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1. Introduction  

For successful understanding of the signal transmission in access networks that utilized 

fixed transmission media, it is necessary exactly to recognize essential negative influences in 

the real environment of metallic homogeneous symmetric lines, power distribution cables 

and optical fibers. This chapter discusses features and frequency characteristics of negative 

influences on signals transmitted by means of the VDSL technology, the PLC technology 

and PON networks. For the expansion of communication systems on fixed transmission 

media, it is necessary to have a detailed knowledge of their transmission environments and 

negative influences in the real developing of customer installations. 

A main attention of the metallic transmission media’s parts is focused on the description of 

the proposed VDSL and PLC simulation models and on the explanation of simulation 

methods for substantial negative influences. Presented simulation models represent a reach 

enough knowledgebase for the extended digital signal processing techniques of the VDSL 

and PLC signal transmissions that can be extremely helpful for various tests and 

performance comparisons. 

A main attention of the optical transmission media’s part is focused on the description of the 

proposed optical fiber’s simulation model and on the explanation of simulation methods for 

its substantial linear effects - transmission factors. The presented simulation model 

represents a reach enough knowledgebase that can be helpful for various tests and 

performance comparisons of various novel modulation techniques suggested and intended 

to be used at signal transmissions in the transmission environment of optical fibers. 

2. The environment of metallic homogeneous lines 

2.1 Linear negative influences on transmitted signals 

Propagation loss and linear distortions (distortions of the module and the phase 
characteristics and the group delay characteristic) are linear negative influences dependent 
on physical and constructional parameters, such as a line length, a core diameter of the wire, 
a mismatch of impedances in cross-connecting points of sections, a frequency bandwidth 
and so forth (Róka, 2004). 

We first discuss the propagation loss LdB in a perfectly terminated line. If R, L, G and C are 

primary constants of the line and  = 2..f, where f is the frequency, then 
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where  () denotes the propagation constant of the line,  () is the specific constant of the 

attenuation,  () is the specific constant of the phase shift and Z () is the characteristic 
impedance of the line. For a perfectly terminated line with the length l, the transfer function 
H (l, f) of metallic homogeneous symmetric lines is given by 

 . ( ) . ( ) . . ( )( , ) .l f l f j l fl f e e e     H  (3) 

and the propagation loss LdB is given as  
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We must place emphasis on the interchangeable use of terms - the line attenuation aline (l, f) 

and the propagation loss LdB (l, f) to designate the quantity in (4) only for the case of 

a perfectly terminated line. We can see that a dependency of the propagation loss LdB on the 

line length l is linear and is also an increasing function of the frequency f as should be 

apparent from the expression for the propagation constant  () in (1). A power level of 

transmitted signals is also influenced by other important parameters - a diameter and 

constructional material of the core. 

For lower frequency regions, for which .L << R is valid and G can be neglected, the 

propagation constant expressed in (1) can be simplified to 
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For frequencies less than 20 kHz, both the real and imaginary parts  () and  () are 

approximately proportional to f . At higher frequencies, frequency dependencies of the 

primary constants R and L (except for C) become noticeable and the propagation constant in 

(1) can be approximated by 
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In this case, the imaginary part  () is approximately a linear function of the frequency. 

Major variations for the real part  () are due to the frequency dependency of R, which 

becomes proportional to f . because of the skin effect. Therefore, it is necessary to take 

into account increased signal attenuation in the area of higher frequencies. 

The phase  and envelope e delays of the line can be expressed as following 
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At higher frequencies, the group envelope delay e and the phase delay  are approximately 

frequency-independent and equal to the value about e ≈  = 5,4 s/km. 

2.2 Near-end and far-end crosstalk signals 

The term “crosstalk” generally refers to the interference that enters a communication 
channel through some coupling paths. On Fig. 1, a kind of generating and propagating of 
two crosstalk types in a multipair cable is presented. 

 

Fig. 1. Types of crosstalks in the environment of metallic homogeneous lines 

At the input of pair j, the information signal us (t) is generated. This signal, when 
propagating through the line, can generate two types of crosstalk signals arising in pair i. 
A crosstalk signal xNEXT (t) is called the near-end crosstalk NEXT. A crosstalk signal xFEXT (t) 
is called the far-end crosstalk FEXT. From a data communication point of view, the NEXT 
crosstalk is generally more damaging than the FEXT crosstalk, because the NEXT does not 
necessarily propagate through the line length and thus does not experience a propagation 
loss of the signal (Werner, 1991). 

If either single or multiple interferers generate a crosstalk signal, we can define a gain of the 
NEXT crosstalk path according to (Werner, 1991), (Róka, 2002, 2004) using a following 
relation 

  2 2
4. ( ).2 3/2. .

( , ) 1 .
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f lNEXT
NEXT NEXT

f k
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f
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where variables are given as KNEXT = 0,882.10-14.Nd0,6, Nd is the number of disturbing pairs 
(disturbers), f is the frequency in Hz. An approximation on the right in (8) is valid when the 

line length l is large and for frequency regions where the real part  () of the propagation 

constant is proportional to f . We can also derive a gain of the FEXT crosstalk path 
in a similar manner using a following relation  

 2. ( ).2 2 2 2 2( , ) 4. . . . . . .3280. . ( , )f l
FEXT FEXT FEXTl f f k l e K l f l f  H H  (9) 

where variables are given as KFEXT = 3,083.10-20, l is the line length in km, f is the frequency in 
Hz and H (l, f) expresses the transfer function of a metallic homogeneous symmetric line. 
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2.3 Impulse noise signal 

Due to the important effect of this negative influence, we took into account also this type of 
noise. The most common and the most damaging type of impulse noise seems to occur 
when a disturbed pair shares a common cable sheath with switched disturbing pairs – that 
is usual in the local access network. Sharp voltage changes can occur on analog pairs 
because of the opening and closing of relays. These voltage changes when are coupled into 
neighboring pairs through the NEXT and FEXT coupling path, create spurious, impulsive-
like voltages whose amplitudes can be quite significant (Werner, 1991).  

In unshielded twisted pairs, various equipments and environmental disturbances such as 
signaling circuits, transmission and switching gear, electrostatic discharges, lightning surges 
and so forth can generate an impulse noise. The impulse noise has some reasonably well-
defined characteristics. Features of the typical impulse noise can be summarized as follows: 

 occurs about 1-5 times per minute (on an average 4 times per minute), 

 has peak values in the range 2 - 33 mV, 

 has most of its energy concentrated below 40 kHz, 

 has time duration in the range 30 - 150 s. 

Of course, mentioned features don’t characterize all possible impulse noise signals. In the 
simulation model, therefore, characteristics of the impulse noise signal can be randomly 
varied.  

2.4 Spectral characteristics of the VDSL signals 

The VDSL modem uses a frequency bandwidth up to 20MHz. From this reason, the VDSL 
transmitter must solve situations that are not emergent in other xDSL modems. To these 
problems belong a spectral compatibility and cooperation with installed xDSL systems and 
a high level of different crosstalk signals.  

In VDSL modems, various types of duplex methods and proposed modulation techniques 
are considered in (Cherubini et al., 2000), (Mestagh et al., 2000) and (Oksman & Werner, 
2000). The ETSI recommendation binds producers to keep an established frequency plan 
(European Telecommunications Standards Institute [ETSI], 1999). The VDSL system can 
work in a frequency band bounded by frequencies fLOW and fHIGH (Fig. 2). In given frequency 
areas, the power of the VDSL signal must be adjusted to a level that can ensure the spectral 
compatibility with older xDSL systems. Alike, the signal level must be decreased to obviate 
undesirable emissions RFI, concretely caused by amateur radio stations.  

 

Fig. 2. The general frequency plan for the VDSL system 
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The lower frequency fLOW is given by the spectral compatibility with narrowband services 
POTS and BA ISDN. The VDSL frequency plan depends on installation variations, on 
crosstalks from different sources and on the existence of narrowband services. Therefore, 
PSD masks of the VDSL signal are defined on the base of specific criteria. By (ETSI, 1999, 
2001), we can discriminate between the VDSL deployment with or without the existence of 
narrowband services in the same cable and with or without the possibility for creating 
frequency apertures. The FTTEx variation seems to be the most probably variation of the 
VDSL deployment scenario where the line termination transceiver is placed in the central 
office exchange. Therefore, in our analysis, we used the FTTEx power spectral density mask. 
A graphical representation of the selected variation is shown on Fig. 3. If necessary, it is 
possible to assign any other standard spectral mask for the considered VDSL signal. 

 

Fig. 3. The PSD mask of the VDSL signal for the FTTEx variation with narrowband services 
and the ADSL presence 

2.5 Spectral characteristics of near-end and far-end crosstalk signals 

Because crosstalk signals from the POTS service in disturbing pairs don’t have significant 
influences on the VDSL signal in the disturbed pair, we supposed both disturbing and 
disturbed signals to have the same power spectral densities PSD1 (f) = PSD2 (f). This 
situation is happened when in neighboring pairs are also VDSL signals – we can talk about 
the self-NEXT crosstalk and the self-FEXT crosstalk. 

For local subscriber loops, we assigned the power spectral density of NEXT and FEXT 
crosstalks using relations (8) and (9) as follows 

 2 2 3/2( ) ( ). ( , ) , ( , ) .NEXT NEXT NEXT NEXTPSD f PSD f l f l f K f H H  (10) 

 2 2 2 2( ) ( ). ( , ) , ( , ) . .3280. . ( , )FEXT FEXT FEXT FEXTPSD f PSD f l f l f K l f l f H H H  (11) 

where variables KNEXT and KFEXT are functions of disturbed pairs. 

Equations (10) – (11) allow very well approximation of practically observed kind of multiple 
interferer crosstalks. Before starting of the simulation, we determined values of variables 
KNEXT and KFEXT in the simulation model as a function of the number of disturbing pairs Nd 
for typical 50-pairs cable as 
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49 .
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The value of the KNEXT-49 variable is given as 8,8.10-14, the value of the KFEXT-49 variable is 

empirically estimated as 8.10-20/3280 (Aslanis & Cioffi, 1992). 

3. The simulation model for the VDSL technology 

For considering of the signal transmission on metallic homogeneous lines by means of the 

VDSL technology, it is necessary comprehensively to know characteristics of negative 

environmental influences and features of applied modulation techniques. It is difficult to 

realize of the exact analytical description of complex systems such as the VDSL system in 

the real environment of local access networks. In addition, due to dynamical natures of 

some processes, it is not suitable. For analyzing of various signal processing techniques 

used by the VDSL technologies, a suitable and flexible enough tool are computer 

simulations and modeling schemes of real environmental conditions at the signal 

transmission.  

For modeling of the VDSL transmission path, we used the software program Matlab together 

with additional libraries like Signal Processing Toolbox and Communication Toolbox. 

A proposed and realized modeling scheme represents a transmission of high-speed data 

signals in downstream and upstream directions by means of the VDSL technology utilizing 

of metallic homogeneous lines. The realized model (Fig. 4) represents the signal 

transmission in the VDSL environment utilizing metallic homogenous lines for high-speed 

data signals in the downstream and upstream direction. This VDSL environment model is 

the enhanced version of the ADSL environment model introduced (Róka & Cisár, 2002). 

New features of this simulation model are VDSL transmission characteristics and 

applications of precoding techniques and trellis coded modulations.  

Basic functional blocks realized in our simulation model are shown on Fig. 4. The VDSL 

simulation model (Fig. 4) can be divided into the three main parts: 

1. A transmitting part - it is responsible for the encoding (using the FEC technique) and 
for the modulation of signals into a form suitable for the transmission channel. 

2. A transmission channel (the metallic homogenous line) - this part of the model realized 
negative influences on the transmitted signal. Above all, it goes about a propagation 
loss, a signal distortion, crosstalk noises, white and impulse noises, the radio 
interference. Because these negative influences expressively interfere into the 
communication and represent its main limiting factors, they present a critical part of the 
model and, therefore, it is necessary exactly to recognize and express their 
characteristics by correct parameters.  

3. A receiving part - it is conceptually inverted in a comparison with the transmitter. Its 
main functions are the signal amplification, the removing of the ISI, the demodulation 
and the correction of errored information bits.  

The analysis can be based on computer simulations that cover the most important features 
and characteristics of the real transmission environment for the VDSL technology and result 
in searching for the best combination of coding and precoding techniques. 
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Fig. 4. The block scheme of the VDSL simulation model 

3.1 The transmitting part of the model 

The transmitted message carried to the receiving part is generated as a random binary chain 

with the given length. This message is also saved (for the BER calculation), encoded by 

a particular type of the FEC codes (RS, BCH) and modulated. It can be chosen from two 

kinds of modulations - the first one is the classical QAM modulation and the second one is 

a combination of the QAM and the convolutional coding, i.e. the TCM. The QAM 

modulation is chosen because of its compatibility with considered precoding techniques, 

a low distortion resistance and an easy implementation in the Matlab program environment.  

3.2 The transmission line 

Utilizing of local subscriber loops for the broadband access of subscribers by means of the 

VDSL technology assumes a replacing of the significant part of metallic lines by optical 

fibers. This will bring a subscriber distribution point (SDP) unit closer to subscribers, when 

metallic lines will distribute signals to subscriber premises. Although metallic lines will 

comprise only a small part of the transmission path, their influences on transmitted signals 

will not negligible. 

Negative influences of the VDSL environment at the signal transmission depend on 

parameters of metallic homogeneous lines (a core material, a cable insulation, a core diameter, 

a number of neighboring lines in the cable binder, a cable length). If we want to achieve exact 

results from simulations, all these factors must be accepted. Of course, this acceptance leads to 

a complicated and complex simulation model. For modeling of all these influences,  

a theoretical description together with simulation methods is introduced (Róka & Cisár, 2002). 
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3.3 The receiving part of the model 

At the receiver side, the distorted and attenuated signal is first amplified, next demodulated 
and then shifted into the inverse precoder that removes constellation changes introduced by 
the precoder at the transmitter side. If the TCM is used, the TCM decoder follows and the 
Viterbi algorithm is searching the most probably binary sequence. Otherwise, the QAM 
demapping block converts the constellation points sequence into the binary data sequence 
that is corrupted by transmission errors. They are consequently removed in the FEC 
decoder. Finally, the corrected sequence is compared with the original transmitted message 
and the bit error rate is calculated. 

We should notice that individual precoding techniques suppose conceptually different 
manner of the signal regeneration, therefore this process is not here exactly described. For 
both methods, it is essential to know a transmission function of metallic lines. This 
information can be extracted from the signal transmission of predefined symbol sequences 
at the initialization process.  

Before starting of the simulation, we can calculate the transmission function of the line for 

given parameters (l, ). Values of this function are sampled in equal proportioned frequency 
intervals in the range from 0 Hz up to the half of the sampling frequency (fsamp /2). A number 
of samples is optional. For signal processing, it is desirable to choice the number of samples 
equal to 2.N, where N is an integer number. Using sampled values, the impulse 
characteristic of the transmission line h (t) is calculated using the inverse Fourier 
transformation with the same number of samples (from practical viewpoint, the number of 
512 samples is adequate). This sampled impulse characteristic is used as coefficients for the 
digital filter. A simulation of the signal transmission through the line itself is executed by 
digital filtering of the sampled modulated signal using the proposed filter. On Fig. 5, there 

are shown frequency characteristics of the transmission line ( = 0,4 mm, Cu) for various 
line lengths. 
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Fig. 5. Frequency characteristics of the transmission line for various line lengths 
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The influence of the transmission channel that we can derive from its transmission function 

is expressed above all at the attenuation of the transmitted signal. The signal attenuation is 

more accentuated for areas of higher frequency components of power spectral density 

characteristics. This influence is more expensive for longer line lengths. However, we can 

find out that the influence is decreased with increasing of the core diameter of wires. This 

results from a change of values for the primary constant of the line, concretely R and L.  

We can create the NEXT crosstalk noise signal by forming of the white noise spectrum (with 

constant PSD = 0 dB/Hz) that is generated by a random number generator. First, we must 

calculate a frequency characteristic of the HNEXT (l, f) crosstalk transmission function using 

(8). Its parameters are the number of disturbing pairs and the appropriate value of the 

variable KNEXT. On Fig. 6, the NEXT crosstalk transmission function for various numbers of 

disturbers is presented. For modeling of the NEXT negative influence, the NEXT crosstalk 

noise signal acquired by filtering is added to the transmitted signal entering the 

transmission line.  

The FEXT crosstalk signal is created in a similar manner as the NEXT crosstalk signal (its 

spectrum is presented on Fig. 6). Because this type of a crosstalk must be propagated 

through a disturbing line, we included into calculating the HFEXT (l, f) crosstalk transmission 

function also the transmission function of the line H (l, f) using (9) with given parameters. 

The FEXT crosstalk signal is added to the transmitted information signal attenuated at 

a transmission through the metallic homogeneous line. 

 

Fig. 6. The frequency characteristic of NEXT and FEXT crosstalk transmission functions for 

various numbers of disturbers 

The influence of the FEXT crosstalk transmission function is characterized by the power 
spectral density of the FEXT crosstalk signal and by the FEXT crosstalk path. This FEXT 
crosstalk path is depend on the line length, on the frequency of signal and on the 
transmission function of the transmission line because of propagating of crosstalk signals 
through the disturbing pair. For longer line lengths, the influence of the FEXT crosstalk can 
be neglected. On other side, this influence is accentuated at higher frequency components of 
the transmitted signal. Therefore, it is necessary to take into account of the FEXT crosstalk 
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for the new VDSL technology transmitting signals of asymmetric services and application at 
very high bit rates of information signals and on very short distances because of occupying 
higher frequency bandwidths of metallic homogeneous lines.  

3.4 The analysis of environmental influences on the VDSL signals 

At the analysis of the signal transmission through metallic homogeneous lines in the VDSL 
environment, we need to know three basic parameters - properties of the signal transmitted 

into the line (mainly its PSD), a transmission function of the transmission channel and 
features of the noise and crosstalk environmental influences. 

In (Róka, 2002, 2004), particular relationships and frequency characteristics of basic noises 
and crosstalks occurred at the signal transmission through metallic homogeneous lines in 

the environment of xDSL technologies are introduced. The analysis of negative influences of 
noises and crosstalks on qualitative parameters of homogeneous lines can be extended to the 

VDSL environment. In our analysis, the NEXT crosstalk is not considered because this one 
can disable a communication in the VDSL frequency bandwidth. With respect to the 

possible VDSL deployments in conditions of the Slovak access network, we use a spectral 
mask defined for the FTTEx variation and for the coexistence with narrowband services in 

the same pair. In this spectral mask variation, the ADSL presence is supposed.  

For the SCM modulation, four individual subbands are given alternatively for upstream and 

downstream directions of the transmission. Band transition frequencies are introduced in 
Tab. 1. 

 

Band transition 
frequencies 

f1 
[kHz] 

f2 
[kHz] 

f3 
[kHz] 

f4 
[kHz] 

f5 
[kHz] 

VDSL subbands 138 3000 5100 7050 12000 

Optional subbands 138 3750 5200 8500 12000 

- The utilization of frequencies below f1 and above f5 but within the overall PSD masks is 
possible but is not covered (ETSI, 2001). 

Table 1. Band transition frequencies for the SCM FDD subbands according to the ETSI 

Using a transmission function of the raised cosine filter and on the base of known values of 
carrier frequencies and symbol rates for particular subbands (Tab. 1), we can express an 
ideal PSD characteristic of the SCM signal. A signal transmitted into the metallic 
homogeneous lines must comply with the defined FTTEx spectral mask, so that a spectrum 
of the ideal SCM signal from the modulator must be digitally adjusted using FIR filters 
before transmitting. From this adjusted PSD, moreover, frequency components equivalent to 
subbands allocated for amateur radio stations should be eliminated (ETSI, 1999). Using 
appropriate FIR filters, the SCM signal can be also adjusted with respect to other FTTx 
spectral masks. 

For the MCM modulation, a way to form the PSD of the signal transmitted from the 
transmitter is defined in the ETSI standard (ETSI, 2001). After simplifying, it is multiplying 
of every complex coefficient Zi = Xi + j.Yi by a constant gi and resulting complex coefficients 
Zi’ = gi . Zi enter into the IFFT block. By this way, the transmitter can easy adapt any PSD 
characteristic of the transmitted VDSL signal for satisfying demands that are established by 
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a chosen spectral mask. Alike, it is easy to keep frequency apertures in given subbands at 
occurrences of disturbing frequencies of the RFI type. Therefore, the MCM allows a high 
flexibility of the PSD transmitted signal and tries as effective as possible utilizations of the 
available bandwidth. We can therefore suppose that the transmitted VDSL signal will 
achieve maximum allowable levels in particular subchannels according to the FTTEx 
spectral mask (Fig. 3).  

On Fig. 7 and 8, results of PSD characteristics of VDSL signals for the line length 0,5 km, the 
core diameter 0,4 mm with 24 ADSL and 9 VDSL disturbers and with the FTTEx spectral 
mask are introduced. On Fig. 7, the power spectral density of the SCM signal, the AWGN 
noise and the FEXT crosstalk are considered at the end of the line. All these characteristics 
are attenuated from a reason of transmitting signals through metallic homogeneous lines 
and, therefore, their corrections are needed. We are also using a linear equalization process 
to eliminate influences of the intersymbol interference (ISI). We can imitate this process by 
a corrector in the frequency area with a transmission function inverted to a channel 
transmission function. This correction in the frequency area eliminates aftereffects of the 
nonlinear signal attenuation by amplifying of higher frequency components. However, the 
correction of the received signal amplifies also the influence of noises and interferences. On 
Fig. 8, the PSD of the SCM signal and the total noise adjusted by the corrector are specified.  
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Fig. 7. The PSD characteristics of the SCM signal, the FEXT crosstalk and the AWGN noise 
attenuated at the end of the line  
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Fig. 8. The PSD characteristics of the SCM signal and the total noise adjusted by the corrector 
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On Fig. 9, results of PSD characteristics of the MCM signal, the AWGN noise and the FEXT 
crosstalk for the line length 0,5 km, the core diameter 0,4 mm with 24 ADSL and 9 VDSL 
disturbers and with the FTTEx spectral mask are introduced. A received signal is sampled 
and processed by the FFT block without a correction in the frequency area. Therefore, the 
SNR can be calculated in particular subchannels directly from the MCM signal power and 
the noise powers at the end of the line. 
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Fig. 9. The PSD characteristics of the MCM signal, the FEXT crosstalk and the AWGN noise 
attenuated at the end of the line 

A sense of analyzing for environmental influences on the power spectral densities of VDSL 

signals is to identify all substantial noise resources and at the same time to determine a way 

for calculating of the signal-to-noise ratio for various proposed modulation techniques. For 

our following analysis of the VDSL system performance, the parameter SNR is very 

important. The signal-to-noise ratio for the subband given by the lowest fLOW and the highest 

fHIGH frequencies can be expressed as 

    
 

HIGH

LOW

HIGH

LOW

f

S

f

f

N

f

PSD f df

SNR f

PSD f df





  (14) 

where PSDS (f) is the VDSL signal power spectral density and PSDN (f) is the noise power 
spectral density. The SNR (f) ratio must be calculated from the adjusted SCM signal power 
and the noise powers. 

4. The environment of power distribution cables 

4.1 The multipath signal propagation 

The PLC transmission channel has a tree-like topology with branches formed by additional 
wires tapered from the main path and having various lengths and terminated loads with 
highly frequency-varying impedances in a range from a few ohms to some kiloohms 
(Zimmermann & Dostert, 2002b), (Held, 2006). That’s why the PLC signal propagation does 
not only take place along a direct line-of-sight path between a transmitter and a receiver but 
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also additional paths are used for a signal spreading. This multipath scenario can be easily 
explained by the example of a cable with one tap (Fig. 10).  

A B

D

C

r3B

r3D

r1B

(1) (2)

(3)

t3B

t1B

 

Fig. 10. The multipath signal propagation in the cable with one tap 

The line consists of three segments (A-B), (B-C) and (B-D) with lengths l1, l2, l3 and 
characteristic impedances ZL1, ZL2 and ZL3. To simplify considerations, points A and C are 
assumed to be matched, which means ZA = ZL1 and ZC = ZL2. Then, points B and D are 
reflection points with reflection factors are denoted as r1B, r3D, r3B and transmission factors 
are denoted as t1B, t3B. Because of multiple reflections, a number of propagation paths is 
infinitive (i.e., A → B → C, A → B → D → B → C, and so on). An affect of all reflections and 
transmissions can be expressed for each propagation path i in a form of the weighting factor 
gi that is mathematically equal to the product of reflection and transmission factors along the 
path. The value gi is always less or equal to one because all reflection and transmission 
factors can be only less or equal to one. The simulation model can be simplified if we 
approximate infinite number of paths by only N dominant paths and make N as small as 
possible. When more transmissions and reflections occur along the path, then the weighting 
factor will be smaller. When the longer path will be considered, then the signal contribution 
from this part to the overall signal spreading will be small due to the higher signal 
attenuation (Ferreira et al., 2010).   

4.2 The signal attenuation 

Characteristics of the PLC transmission environment focused on the multipath signal 

propagation, the signal attenuation, the noise scenario and the electromagnetic compatibility 

are introduced in (Róka & Dlháň, 2005). First, we can present basic characteristics of the PLC 

channel. 

A total signal attenuation on the PLC channel consists of two parts: coupling losses 

(depending on a transmitter design) and line losses (very high and can range from 40 to 

100 dB/km). To find a mathematical formulation for the signal attenuation, we have to start 

with the complex propagation constant 

          . . . . .R j L G j C j               (15) 

depending on the primary cable parameters R, L, G, C. Then, the frequency response of 

a transmission line H (f) (the transfer function) with the length l can be expressed as follows 

(U (x) is the voltage at the distance x): 
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Considering frequencies in the megahertz range, the resistance R per length unit is 

dominated by the skin effect and thus is proportional to f . The conductance G per length 

unit is mainly influenced by a dissipation factor of the dielectric material (usually PVC) and 

therefore proportional to f. With typical geometry and material properties, we can suppose 

G << .C and R << .L in the frequency range of interest. Then, cables can be regarded as 

low lossy ones with real valued characteristic impedances and a simplified expression for 

the complex propagation constant  can be introduced 

 1 2 3( ) ( ) . ( )f k f k f j k f f j f              (17) 

where constants k1, k2 and k3 are parameters summarizing material and geometry properties. 
Based on these derivations and an extensive investigation of measured frequency responses, 

an approximating formula for the attenuation factor  (f) is found in a form  

 0 1( ) kf a a f     (18) 

that is able to characterize the attenuation of typical power distribution lines with only three 
parameters, being easily derived from the measured transfer function (Zimmermann & 
Dostert, 2002b). Now the propagation loss LdB is given at the length l and the frequency f as  
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We can see a linear dependence of the propagation loss LdB on the line length l. Parameters 
a0, a1 and k are characterized by measurements of the transfer function H (f) that is much 
easier then the measurement of primary line parameters R, L, C, G. If we now merge a signal 
spreading on all paths together (we can use a superposition), we can receive an expression 
for the frequency response H (f) in a form 

 .2. . .

1

( ) ( , ) i

N
j f

i i
i

f g a l f e  


  H    (20) 

where a (li, f) is the signal attenuation proportioned with the length and the frequency and N 
is the number of paths in the transmission channel. The delay i of the transmission line can 
be calculated from the dielectric constant r of insulating materials, the light speed c and the 
line length li as follows 

 
.i r

i

l

c

    (21) 

4.3 The noise scenario 

Unfortunately, in a case of the PLC environment, we can’t stay only with the additive white 
Gaussian noise. The noise scenario is much more complicated, since five general classes of 
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noise can be distinguished in power distribution line channels (Zimmermann & Dostert, 
2002a), (Götz et al., 2004). These five classes are (Fig. 11): 

1. Colored background noise – caused by a summation of numerous noise sources with low 
powers. Its PSD varies with the frequency in a range up to 30 MHz (significantly 
increases toward to lower frequencies) and also with the time in terms of minutes or 
even hours.  

2. Narrowband noise – caused by ingress of broadcasting stations. It is generally varying 
with daytimes and consists mostly of sinusoidal signals with modulated amplitudes.  

3. Periodic impulsive noise asynchronous with the main frequency – caused by rectifiers within 
DC power supplies. Its spectrum is a discrete line spectrum with a repetition rate  
in a range between 50 and 200 kHz. 

4. Periodic impulsive noise synchronous with the main frequency – caused by power supplies 
operating synchronously with the main cycle. Its PSD is decreasing with the frequency 
and a repetition rate is 50 Hz or 100 Hz. 

5. Asynchronous impulsive noise – caused by impulses generated by the switching 
transients’ events in the network. It is considered as the worst noise in the PLC 
environment, because of its magnitude that can easily reach several dB over other noise 
types. Fortunately, the average disturbance ratio is well below 1 percent, meaning that 
99 percent of the time is absolutely free of the asynchronous impulsive noise.   

The noise types 1, 2 and 3 can be summarized as background noises because they are 

remaining stationary over periods of seconds and minutes, sometimes even of hours. On the 

contrary, the noise types 4 and 5 are time-variant in terms of microseconds or milliseconds 

and their impact on useful signals is much more stronger and may cause single-bit or burst 

errors in a data transmission. Time and domain analysis of impulse noises can be found in 

(Zimmermann & Dostert, 2002a). We will just mention a few expressions regarding 

a mathematical description of the impulse noise model and the impulse energy and power.  

H(f) + + + + +

PSD

f

1
PSD

f

3
PSD

f

2
PSD

f

4
PSD

f

5
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Fig. 11. The noise scenario in the PLC environment 

A time behavior of the impulsive noise can be described by three basic figures, i.e. the 
impulse width tw, the arrival time tarr and the interarrival time tiat or the impulse distance td. 
The interarrival time (the impulse distance) means a distance between two impulse events 
that can be described by 

 , 1 ,iat w d arr i arr it t t t t     (22) 
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Then, a train of impulses nimp (t) can be described as 

 
,

,1

( )
N

arr i
imp i

w ii

t t
n t A imp

t
         (23) 

where Ai means the impulse amplitude and imp (t) is the generalized impulse function. 

The parameters Ai, tw and tarr are random variables, whose statistical properties may be 

investigated by measurements. More information can be found in (Róka & Urminský, 

2008).  

The best way how to characterize extent of the impact of impulses on a data transmission 

are values of the impulse energy and the impulse power. The impulse energy Eimp can be 

calculated from the time-domain representation nimp (t) as  

 
2( )

arr w

arr

t t

imp imp

t

E n t dt


    (24) 

As we can see from (24), the impulse energy is influenced by the impulse shape and width. 

Finally, the impulse power can be determined by 

 
21

( )
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t t

imp imp
w t

n t dt
t

 
    (25) 

and can be used for a comparison of impulse and background noises. 

5. The simulation model for the PLC technology 

The realized model (Fig. 12) represents a high-speed signal transmission in the PLC system 

utilizing outdoor power distribution lines in downstream and upstream directions (Róka & 

Dlháň, 2005). The signal transmission over outdoor power distribution lines represents the 

transmission between a transmitter in the transformer substation and a receiver in the 

customer premises.  

Our realized simulation model can be divided into the three main parts: 

1. A transmitting part - it is responsible for the encoding (because of using the FEC 

technique) and for the modulation of signals into a form suitable for the transmission 

channel.  

2. A transmission channel (the outdoor power lines) - this part realizes negative 

influences of the PLC environment on the transmitted signal. Above all, it goes about 

the propagation loss, the signal distortion, the impulsive, colored and narrow-band 

noises.  

3. A receiving part - it is conceptually inverted in a comparison with the transmitter. Its 

main functions are the signal amplification, the demodulation and the correction  

of error information bits.  
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Fig. 12. The block scheme of the PLC simulation model 

5.1 The transmitting part of the model 

The transmitted message carried to the receiving part is generated as a random binary chain 
with the given length. This message is also saved (for the BER calculation), encoded by 
a particular type of the FEC codes and modulated. From the coding and modulation 
techniques, we are intending to implement several different ones to be able to compare them 
and find the most appropriate one. 

5.2 The outdoor power distribution line 

Negative influences of the PLC environment at the signal transmission depend on 
parameters of power distribution lines (a core material, a cable insulation, a cable length, 
a core diameter, a number, position and properties of additional wires tapered from the 
main path) as well as on number and properties of points of nonhomogenity (instrument 
panels, PLC signal coupling units, regenerator units, points of wires interconnections). If we 
want to achieve exact results from simulations, all these factors must be accepted. Of course, 
this acceptance leads to a complicated and complex PLC simulation model. Because of this 
fact we have to choose a trade-off between the model complexity and the accuracy of reality 
representations. For modeling of the PLC transmission channel, we chose a generalized 
multipath model because of its accuracy, easily implementation and understandability 
(Zimmermann & Dostert, 2002b). Mathematically, it can be described in a form of the 
expression  

 0 1
( ).2. . . ( . ) .2. . .

1 1

( ) ( , ) ( )
k

gi i ii

N N
fj f a a f l j f

i i i
i i

f g a l f e g f e e e
       

 
       H   (26) 

In general, the weighting factor gi is complex and frequency-dependent because 
reflection points may have complex and frequency-dependent values. According to 
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extended measurements campaigns, it is possible to consider gi as a complex but not 
frequency-dependent value or as a real value even in many practical models it can be 
considered.  

For the presented model, parameters were assumed from the paper (Zimmermann & 

Dostert, 2002b). In spite of its simplification, it is still accurate enough for the PLC 

system performance analyses. It goes about the model of the 110 m link supposing  

N = 15 main paths. The values of other parameters like k, a0, a1, gi, li (k, a0, a1 are 

attenuation factors, gi is weighting factor and finally li means length of i-th branch) can 

be found in Tab. 2.  

 

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

gi 0,029 0,043 0,103 -0,058 -0,045 -0,040 0,038 -0,038 0,071 -0,035 0,065 -0,055 0,042 -0,059 0,049 

li [m] 90 102 113 143 148 200 260 322 411 490 567 740 960 1130 1250 

k 1 

a0 0 

a1 [m/s] 7,8.10-10 

Table 2. Parameters of the 15-path PLC simulation model 

In the PLC transmission environment, not only a signal distortion expressed by the channel 

transfer function H (f) is presented. Also different types of noise have very negative 

influence on transmitted signals in a form of the time-invariant behavior of the SNR on 

powerline channels. The first type of noise – the colored background noise is modeled by 

filtering the AWGN noise through a filter with the exponentially decreasing transfer 

function for increasing frequencies with the average 35 dB/decade in the low frequency 

range up to 10 kHz and a low rate in the high frequency range (Hrasnica et al., 2004). The 

narrowband noise is generated in a similar way only with a difference in band-pass filters 

with a random selection of the lower passband edge frequency. The power of these narrow 

spikes is varying around the –80 dBm/Hz. The impulsive noise can be described by 

expression (23). From (Zimmermann & Dostert, 2002a), the parameters of periodic 

impulsive noises (type 3 and 4) are more and less deterministic. Concretely, the width  

of noise impulse is about 200 μs, the impulse amplitude is concentrated around two values; 

about 0.4 V and then between 0.7 and 1 V. The interarrival time values are 10 ms, 6 ms and 

12 ms.  

The biggest problem for modeling represents the asynchronous impulsive noise because of 

its random occurrence and random durations from some microseconds up to a few 

milliseconds. It can’t be ignored since its influence with the PSD more than 50 dB is 

particularly devastating of the transmitted signal. As it goes about a random process, whose 

a future behavior only depends on the present state or on limited periods in the past, may be 
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described by so-called the portioned Markov chain. In this model, all states are partitioned 

into two groups, where the first represents a case where no impulse event occurs and the 

second represents an occurrence of the impulse event. Transitions between states from the 

first group top the second and vice versa are described by two independent probability 

matrices U for impulse-free states and G for impulse states. The concrete values of these 

matrices can be found in paper (Zimmermann & Dostert, 2002a). Each impulsive noise state 

corresponds to an exponential distribution of the impulse width, while each impulse-free 

state corresponds to an exponential distribution of the impulse distance. Thus, this kind of 

modeling represents a superposition of several exponential distributions that approximate 

real scenarios very well.    

5.3 The receiving part of the model 

At the receiver side, the distorted and attenuated signal is first amplified and then 

demodulated. Part of the demodulation is also demapping block as a part of modulator, 

which is responsible for converting the constellation points sequence into the binary data 

sequence corrupted by transmission errors. They are consequently removed in the FEC 

decoder. Finally, the corrected sequence is compared with the original transmitted message 

and the bit error rate is calculated. 

5.4 Characteristics of the parametric model for reference channels 

The parametric model for the PLC channel is possible to adapt for any topology of the 

power distribution network (Róka & Urminský, 2008). Parameters of this model with 

various coefficients were presented in ETSI Technical Specifications (ETSI, 2000, 2001) and 

a following set of reference channels for a practical utilization was established: 

1. Reference channel 1 (RC1) – a channel between transformer stations with features of the 

HV channel. A distance between separate transformer stations is around 1000 m.  

2. Reference channel 2 (RC2) – a channel from the transformer station up to the main circuit 

breaker, a distance is approximately 150 m. 

3. Reference channel 3 (RC3) – a channel from the main circuit breaker up to the counting 

box of consumed energy in the house, a distance is maximum 250 m. 

4. Reference channel 4 (RC4) – a home scenario. 

For the presented parametric model, parameters for various PLC reference channels were 

assumed from the paper (Zimmermann & Dostert, 2002b). In spite of their simplification, it 

is still accurate enough for the PLC system performance analyses. The values of other 

parameters like k, a0, a1, gi, li for the multi-path signal propagation in reference channels can 

be found in (Róka & Urminský, 2008). Computer simulations at appropriate frequency 

characteristics of particular reference channels used values from a specific table. These 

frequency responses are graphically shown in Fig. 13. 

As it can be noticed from simulation results, the signal attenuation in reference channels is 

straightforward proportioned with the length and the frequency. For some specific 

frequencies only is shown the selective attenuation caused by the multi-path effect with 

approximately 30 to 40 dB. 
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Fig. 13. Frequency responses of the RC1, RC2, RC3 and RC4 channels  

6. The environment of optical fibers 

6.1 Transmission parameters of the optical fiber 

Basic transmission factors of the singlemode standard optical fiber are following (Čuchran & 
Róka, 2006): 

 the attenuation,  the dispersion  
- the chromatic dispersion CD, 
- the polarization mode dispersion PMD, 

 nonlinear effects – the self phase modulation SPM,  
- the cross phase modulation XPM,  
- the cross polarization modulation XPolM,  
- the four wave mixing FWM,  
- the stimulated Raman scattering SRS, 
- the stimulated Brillouin scattering SBS. 

Nonlinear effects in the optical fiber may potentially have a significant impact on the 
performance of WDM optical communication systems. In a WDM system, these effects place 
constraints on the spacing between adjacent wavelength channels and they limit the maximum 
power per channel, the maximum bit rate and the system reach (Mukherjee, 2006). 

Knowing which fundamental linear and nonlinear interactions dominate is helpful to 
conceive techniques that improve a transmission of optical signals, including advanced 
modulation formats, a digital signal processing and a distributed optical nonlinearity 
management. 
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6.2 The attenuation 

The optical fiber is an ideal medium that can be used to carry optical signals over long 
distances. There are several sources that contribute to the fiber attenuation, such as 
an absorption, a scattering and a radiation. The attenuation leads to a reduction of the signal 
power as the signal propagates over some distance. When determining the maximum 
distance that a signal propagate for a given transmitter power and receiver sensitivity, the 

attenuation must be considered. The attenuation coefficient  [dB/km] of the optical fiber 
can be obtained by measuring the input and the output optical power and then the optical 
power level along the fiber length L [km] can be expressed as 

 

.

10( ) 10 . (0) [ ]

L

P L P W


   (27) 

where P (0) is the optical power at the transmitter, P (L) is the optical pulse power at the 
distance L. For the link length L, the P (L) must be greater than or equal to the receiver 

sensitivity Pr. On Fig. 14, a characteristic curve of the  () as a function of available 
wavelengths is presented (Black, 2002). 

 

Fig. 14. The wavelength characteristic of the attenuation coefficient  

6.3 The dispersion 

The dispersion is a widening of the pulse duration as it travels through the optical fiber. As 

a pulse widens, it can broaden enough to interfere with neighboring pulses (bits) on the 

fiber leading to the intersymbol interference ISI. The dispersion thus limits the maximum 

transmission rate on a fiber-optic channel. We distinguished two basic dispersive forms - the 

intermodal dispersion and the chromatic dispersion. Both cause an optical signal distortion 

in multimode optical fibers MMF, whereas a chromatic dispersion is the only cause of the 

optical signal distortion in singlemode fibers SMF.  

The chromatic dispersion CD represents a fact that different wavelengths travel at different 

speeds, even within the same mode. In a dispersive medium, the index of refraction n () is 

a function of the wavelength. Thus, certain wavelengths of the transmitted signal will 

propagate faster than other wavelengths. The CD dispersion is the result of material 

dispersion, waveguide dispersion and profile dispersion. On Fig. 15, characteristic curves of 

the CD as a function of available wavelengths for various optical fiber types (USF, NZDF, 

DSF) are presented (Black, 2002). 

(m) 
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Fig. 15. Wavelength characteristics of the dispersion for USF, NZDF and DSF fibers 

The polarization mode dispersion PMD is another complex optical effect that can occur in 
singlemode optical fibers (Black, 2002). The SMF support two perpendicular polarizations of 
the original transmitted signal. If a fiber is not perfect, these polarization modes may travel 
at different speeds and, consequently, arrive at the end of the fiber at different times. The 
difference in arrival times between the fast and slow mode axes is the PMD (Fig. 16). Like 
the CD, the PMD causes digitally-transmitted pulses to spread out as the polarization modes 
arrive at their destination at different times. 

 .PMDD L    (28) 

 

Fig. 16. The PMD generation in the environment of optical fibers 

The main problem with the PMD in optical fiber systems is its stochastic nature, letting the 
principal state of polarization PSP and the differential group delay DGD vary on timescales 
between milliseconds and months (Kaminow et al., 2008).  

6.4 The insertion loss 

The fiber loss is not only source of the optical signal attenuation along transmission lines. 
Fiber splices and fiber connectors also cause the signal attenuation. The number of optical 
splices and connectors depends on the transmission length and must be taken into account 
unless the total attenuation due to fiber joints is distributed and added to the optical fiber 
attenuation.  

7. The simulation model for the optical communications 

For modeling of the optical transmission path, we used the software program Matlab 2010 
Simulink together with additional libraries like Communication Blockset and Communication 
Toolbox (Schiff, 2006), (Binh, 2010). The realized model (Fig. 17) represents the signal 
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transmission in the environment utilizing optical fibers for very high-speed data signals in 
both directions. Optical communication technologies will always be facing the limits of 
high-speed signal processing and modulation, which is an important factor to take into 
account when discussing advanced optical modulation formats. The main task of the 
simulation model is an analysis of various modulation techniques (Xiong, 2000), (Kaminow 
et al., 2008), (Shieh & Djordjevic, 2010). 

Basic functional blocks realized in the optocommunication simulation model can be divided 
into the three main parts: 

1. A transmitting part - it is responsible for the generating (using the Bernoulli generator) 
and for the modulation of generated signals according to required information inputs 
into a form suitable for the transmission channel. The modulation block contains a basic 
set OOK modulation and its variations with DBPSK and DQPSK modulations. 

2. A transmission channel (the optical fiber) - this part of the model realized negative 
influences on the transmitted signal. Above all, it goes about an attenuation, 
a dispersion and a noise. Because these negative influences expressively interfere into 
the communication and represent its main limiting factors, they present a critical part of 
the model and, therefore, it is necessary exactly to recognize and express their 
characteristics by correct parameters. 

3. A receiving part - it is conceptually inverted in a comparison with the transmitter. At 
the receiver side, a signal is demodulated by appropriate demodulator and the BER 
ratio is calculated. Also, blocks for graphical presenting of transmitted optical signals 
can be utilized (Fig. 18). 

 
 
 
 
 

 
 
 
 
 
 

Fig. 17. The block scheme of the optocommunication simulation model 
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Fig. 18. Symbol constellation and eye diagrams of the DQPSK modulations 

8. Conclusion 

The first part of the paper analyzes basic features of the real transmission environment 

of metallic homogeneous lines and presents possibilities for modeling and simulating of 

the information signal transport in this environment by means of the VDSL technology. 

We focused on the determination and the analysis of concrete characteristic features 

for substantial negative influences of internal and external environments and on the 

representation of frequency dependencies of transmitted VDSL signals. The attenuation 

determined by the channel’s transmission function is more damaged for areas of higher 

frequency components of power spectral density characteristics for transmitted signals. 

The influence of the NEXT crosstalk signal is accentuated at higher frequency 

components of the transmitted signal. The influence of the FEXT crosstalk signal is 

depending on the line length, on the frequency of signal and on the transmission 

function of the transmission line because of propagating of crosstalk signals through the 

disturbing pair. For long enough line lengths, the influence of the FEXT crosstalk can be 

neglected. Therefore, for the VDSL technology that transmits information signals of 

asymmetric and symmetric services at very high bit rates on very short distances, it is 

necessary to take into account both NEXT and FEXT crosstalks at signals occupying 

higher frequency bandwidths of metallic homogeneous lines. Due to damaging effects of 

the impulse noise, we must take into account also this type of negative environmental 

influence. 

Basic features and characteristics of negative environmental influences at the signal 

transmission in the VDSL environment can be used for modeling spectral characteristics 

of signals on the transmission path. The VDSL simulation model allows determining main 

problems that can arise at the VDSL signal transmission. For realizing of individual model 

blocks, we concentrated on the choice of appropriate parameters so that these blocks could 

be adjusted and modified for future demands. The knowledge of the PSD characteristics 

of the VDSL signal can be very effectively utilized for characterizing the VDSL signal 

transmission on metallic homogeneous symmetric lines, especially for a determination 

of the SNR ratio. In addition, they can be used for analyzing singlecarrier and multicarrier 

modulation techniques in the overall VDSL system performance including theoretical and 

practical limits of transmission channels used by the VDSL technology. 
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The second part of the paper analyzes basic features of the real transmission environment 
of the outdoor power distribution lines and presents possibilities for modeling and 
simulation of the information signal transmission in this environment by means of the PLC 
technology. We focused on transmission characteristics of the PLC channel, namely the 
multipath signal propagation, the signal attenuation and the interference scenario revealing 
different classes of the impulsive noise. We created a model of the complex frequency 
response in a range from 500 kHz up to 30 MHz. Moreover, we realized experimental 
measurements for verification of the parametric model for reference channels. According the 
transfer functions, it has been observed the decreasing linear performance in the measured 
frequencies range where the number of imperfect matching points is minimum. It can be 
concluded that if the line length path grows it is more probable that the number 
of reflections produced by imperfect matching points grows too. Moreover, the transfer 
function slope increasing in lower frequencies is proportional to the line length. 

Basic features of negative environmental influences at the signal transmission in the power 
distribution environment can be used for modeling spectral characteristics of PLC signals 
of the transmission path. The PLC simulation model is verified by measurements in the real 
PLC transmission environment that confirmed its satisfactory conformity with real 
transmission conditions. Using the PLC simulation model, it is possible to verify 
a correctness of the proposed model, to compare with other ones and to demonstrate 
its suitability for searching the most appropriate coding and modulation techniques that 
belong among critical requirements of the development of the next generation PLC 
communication systems with higher data rates. In spite of problems with a high-frequency 
signal transmission, power distribution lines remain a very interesting transmission 
medium. Therefore, it is necessary to evolve a technology that is able to overcome various 
noises and interferences incident in the PLC environment. 

The third part of the paper analyzes transmission parameters for the transmission medium 
of optical fibers and presents possibilities for modeling and simulation of the information 
signal transmission in the environment of optical channels. We focused on linear 
transmission factors – the attenuation and the dispersion - and on nonlinear effects. 
Nonlinear effects in the optical fiber may potentially have a significant impact on the 
performance of WDM optical communication systems. 

The simulation model for the optical communications represents the signal transmission 
in optical fibers for very high-speed data signals in both directions. Knowing which 
fundamental linear and nonlinear interactions dominate in the optical transmission medium 
is helpful to conceive techniques that improve a transmission of optical signals, including 
advanced modulation formats, a digital signal processing and a distributed optical 
nonlinearity management. 
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10. Abbreviations 

ADSL Asymmetric DSL 
AWGN Additive White Gaussian Noise 
BA ISDN Basic Access ISDN 
BER Bit Error Rate 
BCH Bose-Chaudury-Hocquenghem 
CD Chromatic Dispersion 
DBPSK Differential Binary Phase Shift Keying 
DGD Differential Group Delay 
DQPSK Differential Quadrature Phase Shift Keying 
DSF Dispersion Shifted Fiber 
ETSI European Telecommunications Standards Institute 
FEC Forward Error Correction 
FEXT  Far-End Crosstalk 
FDD Frequency Division Duplex 
FTTEx Fiber To The Exchange 
FWM Four Wave Mixing 
ISI Inter-Symbol Interference 
MCM Multi-Carrier Modulation 
MMF Multi-Mode Fiber 
NEXT Near-End Crosstalk 
NZDF Non-Zero Dispersion shifted Fiber 
OOK On-Off Keying 
PLC Power Line Communication 
PMD Polarization Mode Dispersion 
POTS Plain Old Telephone Service 
PSD Power Spectral Density 
PSP Principal State of Polarization 
QAM Quadrature Amplitude Modulation 
RC Reference Channel 
RFI Radio Frequency Interference 
RS Reed-Solomon 
SBS Stimulated Brillouin Scattering 
SCM Single-Carrier Modulation 
SDP Subscriber Distribution Point 
SMF Single-Mode Fiber 
SNR Signal-to-Noise Ratio 
SPM Self Phase Modulation 
SRS Stimulated Raman Scattering 
TCM Trellis-Coded Modulation 
USF Dispersion Unshifted Fiber 
VDSL Very high bit rate DSL 
WDM Wavelength Division Multiplexing 
xDSL “x” Digital Subscriber Line 
XPM Cross Phase Modulation 
XPolM Cross Polarization Modulation 
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