) Expected size 
(bp) 

E. coli Mdh Mdh F 
Mdh R 

CGTTCTGTTCAAATGGCCTCAGG 
ACTGAAAGGCAAACAGCCAAG 

392 
 

Salmonella IpaB IpaB F 
IpaB R 

GGACTTTTTAAAGCGGCGG 
GCCTCTCCCAGAGCCGTCTGG 

314 

Shigella IpaH IpaH F 
IpaH R

CCTTGACCGCCTTTCCGATA 
CAGCCACCCTCTGAGGTACT 

606 

Klebsiella GapA GapA F
 

GapA R
 

GTTTTCCCAGTCACGACGTTGTATGAA
ATATGACTCCACTCACG 

TTGTGAGCGGATAACAATTTCCTTCAG
AAGCGGCTTTGATGGCT 

700 

Table 2. Oligonucleotide primers used in this study 

2.7 Electrophoresis and visualization of PCR products 

Following amplification, 10μL of each sample was electrophoresed in a horizontal agarose 

(LONZA, South Africa) 1% w/v slab gel containing ethidium bromide (0.1μg/mL) in 1X 

TAE buffer (40 mM tris-acetate; 2 mM EDTA, pH8.3). The agarose gel was electrophoresed 

for six hours at 60 V. The gel was visualized with UV light (Gene Genius Bio Imaging 

System, SYNGENE model GBOX CHEMI HR). The relative molecular sizes of the PCR 

products were estimated by comparing their electrophoretic mobility with 100bp marker 

(Fermentas O’ GeneRuler DNA ladder; Canada). 
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2.8 Specificity of primers 

The specificity of the primers used for multiplex-PCR was confirmed against related enteric 

bacterial DNA. The DNA was extracted from 5mL of overnight bacterial suspensions 

cultured in Luria Bertani broth as described under section 2.5. The extracted DNA was then 

stored at -20°C for use in m-PCR. 

3. Results and discussion 

3.1 Differentiation of Salmonella, Shigella, E. coli and Klebsiella using conventional 
serotyping assay  

In order to differentiate the bacterial isolates using surface antigens present, conventional 

serotyping by slide agglutination was performed using polyvalent antisera. The 

commercially available typing antisera are not sufficient to recognize all prevalent serotypes 

of Salmonella, E. coli and Klebsiella spp. In our study, the antisera assay was not used to 

identify these serotypes, but rather to determine if a given isolate was a member of the 

genera of interest or not. The percentages of E. coli, Klebsiella, Shigella and Salmonella isolates 

obtained, showing a positive agglutination to antisera, were calculated for each catchment 

area and results recorded as contained in Table 3.  The results indicate a presence of E. coli, 

Klebsiella, Shigella and Salmonella spp. in all five catchments areas. According to Table 3, E. 

coli (the main indicator for faecal contamination) was present in all five catchment samples. 

The highest was 29% in the Crocodile and Elands catchment, followed by the Mooi and Vaal 

catchment with 24% agglutination with surface antigen specific antisera. The other three 

catchments were not free of E. coli although at lesser levels, comparably.  

According to DWA and WHO standards, water meant for irrigation (DWA, 1996) and 

human consumption (WHO, 2001) should contain no E. coli bacteria. The use of such 

contaminated water for irrigation as well as direct consumption as it is before treatment 

would result in the transmission of potentially pathogenic bacteria to humans through 

contaminated vegetables and other crops eaten raw, as well as milk from grazing cattle. 

Klebsiella was highest in the Mooi and Vaal followed by Harts catchments with 19% and 

11%, respectively. Podschun et al. (2001) also reported a high percentage (53%) distribution 

of Klebsiella spp. from surface water samples, the most common species being K. pneumoniae. 

Bacteria species of the genera Escherichia and Klebsiella are amongst the group of faecal 

coliforms. Generally, faecal coliform bacteria inhabit the gastrointestinal tract of all warm 

and some cold-blooded animals as normal commensals, hence their presence in any given 

water body is a clear indication of faecal contamination. Although their presence in water 

cannot be pinpointed to a specific source of faecal contamination, faecal material from 

human and animal sources can be regarded as high risk due to the possible presence of 

pathogenic bacteria (Harwood et al., 2000). 

High levels of Shigella contamination were also seen in all catchments with 31% and 41% in 

the Crocodile and Elands catchment and Harts catchment, respectively. In general, there 

was lesser contamination with Salmonella compared to other faecal coliforms in all 

catchments with a maximum of 8% in Mooi and Vaal catchment. Water-borne pathogens 

often occur in reasonably low concentrations in environmental waters. Therefore, some form 

of filtration and proliferation are needed for pathogen detection (Hsu et al., 2010). Following 
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filtration of the sample on membrane filters, bacteria retained on filters can then be detected 

by culturing in or on selective media. Additional steps, such as biochemical tests, serological 

assays, and molecular methods, are necessary for confirmation. The isolation and 

identification of Shigella spp. and E. coli are straightforward and well established (Echeverria 

et al., 1991, 1992). However, Shigella spp. and entero-invasive E. coli [EIEC] are genetically 

close and exhibit considerable antigenic cross-reactivity, thus differentiating between them 

using a single method can be difficult (Cheasty and Rowe, 1983; Lan et al., 2001; Kingombe 

et al., 2005; Yang et al., 2005).  

The O and H antigen serotyping method provide important epidemiological information. 
However it is not appropriate for routine diagnostic use because of its high cost and the 
labour-intensive requirements (Ballmer et al., 2007). There is, therefore, an urgent need for 
an accurate and simple detection, identification, and differentiation technique for Shigella 
spp. and EIEC, especially for epidemiological studies. On the contrary, serotyping is 
currently the most widely used technique for typing Klebsiella species. It is based mainly on 
a division according to the K (capsule) antigens (Ørskov and Ørskov, 1984) and shows good 
reproducibility and capability in differentiating most clinical isolates (Ayling-Smith and Pitt, 
1990).  
 

River Catchments E. coli    % Klebsiella % Shigella    % Salmonella  % 

Crocodile and Elands 
 

29 4 37 6 

Marico and Hex 
 

9 7 18 4 

Marico and Molopo 
 

9 4 12 1 

Mooi and Vaal 
 

24 19 15 8 

Harts 
 

7 11 41 6 

Table 3. Prevalence of E. coli, Klebsiella, Shigella and Salmonella bacteria obtained by 
serotyping 

3.2 Multiplex PCR 

The m-PCR was designed to target genes specific to the four entero-pathogenic bacteria 

selected for this study. Results obtained showed the presence of E. coli, Klebsiella, Shigella 

and Salmonella contamination in the five catchment areas (Table 4). A total of 39% of E. coli 

was recorded for the Crocodile and Elands catchment and up to 45% of Shigella spp. was 

recovered from the Marico and Hex catchment. The presence of Klebsiella and Salmonella spp. 

was also observed with 10% and 11% in the Mooi and Vaal catchment, respectively. Of these 

bacteria species, contamination with Shigella was widespread in all catchments. Detection of 

the IpaH gene, which is present on both the chromosome and the inv plasmid of all Shigella 

spp., confirmed the presence of this bacterium in water (Hsu and Tsen, 2001). 

Understanding the ecology of Shigella had been limited mainly due to the lack of suitable 

techniques to detect the presence of Shigella in environment samples (Faruque et al., 2002).  
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In the present study, we used molecular techniques as well as conventional serotyping 

method to detect Shigella as well as E. coli, Salmonella and Klebsiella spp. in river waters with 

special reference to virulence genes. We standardized the assay by culturing the 

environmental water samples and simultaneously conducting m-PCR tests. In a similar 

study by Faruque et al. (2002) and Sharma et al. (2010), the IpaH gene was used as an 

indicator tool to detect the presence of Shigella in environmental waters. Fresh 

contamination of surface water by faecal material of dysentery patients is a possibility in 

developing countries where sanitation is poor resulting in the presence of Shigella in surface 

water. Several previous studies have also detected Shigella in surface waters or sewage 

samples and have indicated that Shigella strains can possibly be transported by surface 

waters (Alamanos et al., 2000; Faruque et al., 2002; Obi et al., 2004a; Pergram et al., 1998).  

Similarly, amplification of the Mdh gene, which codes for malic acid dehydrogenase, a 

housekeeping enzyme of the citric acid cycle, and reportedly found in all E. coli strains (Hsu 

and Tsen, 2001), confirmed the presence of both commensal and pathogenic E. coli in the 

water samples. Although E. coli is usually present as harmless commensals of the human 

and animal intestinal tracts, pathogenic strains possess virulent factors that enable them to 

cause diseases and hence, constitute a potential risk to the health of consumers (Kuhnert et 

al., 2000). For the detection of Salmonella spp. the IpaB gene, which is a virulence gene found 

on the invasion plasmid of Salmonella spp., was selected for the PCR as it is reportedly 

present in most Salmonella strains (Kong et al., 2002). Salmonella is isolated from water in 

lower numbers than indicator bacteria such as faecal coliforms, faecal streptococci and 

enterococci, which are several orders of magnitude higher (Sidhu and Toze, 2009).  

However, low numbers (15-100 colony-forming units [CFU]) of Salmonella in water may 

pose a public health risk (Jyoti et al., 2009). In the aquatic environment this pathogen has 

been repeatedly detected in various types of natural waters such as rivers, lakes, coastal 

waters, estuarine as well as contaminated ground water (Haley et al., 2009; Levantesi et al., 

2010; Lin and Biyela, 2005; Moganedi et al., 2007; Theron et al., 2001; Wilkes et al., 2009). 

Their presence has been attributable to runoff from fields with animal husbandry, addition 

of untreated sewage from nearby civilization contribute Salmonella in natural water 

resources (Moganedi et al., 2007; Jenkins et al., 2008). Salmonella contaminated waters 

might contribute through direct ingestion of the water or via indirect contamination of 

fresh food to the transmission of this microorganism. Salmonella prevalence in surface 

water and drinking water has not been uniformly investigated in different countries in 

recent papers.  

Surveys of Salmonella in fresh surface water environment were mainly performed in 

industrialized nations, particularly in Canada and North America. Reports of Salmonella 

prevalence in drinking water were instead more frequent from developing nations reflecting 

the higher concern relating to the use of low quality drinking water in these countries. 

Overall, the scientific community has mainly recently focused on the prevalence of is 

microorganism in impacted and non-impacted watersheds (Haley et al., 2009; Jokinen et al., 

2011; Patchanee et al., 2010), on the identification of the routes of salmonellae contamination 

(Gorski et al., 2011; Jokinen et al., 2010, 2011; Obi et al., 2004b; Patchanee et al., 2010), and on 

the influence of environmental factors on the spread of Salmonella in water (Haley et al., 

2009; Jokinen et al., 2010; Meinersmann et al., 2008; Wilkes et al., 2009).  
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Although direct consumption of water by humans from these rivers was minimal 
throughout the study, indirect consumption through fishing was common. This was 
particularly evident in the Crocodile and Elands, Marico and Molopo, and the Mooi and 
Vaal catchment areas. This may be a cause for concern because fish in water bodies 
contaminated with human and animal waste, harbour a considerable number of bacteria 
such as Salmonella, Clostridium botulinum, Vibrio cholerae, E. coli and other coliforms, which 
could be transmitted to humans if eaten raw or under-cooked (Jayasinghe and Rajakaruna, 
2005). Fish and shellfish accounts for 5% of individual cases and 10% of all food-borne 
illness outbreaks in the United States (Flick, 2008) and not only does fish constitute potential 
sources of bacteria, they also harbour antibiotic resistant bacteria that could be transmitted 
to humans resulting in the spread of a pool of antibiotic resistant genes into the 
environment (Miranda and Zemelman, 2001; Pathak and Gopal, 2005). This also might be 
compounded by the presence of opportunistic pathogens like Klebsiella species in water 
with serious health implications for consumers that utilize water directly or indirectly 
from the rivers, especially high risk patients with impaired immune systems such as the 
elderly or young, patients with burns or excessive wounds, those undergoing 
immunosuppressive therapy or those with HIV/AIDS infection. Colonization may lead to 
invasive infections and on very rare occasions, Klebsiella spp., notably K. pneumoniae and 
K. oxytoca, may cause serious infections, such as destructive pneumonia (Bartram et al., 
2003; Genthe and Steyn, 2006). 

 

River Catchments E. coli    % Klebsiella % Shigella    % Salmonella  % 

Crocodile and Elands 
 

39 0 11 6 

Marico and Hex 
 

4 6 45 0 

Marico and Molopo 
 

0 6 5 1 

Mooi and Vaal 
 

15 10 5 11 

Harts 
 

0 0 23 9 

Table 4. Prevalence of E. coli, Klebsiella, Shigella and Salmonella bacteria obtained by m-PCR 

3.3 Specificity of primers 

In order to evaluate and verify the specificity of the primers in this study, each primer pair 

was tested by PCR on DNA templates prepared from a panel of seven different bacterial 

control strains. The analysis indicated that all primer pairs showed specificities only for their 

corresponding target organisms (Table 1) and all four sets of PCR primers were targeted at a 

virulence-associated gene. The Mdh primers specifically amplified a 392bp malic acid 

dehydrogenase gene fragment from E. coli strain obtained from the American Type Culture 

Collection (Table 1) and 4-39% of isolates obtained from the different river catchments. The 

IpaH primers produced a specific 606bp amplimer in all Shigella spp. examined in this study 

(Table 1; Fig 2. lane 3), which included two species of the genus, viz., S. sonnei and S. boydii, 

which are known to be pathogenic to humans. In a previously reported study, Kong et al. 
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(2002) tested two virulence genes of Shigella, the virA gene and the IpaH gene and obtained 

more positive amplifications with the IpaH gene when compared with the virA gene.  

Although the virA gene was previously reported by Villalobo and Torres (1998) to be 

specific for virulent Shigella spp., the IpaH gene was found to be more reliable in detecting 

Shigella spp. in environmental isolates (Kong et al., 2002; Wose Kinge and Mbewe, 2010). The 

IpaB primers were found to produce a specific 314bp amplimer, in all Salmonella spp. 

examined, which included S. paratyphi, and S. typhimurium (Table 1; Fig 2. Lanes 7 and 8) as 

well as 1-11% of the isolates tested. Similar results were obtained with the GapA primers 

which generated a 700bp amplimer specific to Klebsiella. The amplimers were confirmed by 

sequencing (Inqaba Biotech, South Africa) all showed a high percentage of sequence 

similarity (>90%) with published malic acid dehydrogenase, invasive plasmid antigen H 

and B, and glyceraldehydes-3-phosphate gene sequences in the GenBank database. Our 

results therefore, indicated that this particular set of primers were suitable for the specific 

detection of most general strains of E. coli, Salmonella, Shigella and Klebsiella from water 

samples. 

 

Fig. 2. Electrophoretic analysis of PCR-amplified target genes from six different bacterial 
pathogens. Mobilities of the different target gene amplicons are indicated on the right. Lane 
M, 100bp DNA ladder (size marker); lanes 1 and 2, Mdh amplicon of Escherichia coli ATCC 
25922; lane 3, IpaH amplicon of Shigella boydii ATCC 9207; lane 4, GapA amplicon of 
Klebsiella oxytoca ATCC 43086; lanes 5 and 6, GapA amplicon of K. pneumoniae ATCC 15611; 
lane 7, IpaB amplicon of Salmonella paratyphi ATCC 9150, lane 8, IpaB amplicon of S. 
typhimurium ATCC 14028 

4. Conclusion   

Both conventional and molecular methods successfully identified bacteria of interest, 

however, the multiplex-PCR assays were sensitive and faster than conventional serotyping 

methods for detecting E. coli, Salmonella, Shigella, and Klebsiella spp. from river water 

samples. The 392bp Mdh, 314bp IpaB, 606bp IpaH and 700bp GapA genes were found to be 

specific and present in the control strains analyzed. Therefore, m-PCR screening of these 

strains for Mdh, IpaB, IpaH and GapA genes should provide a better indicator of possible 
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presence of potentially pathogenic E. coli, Salmonella, Shigella and Klebsiella bacteria in river 

water. The water quality is affected by human activities around the areas, which include 

industrial processes, mining, agriculture and domestic usage. Thus, the main source of E. 

coli, Salmonella, Shigella and Klebsiella in these rivers may be discharge from wastewater 

effluent as well as domestic sewage around the catchment areas. Our results indicate that 

the water-borne and food-borne spread of these pathogens is possible due to drinking water 

contamination, recreational activities, and fisheries. Since the aquatic environment is 

implicated as the reservoir for these microorganisms, and consequently responsible for their 

transmission in humans, it is obvious that detailed studies on the pathogenic potential of the 

environmental strains will certainly contribute to understanding the virulence properties of 

these bacteria and to establish the importance of these significant pathogens of aquatic 

systems. The results thus emphasize the need for the implementation of a rapid and 

accurate detection method in cases of water-borne disease outbreaks and the need for more 

rapid detection of bacterial pathogens in water to protect human health. The ability to 

rapidly monitor for various types of microbial pathogens would be extremely useful not 

only for routine assessment of water quality to protect public health, but also allow effective 

assessments of water treatment processes to be made by permitting pre- and post-treatment 

waters to be rapidly analyzed. 
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