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1. Introduction  

Snakebites and accidents caused by venomous arthropods (mainly spiders, scorpions, 
bees, wasps and caterpillars) are important public health problem. Despite of this, public 
health authorities, nationally and internationally, have given little attention to this 
problem worldwide (Warrell, 2010; Williams et al., 2010). As a consequence, the morbidity 
and mortality associated with snake and arthropod envenoming produce a great impact 
on the population and on the health-care systems. One of the most important and lethal 
effect of these animal venoms is nephrotoxicity (Sitprija, 2006). Specifically in South 
America and Brazil, the main snakes responsible for cases of acute kidney injury (AKI) are 
those from Bothrops and Crotalus genus. Among venomous arthropods, AKI has been 
reported after accidents with bees, spiders of the genus Loxosceles and caterpillars of the 
genus Lonomia.  

Taking in account the importance of accidents with these venomous animals, in this chapter 
we reviewed the main mechanisms that play a role in AKI induced by the most common 
snakes and arthropods found in South America. The following key aspects are addressed: 
Epidemiology, clinical renal manifestations, renal pathophysiology, diagnosis, clinical 
management of AKI and the currently experimental models used to study the venom- 
induced AKI.  

2. Epidemiology and prevalence of venomous snakes and arthropods in 
South America 

Given the wide distribution of venomous animals, particularly in tropical and subtropical 
regions, the extensive number of accidents and the complexity of the clinical conditions it 
causes, the distint types of envenomation can be considered a global problem because they 
assume great public health importance, especially in the poorest areas of the world  (World 
Health Organization [WHO], 2007). This environmental and occupational disease affects 
mainly agricultural workers and their children in some of the most impoverished rural 
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communities of developing countries in Africa, Asia, Latin America and Oceania. 
Populations in these regions experience high morbidity and mortality because of the poor 
access to health services, which are often suboptimal, and, in some instances, a scarcity of 
antivenom, which is the only specific treatment so far tecnically possible to be available. A 
large number of victims survive with permanent physical and psychological sequelae 
(Gutiérrez et al., 2010; Kasturiratne et al., 2008; Warrell, 2010).  

A group of venomous animals is responsible for medically important accidents: snakes, 

scorpions, spiders, caterpillars, bees and wasps. Global epidemiological data on accidents 

with these different types of animals are scarce and often depend on the existence of 

country-specific estimates based on hospital admissions data and community-based 

population surveys. Unfortunately, in the low-income countries, where most accidents 

occur, there is not such a well organized health systems in order to correctly report the 

envenomation cases (Kasturiratne et al., 2008; Williams et al., 2010). Nevertheless, after the 

incorporation of snakebite envenomations on the World Health Organization list of 

neglected tropical diseases in 2009 (www.who.int/neglected_diseases/diseases/ 

snakebites/en/), more attention has been given to the lack of information on the true 

epidemiological impact of accidents, especially in the cases of snakebites. Current data 

indicate that 5.4 to 5.5 million people are bitten by snakes each year, resulting in near 

400,000 amputations, and between 20,000 to 125,000 deaths (Chippaux, 1998, Kasturiratne et 

al., 2008; Williams et al., 2010). The highest burden of snakebite was identified in South and 

Southeast Asia, sub-Saharan Africa and Central and South America. Annually, Asia and 

Africa have incidence rates of 1.2 million and 1 million bites with 60,000 and 20,000 deaths, 

respectively. In Central and South America, epidemiological data indicate the occurrence of 

300,000 snakebites per year which result in 4,000 deaths and approximately 12,000 cases of 

physical sequelae (Chippaux, 2011; Gutiérrez et al., 2010).  

Specifically in Brazil, data from the System of Health Surveillance of the Ministry of Health 

indicate the ocorrence of 107,364 accidents with venomous animals in the year of 2009 

(including cases of snake, scorpion, spider, caterpillar and bee envenomations) which 

resulted in 290 deaths. When compared to the 2008 year  there were an increase of 12 % and 

16 % in the total number of accidents and deaths, respectively (Boletim eletrônico 

epidemiológico, 2010). The majority of reported cases was caused by snakes and scorpions, 

which were also responsible for the highest rates of lethality (Table 1). Most snakebite (53 %) 

occurred from January to May, which reflect the influence of seasonal factors, such as an 

increase in temperature and humidity associated with the rainy season in some regions of 

Brazil. Human agricultural activities were also associated with envenomations, since 78 % of 

accidents occurred in rural areas. Snakes of Bothrops genus (Lance-headed pit vipers) were 

responsible for 90.5 % of the accidents while snakes of Crotalus genus (South American 

rattlesnakes) accounted for 7.7 % of total cases, showing however, a much higher lethality 

index (1.25 %) than that for Bothrops snakes (0.35 %) (Ministério da Saúde, 2001). Analysing 

the different regions of Brazil, the highest proportion of snakebites in relation to the 

population is localized in the North Region (Amazon Forest) with 53.9 accidents/100,000 

inhabitants, probably due to the difficulty of patients to access health services and/or to the 

delay in the administration of antivenom (Table 1). Among all venomous animals, the 

scorpion stands out for its high and growing number of accidents in Brazil. Compared to the 

2008 year, there was an increase of 7,050 cases in 2009 (45,721 versus 38,671 cases in 2008). 
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According to Chippaux and Goyffon (2008), scorpions are responsible annually for 1.2 

million accidents and for about 3,250 deaths in the world. In Brazil, the increased number of 

scorpion accidents has been attributed to its adaptation to urban and domiciliar areas 

(Ministério da Saúde, 2001). In this case, the highest incidence was registred in the Northeast 

Region (Table 1). In contrast, accidents with spiders, caterpillars and bees are a growing 

problem in states of Southern Brazil. Specifically in the state of Paraná the brown spider 

(Loxosceles genus) is the most important venomous animal responsible for the high incidence 

of spider envenomation in the whole South Region (da Silva et al., 2004). In contrast, in the 

states of Rio Grande do Sul and Santa Catarina the caterpillar Lonomia obliqua, also called 

taturana (from the American-Indian Tupi-Guarani tatá, which means fire, and raná, similar 

to), has been associated with severe cases of hemorrhagic syndrome (Veiga et al., 2009). In 

this  case, although accidents may occur throughout the year, 80 % of cases were reported 

during summer, when the animal is in the larval stage of its life cycle. Between 1997 and 

2005 there were 984 accidents only in the state of Rio Grande do Sul, resulting in a mortality 

rate of 0.5 % (Abella et al., 2006). Currently, the therapeutic use of specific antivenom 

(antilonomic serum) has decreased the number of deaths (Table 1). Among bee accidents, 

the most dangerous are caused by Apis mellifera (Africanized bees). In these cases the high 

number of deaths (30 in 2009) has been associated mainly with the absence of a specific 

antivenom and the occurence of allergic reactions (Boletim eletrônico epidemiológico, 

2010).   

 

ACCIDENTS WITH VENOMOUS ANIMALS IN BRAZIL. REPORTED DATA: 
YEAR  2009 *.

 Snakes Spiders Scorpions Caterpillars Bees 

Total number of accidents 27,655 23,515 45,721 4,028 6,445 

Incidence per 100,000 
inhabitants 

14.4 12.3 24 2.1 3.4 

Number of deaths 125 26 104 5 30 

Lethality (%) 0.45 0.11 0.23 0.13 0.05 

Brazilian Regions Incidence per 100,000 inhabitants 

North 53.9 3.6 16.2 1.7 1.9 

Northeast 14.6 1.3 39.6 0.4 2.5 

Midwest 20 2.6 13.3 0.7 2.2 

Southeast 7.4 7.1 23.7 1.7 3.2 

South 10.1 58.5 3.5 7.3 7 

* Data from Brazilian Ministry of Health, 2010 (Boletim Eletrônico Epidemiológico, April 2010). 

Table 1. Epidemiological data of accidents with venomous animals in Brazil. 

3. Clinical renal manifestations due to snake and arthropod envenomation 

A broad clinical spectrum of renal function impairment has been reported in snake and 

arthropod envenomations (Sitprija, 2006). As the kidneys are highly vascularized organs 

and have the ability to concentrate substances into the urine they are particularly susceptible 
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to venom toxins. The most common clinical renal manifestations seen in human patients is 

acute tubular necrosis, but all renal structures may be involved. Thus, the occurrence of 

acute tubulointerstitial nephritis, renal cortical necrosis, mesangiolysis, vasculitis, 

glomerulonephritis, proteinuria, haematuria and myoglobinuria have also been described 

(Sitprija, 2006). 

In this subsection, we reviewed the clinical characteristics of human accidents with snakes 

and arthropods that cause AKI which are highly prevalent in Brazil and other regions of 

Latin America. Envenomations by the following animals were analysed: Bothrops and 

Crotalus snakes, the brown spider Loxosceles, africanized bees, wasps and the caterpillars of 

genus Lonomia. Despite the significant number of accidents with scorpions (Table 1), cases of 

AKI have not been associated to them. In fact, it is known that the main target of scorpion 

venom is the nervous and cardiac systems (Cologna et al., 2009). 

3.1 Snakebite envenomation 

Envenomation by snakebite, indenpendently of the species responsible for the bite, enforces 

medical emergencies since different organs and tissues can be affected at the same time. In 

Brazil, most severe cases result from bites by snakes of the family Viperidae (pit vipers and 

true vipers). Within this family are the Bothrops and Crotalus snakes. Specifically in the 

Bothrops genus there are more than 30 species distributed from southern Mexico to 

Argentina, including Brazil. The most important species are Bothrops asper, B. jararaca, B. 

atrox, B. moojeni, B. jararacussu and B. alternatus. Bothrops snakes preferentially inhabit rural 

areas and moist forest environments. But these snakes also invade cultivated areas and 

ambients with rodents’ proliferation. Bothrops snakes have nocturnal habits and an 

aggressive defensive behavior and its venom present proteolytic, coagulant and 

hemorrhagic active principles that are directly or indirectly implicated in the local and 

systemic effects observed upon envenoming  acidents (Warrel, 2010). Local effects due to the 

envenoming by these snakes are characterized by bleeding, swelling, pain and sometimes 

blisters, and can be frenquently complicated by the development of local abscesses and 

necrosis. Occasionally, compartmental syndrome may develop, which results in functional 

or anatomic loss of the bitten limb (Gutiérrez et al., 2006). Signs of systemic envenoming 

include gingival hemorrhage, microscopic hematuria, ecchymosis and consumption 

coagulopathy and, more rarely, epistaxis, hemoptosis, menorrhagia and hematemesis 

(Gutiérrez et al., 2006; Otero et al., 2002). Disturbances of hemostasis also include severe 

afibrinogenemia, thrombocytopenia and platelet aggregation dysfunction (Santoro and 

Sano-Martins, 2004). Deaths are usually attributed to renal injury, shock, severe bleeding, 

and complicating sepsis. 

Renal dysfunction can occur early in the human bothropic envenomation which often 

induces oliguria and is accompanied by an increase in the plasma creatinine concentration. 

The need for dialysis ranges from 33 % to 75 % of cases (Pinho et al., 2008). AKI is mainly 

due to acute tubular necrosis and acute cortical necrosis and occasionally 

glomerulonephritis (Table 2) (Rodrigues-Sgrignolli et al., 2011). These renal pathological 

alterations have been attributed mainly to hemodynamic changes in response to 

envenomation, hemoglobinuria, intravascular clot formation and direct venom 

nephrotoxicity. 
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By analyzing a series of retrospective studies, Pinho et al. (2008) reported that the prevalence 

of AKI after Bothrops envenomation ranges from 1.6 % to 38.5 %. In most of these reports 

AKI diagnosis was based on the increase in the plasma creatinine and/or blood nitrogen 

urea being, the creatinine clearance barely estimated. The main reported factors influencing 

AKI prevalence upon such envenomation are: the patient’s age (children under 10 year of 

age have been shown to be more susceptible to develop AKI); the snake’s age (venom 

composition can vary even within the same species, according to the snake’s age); bite site 

and amount of inoculated venom; and the time elapsed until antivenom treatment. 

Moreover, pre-existing diseases such as hypertension, diabetes or previous nephropathies 

may become patients more vulnerable to the effects of venom (Rodrigues-Sgrignolli et al., 

2011; Zelanis et al., 2010). Taking in consideration all the above factors, the mortality rate of 

Bothrops venom-induced AKI range from 13 % to 19 %. 

Other snakes well known for their nephrotoxicity are the South American rattlesnakes 

(Crotalus snakes). In Brazil, the Crotalus genus is represented by a single specie, Crotalus 

durissus, that is composed of six subspecies: Crotalus durissus terrificus, C. d.collilineatus, C.d. 

cascavella, C.d. ruruima, C.d. marajoensis and C.d. trigonicus. Besides sharing some common 

characteristics with other venomous snakes, the Crotalus genus presents a rattle at the end of 

its tail, which is a particular characteristic of these snakes making easier their identification. 

In general the Crotalus snakes are found in rocky and drier regions. They are rarely found in 

humid forests and feed mainly of small rodents. They are robust (may reach 1 meter in 

length) and are less agressive than Bothrops snakes (Ministério da Saúde, 2001). 

Among the six different subspecies, C.d. terrificus is the most frequently implicated in 

envenomation cases registered in Brazil. The venom has neurotoxic, myotoxic, and 

nephrotoxic activities (Table 2). In neuromuscular junctions, the venom leads to a powerful 

presynaptic inhibition of acetylcholine release, which is responsible for the neuromuscular 

blockade and progressive flaccid paralysis of variable degrees. Eyelid ptosis, blurred and/or 

double vision, ophthalmoplegia and facial muscle paralysis are common manifestations of 

venom neurotoxicity. The myotoxic activity of the venom also produces severe skeletal 

muscle injury leading to myalgia and rhabdomyolysis with the subsequent release of 

myoglobin from damaged skeletal muscle into serum and urine (Azevedo-Marques et al., 

1987). Indeed, the serum creatine kinase (CK) levels are significantly higher (260-folds that 

of normal values) in patients who develop AKI after a Crotalus bite. Other markers of 

rhabdomyolysis, such as aspartate aminotransferase (AST), alanine aminotransferase (ALT) 

and lactate dehydrogenase (LDH) are also increased in patients with AKI (Pinho et al., 

2005). High serum and urine levels of myoglobin are potentially nephrotoxic, leading to 

acute tubular necrosis, which is the primary and most serious complication of human 

crotalid envenomation. Tissue damage at the site of the bite has been reported to be minimal 

or absent, a feature that differentiates the South American rattlesnake from other species of 

Crotalus and from Bothrops envenomations. Spontaneous bleeding has only been rarely 

observed in human patients, despite the presence of blood incoagulability in some cases 

(Jorge & Ribeiro, 1992). AKI is the main cause of death among patients surviving to the early 

effects of Crotalus snakebites. 

In a study of 100 cases of Crotalus bites, Pinho et al. (2005) showed that AKI develops within 

the first 24 to 48 hours after envenomation. Envenomed patients presented a significant 
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reduction in glomerular filtration rate (estimated by the creatinine clearance). AKI patients 

also presented dark-brown urine and a fractional excretion of sodium significantly higher 

than the normal (Pinho et al., 2005). The major kidney pathological alteration is acute 

tubular necrosis, although interstitial nephritis has also been observed (Amaral et al., 1986; 

Azevedo-Marques et al., 1985) (Table 2). In this type of envenomation the occurrence of 

severe rhabdomyolysis is one of the more accepted explanations for the acute tubular 

necrosis. Other factors potentially associated with venom-induced AKI such as shock, 

hypotension and hemolysis are present in some cases, but have not been confirmed in 

Crotalus envenomation (Azevedo-Marques et al., 1987; Pinho et al., 2008). Despite of in vitro 

hemolytic activity of Crotalus venom, it was confirmed that in vivo C.d. terrificus 

envenomation causes myolysis rather than intravascular hemolysis (Azevedo-Marques et 

al., 1987). 

The prevalence of AKI associated with Crotalid envenomation ranges from 10 to 29 % and 

68 to 77 % of AKI patients require dialysis treatment. The mortality rate of Crotalus venom-

induced AKI ranges from 8 to 17 % (Amaral et al., 1986; Pinho et al., 2008; Silveira & 

Nishioka, 1992). Although most risk factors for AKI are very similar to those described for 

bothropic envenomation it was reported that early after Crotalus snakebite the plasma levels 

of CK (higher than 2,000 U/L) were associated with a 12-fold increase in the risk of 

developing AKI (Pinho et al., 2005). 

3.2 Brown spider envenomation 

Among arthropods, spider and scorpion bites are the most frequent and of medical care 

importance. Although the number of accidents with scorpions often overcome those with 

spiders, reports of AKI after human envenomation with scorpion are scarce (Abdulkader et 

al., 2008). One species of spider that can cause severe renal injury is the brown spider 

(Loxosceles genus). Spiders of the genus Loxosceles have a worldwide distribution, since they 

can live under variable conditions such as temperature ranging from 8 to 43°C and that 

they can stay long time intervals living without food or water (Hogan et al., 2004; 

Swanson and Vetter, 2006). In Brazil, seven species have been described, but some of them 

are the most frequently implicated in bites in humans, namely Loxosceles intermedia, L. 

gaucho and L. laeta. These spiders are commonly found inside the residences both in rural 

and urban areas. They are small, measuring between 8 and 15 mm of body length while 

their legs measure 8-30 mm. Their colour varies from a pale brown (L. laeta) to a dark 

brown (L. gaucho). Loxosceles spiders are not aggressive and the bites usually occur when 

they are pressed against the body, mainly while the victim is sleeping or dressing (da 

Silva et al., 2004).  

The venom has proteolytic, dermonecrotic, hemolytic and nephrotoxic activities (Isbister & 

Fan, 2011) (Table 2). The accident may have local and systemic manifestations that are 

exhibited in two different clinical forms: cutaneous and viscerocutaneous loxoscelism (da 

Silva et al., 2004). Most patients have only the local manifestation or cutaneous 

loxoscelism. In these cases, the accident may cause mild cutaneous inflammatory reaction 

or a local injury characterized by pain, edema and erithrema, later developing to 

dermonecrosis with gravitational spreading. In the minority of cases loxoscelism can 

cause a systemic injury or the viscerocutaneous loxoscelism. This form occurs 
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predominantly in children, and patients can develop AKI, which is considered the main 

cause of death after brown spider envenomation. Viscerocutaneous loxoscelism is 

characterized by fever, malaise, weakness, nausea and vomiting, hemolysis, hematuria, 

jaundice, thrombocytopenia and disseminated intravascular coagulation. This severe 

multisystemic clinical picture can occur as early as 24 hours after the bite (Abdulkader et 

al., 2008; da Silva et al., 2004; Isbister & Fan, 2011).  

Analysis of 267 loxoscelism cases reported in Brazil showed that the viscerocutaneous form 
was diagnosed in 13.1 % of the cases, where L laeta was the main specie implicated in the 
accidents. The investigators reported jaundice in 68.6 %, oliguria in 45.7 %, anuria in 8.6 %, 
dark urine in 28.6 %, hemorrhage in 25.7 %, and shock in 2.9 % of the patients. AKI 
occurred in 6.4 % of the patients, and most of them were diagnosed more than 24 hours 
after the bite. Four patients died (1.5 %), all of them were children under 14 years old 
(Sezerino et al., 1998). The main factors likely associated with AKI development are 
hemolysis, hypotension/shock, and direct venom nephrotoxicity (Table 2). Pigment-
induced acute tubular necrosis was reported in human necropsies of viscerocutaneous 
loxoscelism (Zambrano et al., 2005). Thus, it was suggested that the pathological effect of 
the venom on the kidney may reflect hematological disturbances, such as intravascular 
hemolysis and disseminated intravascular coagulation (Abdulkader et al., 2008). Although 
only low myotoxic activity has been reported in Loxosceles venom, rhabdomyolysis can also 
occur after envenomation. In this cases, high levels of  serum CK and deposits of 
myoglobin in tubular cells have been observed (França et al., 2002; Lucato-Junior et al., 
2011).  

3.3 Bee and wasp envenomation 

Stings of insects from the order Hymenoptera, which includes several species of bees, 
hornets, wasps and yellow jacks, have also been implicated in cases of human envenomation 
(Vetter et al., 1999). 

In general the victims present only local allergic reactions after one or a few stings. 
However, after a massive attack with hundreds or thousands of stings, a systemic 
envenomation may occur (Abdulkader et al., 2008). The majority of envenomation cases 
with medical importance is caused by the so-called Africanized bees (Apis genus). These 
bees are hybrids between bees of European origin (Apis mellifera mellifera and Apis mellifera 
ligustica) and African bees (Apis mellifera scutellata) which were originated by the 
introduction of different species in Brazil since 1957. Currently, due to the migratory 
behavior and a high reproductive rate they are found throughout South America, Central 
America and parts of North America. Because of their aggressive behavior and the number 
of accidents associated with them, the Africanized bees are also known as “killer bees” 
(Abdulkader et al., 2008; França et al., 1994). 

The main venom activities are hemolytic, myotoxic, cardiotoxic and nephrotoxic (Table 2). 
Clinical manifestations can be divided into allergic and systemic reactions. Allergic reactions 
usually are observed in patients with a history of previous bee stings or asthma or other 
hypersensitivity disease. These reactions occur immediately after a single sting and can lead 
to anaphylaxis and death by laryngeal edema. Systemic reactions usually occur after 
multiple stings and are characterized by pain, erythema, urticaria, release of histamine, 

www.intechopen.com



 
Renal Failure – The Facts 

 

164 

nausea, vomiting, respiratory failure, hypotension and shock (Abdulkader et al., 2008). 
Rhabdomyolysis and hemolysis can be detected a few hours after the accident (Chao et al., 
2004). Fatalities are typically the result of renal damage or from cardiac arrest due to 
complications of the venom toxicity (Vetter et al., 1999).  

AKI has been observed in cases of massive attacks with 150 stings to more than 1,500 stings. 

Envenomed patients commonly have anuria or oliguria, high levels of serum creatinine (10-

30 mg/dL) and CK (>2,000 U/L), hypotension, tachycardia, myocardial damage and anemia 

(Daher et al., 2003; Gabriel et al., 2004; França et al., 1994; Xuan et al., 2010). Acute tubular 

necrosis is the main histologic finding in human beings, domestic dogs, and in experimental 

animals after bee and wasp envenomations. Allergic interstitial nephritis with concurrent 

pigment tubulopathy resulting from both hemoglobin and myoglobin has also been 

described after wasp stings (Chao et al., 2004; Zhang et al., 2001) (Table 2). A direct 

nephrotoxicity of the venom and/or hypotension caused by anaphylactic reaction are also 

mechanisms implicated in AKI induced by bees of Apis genus (Grisotto et al., 2006). By 

analyzing five cases of severe envenomation by Africanized bees, França et al. (1994) found 

high venom concentrations in serum and urine which remain for more than 50 h after the 

stings in two fatal cases; in one of them the total circulating unbound whole venom 

components was estimated at 27 mg, one hour after the attack. Despite the treatment with 

dialysis, antihistamines, corticosteroids, bronchodilators, vasodilators, bicarbonate, 

mannitol and mechanical ventilation, three out four patients died between 22 and 71 h after 

the attacks. However, in the majority of cases, the renal damage is usually reversible 

responding well to the dialysis. Complete recovery may require 3-6 weeks (Vetter et al., 

1999).  

3.4 Caterpillar envenomation 

The accidental contact with some lepidopteran caterpillars can also cause human 
envenomation cases that vary from simple skin irritation and local allergic reactions to a 
systemic disease characterized by renal damage and hemorrhagic disturbances (Pinto et al., 
2010; Veiga et al., 2009). From the medically important Saturniidae family, Lonomia genus 
has been attributed to cause human envenomations since late 1960’s in Venezuela (Arocha-
Piñango et al., 2000). In Southern Brazil, Lonomia obliqua caterpillar is becoming the most 
important venomous animal responsible for severe injuries, hemorrhagic disorders and 
often fatal outcome since the 1980’s (Duarte et al., 1990). For instance, in the State of Rio 
Grande do Sul, located in this Brazilian region, more than a thousand accidents have been 
registered in the period from 1997 to 2005 (Abella et al., 2006). In fact, based on data from 
the year 2009, the Brazilian Ministry of Health registered an incidence of 7.3 lepidopteran 
envenomations per 100,000 inhabitants in Southern Brazil (Boletim eletrônico 
epidemiológico, 2010) (Table 1). Actually, these numbers are greatly underestimated due to 
the fact that most accidents are occurring in distant rural areas, where the cases are poorly 
reported. Lonomia’s accidents usually occur when the victim, leaning against tree trunks 
containing dozens or hundreds of caterpillars, comes into contact with their bristles. These 
structures are hard and spiny evaginations of the cuticle, underneath which the toxins are 
stored. Often, the whole animal is smashed in the accident, the insect’s chitinous bristles get 
broken and the venomous secretions, including hemolymph, penetrate the human skin and 
enter the circulation (Veiga et al., 2001a). 
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The venom presents procoagulant, fibrinogenolytic, proteolytic and hemolytic activities 

(Table 2). Clinical symptoms of Lonomia envenomation include local pain (burning 

sensation) and inflammatory reaction, which starts immediately after contact; systemic 

reactions such as headache, fever, vomiting and asthenia, which appear a few hours after 

exposure; and bleeding diathesis characterized by hematomas and ecchymosis, gross 

hematuria, hematemesis, melena, pulmonary and intracerebral hemorrhage and AKI (Pinto 

et al., 2010). Intravascular hemolysis has also been described in human envenomation and 

experimental studies (Malaque et al., 2006; Seibert et al., 2004). The activation of blood 

coagulation, fibrinolysis and the systemic inhibition of platelet function are mechanisms that 

seem to contribute to the hemorrhagic syndrome commonly observed in Lonomia 

envenomation (Berger et al., 2010a). In human patients, this hemorrhagic syndrome 

manifests as a consumptive coagulopathy without thrombocytopenia (Berger et al., 2010a; 

Zannin et al., 2003). 

The incidence of AKI varies from 2 to 5 % of envenomation cases reported in the literature 

(Duarte et al., 1990; Gamborgi et al., 2006). Of the 2,067 patients evaluated in southern Brazil 

(period from 1989 to 2003), 39 (1.9 %) developed AKI (serum creatinine levels > 1.5 mg/dL). 

Eleven (32 %) of these patients were treated with dialysis and four (10.3 %) developed 

chronic renal injury (CRI). All victims with AKI presented concomitantly coagulation 

disturbances and hematuria and/or hemoglobinuria. Seven deaths (4%) occurred during the 

period (Gamborgi et al., 2006). The impossibility of conducting early renal biopsies, due the 

coagulation disturbances inherent to the envenomation, has made it difficult to analyze the 

acute anatomopathological alterations. The few reports existing in the literature describe 

thickening of the Bowman’s capsule, focal tubular atrophy and acute tubular necrosis 

(Burdmann et al., 1996; Fan et al., 1998) (Table 2). Similarly, the contribution of other factors 

possibly associated with AKI, such as hypotension or glomerular fibrin deposition, remains 

still obscure in Lonomia envenomation. 

4. Toxins of snake and arthropod venoms and their role in the 
pathophysiology of acute kidney injury 

Animal venoms are mixtures of biologically active proteins and peptides, and also non-

protein toxins, carbohydrates, lipids, amines, and other small molecules. The clinical 

features of envenomation reflect the effects of these different venom components and thus, 

the contribution of the venom toxins to the pathophysiology of renal injury is complex and 

multifactorial (Sitprija, 2006).  

Based on the current knowledge, the hypothesis for pathogenesis of venom-induced AKI 

include both a direct cytotoxic action of the venom on different renal structures, and a 

secondary response of the whole organism resulting from systemic envenomation. The  

secondary response is usually triggered by inflammation, release of cytokines and 

vasoactive substances that leads to changes in renal function and hemodynamics (Fig. 1). In 

fact, there is an increase in plasma concentration of different cytokines and vasoactive 

substances such as TNF-α, interleukins, nitric oxide, histamine, bradykinin and eicosanoids 

following several types of envenomations (Petricevich et al., 2000). The elevation of 

cytokines are mainly due to accumulation of pro-inflammatory cells and immune system 

response. Together, all these mediators can impair renal function ultimately contributing to 
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a decrease in renal perfusion pressure, renal blood flow and glomerular filtration rate. As a 

result in association with the systemic hypotension (Table 2), there will be an inadequate 

tissue and cellular oxygen delivery which can generate an ischemic process. Since the 

intermediary metabolism and energy production have an absolute dependence on oxygen, 

and oxygen cannot be stored intracellularly, the inadequate oxygen availability rapidly 

leads to cellular dysfunction, injury, and cell death by necrosis (Deitch, 1992). Important 

contribution to venom-induced renal ischemia is also derived from the process of hemolysis, 

rhabdomyolysis and/or intravascular deposition of platelets and fibrin in the 

microcirculation (Table 2). The presence of hemoglobin and myoglobin also have a direct 

cytotoxic effect on renal tubules (Fig.1) (Khan, 2009; Zager, 1996). Thus, it seems that 

different, but interrelated processes may contribute to the nephrotoxicity and even to other 

pathological features observed in envenomed patients. 

 

Venomous 
animals 

Main venom 
activities 

General clinical 
manifestations 

Characteristics of AKI 
and renal pathology 

Bothrops 
snakes 

Hemorrhagic, 
Procoagulant, 

Proteolytic and 
Nephrotoxic 

Local abscesses and 
necrosis, Spontaneous 

bleeding, DIC, 
Hypotension 

Oliguria/anuria, 
Hemoglobinuria, 

Hematuria, ATN, AIN, 
RCN, GFD 

Crotalus 
snakes 

Neurotoxic, Myotoxic 
and Nephrotoxic 

Flaccid paralysis, 
Myalgia, 

Rhabdomyolysis 

Decrease in GFR, 
Myoglobinuria, ATN, AIN 

Brown 
spiders 

(Loxsosceles) 

Dermonecrotic, 
Proteolytic, Hemolytic 

and Nephrotoxic 

Local abscesses and 
necrosis, Hemolysis, 

Rhabdomyolysis, DIC, 
Hypotension 

Hematuria, 
Hemoglobinuria, 

Myoglobinuria, ATN 

Africanized 
Bees (Apis 
mellifera) 

Hemolytic, Myotoxic, 
Cardiotoxic and 

Nephrotoxic 

Allergic reaction 
(anaphylaxis), 
Hypotension, 

Hemolysis, 
Rhabdomyolysis 

Oliguria/anuria,ATN, 
AIN, Hemoglobinuria, 

Myoglobinuria 

Lonomia 
caterpillars 

Procoagulant, 
Fibrinogenolytic, 
Proteolytic and 

Hemolytic 

Ecchymosis, 
Spontaneous bleeding, 

DIC, Hemolysis 

Hematuria, 
Hemoglobinuria, ATN 

DIC - Disseminated Intravascular Coagulation; ATN - Acute tubular necrosis, AIN - Allergic interstitial 
nephritis, RCN - Renal Cortical Necrosis, GFD - Glomerular Fibrin Deposition, GFR - Glomerular 
Filtration Rate. 

Table 2. Clinical aspects of venom-induced Acute Kidney Injury (AKI).     

Recently, advances in molecular biology, proteomics and transcriptomics, facilitated the 

isolation of toxins and contributed significantly to the study of their mechanisms of action 

on renal tissue. In this subsection, we reviewed the renal physiopathological effects of snake 

and arthropod venoms and their main isolated toxins. Special emphasis was given to 
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experimental studies with venomous animals highly prevalent in Brazil and other regions of 

Latin America. As in the previous subsection the following animals were included: Bothrops 

and Crotalus snakes, the brown spider Loxosceles, africanized bees, wasps and the caterpillars 

of genus Lonomia.   

 

Fig. 1. Schematic summary of pathophysiological phenomena involved in the venom-
induced acute kidney injury (AKI). RBF – Renal Blood Flow; GFR – Glomerular Filtratiton 
Rate; ATN – Acute Tubular Necrosis; ACN – Acute Cortical Necrosis. 

4.1 Snake venoms 

4.1.1 Bothrops venom 

The venom of bothrops snakes can cause prominent local tissue damage usually 

characterized by swelling, blistering, hemorrhage and necrosis of skeletal muscle. Such local 

pathology is mostly due to the venom proteolytic action (Gutiérrez et al., 2006). Snake 

venom metalloproteinases (SVMPs), phospholipases A2, , serine proteinases, esterases, L-

amino acid oxidases, hyaluronidases, C-type lectins-like and bradykinin-potentiating 

peptides (BPPs) are the main venom components that acts inducing cellular injury or 

releasing inflammatory and vasoactive mediators (Warrell, 2010). Transcriptomic and 

proteomic studies have showed that SVMPs and serine proteinases are the major toxins in 

the venom, which explained the high local damage and hemorrhage seen in envenomed 

patients (Table 2) (Cidade et al., 2006; Zelanis et al., 2010). Bothrops toxins are also known for 

their multiple effects on hemostasis. In fact, the venom have thrombin-like enzymes, factor 
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X and prothrombin activators that are able to directly convert fibrinogen into fibrin (Berger 

et al., 2008; White, 2005). These actions produce intravascular coagulation and may lead to 

blood incoagulability by consumption coagulopathy. Systemic inhibition of platelet 

aggregation and thrombocytopenia are common (Rucavado et al., 2005; Santoro & Sano-

Martins, 2004). Moreover, anti-hemostatic principles, such as thrombin and platelet 

aggregation inhibitors, are also found in bothrops venoms (Kamiguti , 2005; Zingali et al., 

2005).    

Regarding renal function, Boer-Lima et al. (1999) observed that the intravenous injection of 

B. moojeni venom in rats, produced renal tubular disturbances including an increase in 

proximal and post-proximal fractional excretion of sodium associated with acute tubular 

necrosis. The glomerular filtration rate decreased significantly, despite the absence of 

systemic hypotension. Severe morphologic disturbances in the renal glomeruli also 

occurred. The changes included mesangiolysis, glomerular microaneurysms, and 

glomerular basement membrane abnormalities. In addition, there was a reduction in the 

number and width of podocyte pedicels, which caused a reduction in the number of 

filtration slits. The morphophysiological changes observed in experimental animals also 

correlated with the levels of proteinuria (Boer-Lima et al., 2002). Similar renal functional 

alterations were observed after intravenous injection of B. jararaca venom into rats. In these 

animals, differently of human envenomation, B. jararaca venom was not able to induce 

systemic hypotension but significantly reduced the renal plasma flow and increased renal 

vascular resistance (Burdmann et al., 1993). There was no increase in CK, indicating that 

rhabdomyolysis is not an important consequence of B. jararaca envenomation. However, the 

venom caused marked fibrinogen consumption and intravascular hemolysis. Indeed, kidney 

of rats and rabbits envenomed with B. jararaca showed an extensive intraglomerular 

deposition of fibrin and platelets (Burdmann et al., 1993; Santoro & Sano-Martins, 2004). 

Contrarily to the findings with B. jararaca venom, Boer-Lima et al. (1999) did not observed 

any glomerular fibrin deposition in the B. moojeni envenomation. They suggested that the 

glomerular injury is more likely to be related to structural disorganization of the glomerular 

capillary tuft, consequent to a direct action of the venom on the mesangial matrix, 

glomerular basement membrane and podocytes rather than to fibrin deposition in the 

capillaries. 

Studying the kinetic of renal distribution of injected B. alternatus venom in rats, Mello et al. 
(2010) detected the highest venom concentration in renal tissue 30 min post-venom injection. 
After this time, venom concentration decreased progressively. Venom components were 
also detected into urine 3, 6 and 24 h post-venom injection. By immunohistochemistry, 
venom proteins were detected in glomeruli, proximal and distal tubules, and vascular and 
perivascular tissue, suggesting that toxins bind to kidney structures where they probably 
exert a direct nephrotoxic action. In accordance to this observation, it was showed that B. 
alternatus venom is cytotoxic to canine renal epithelial cells (MDCK) in culture and causes 
extensive cytoskeletal alterations inducing impairment of the cell-matrix interaction 
(Nascimento et al., 2007). Additionally, it was described that B. jararaca venom also causes in 
vitro injury of isolated renal proximal tubules and that the B. moojeni venom increases cell 
release of lactate dehydrogenase and decreased cellular uptake of the vital neutral red in 
MDCK cells (de Castro et al., 2004; Collares-Buzato et al., 2002). Functionally, B. alternatus 
venom induced oliguria, urine acidification, decreased in glomerular filtration rate and 
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hematuria. Morphologically, the venom caused lobulation of the capillary tufts, dilation of 
Bowman's capsular space, disruption of renal tubule brush border, and fibrosis around 
glomeruli and proximal tubules that persisted 7 days after envenomation (Linardi et al., 
2011; Mello et al., 2010).    

Some purified Bothrops toxins are able to reproduce the renal effects obtained with whole 

venom. Studies on the isolated perfused rat kidney have shown that L-amino acid oxidase 

(Braga et al., 2008), C-type lectins (Braga et al., 2006), phospholipase A2 myotoxins (Barbosa 

et al., 2005; Evangelista et al., 2010) and thrombin-like enzyme (Braga et al., 2007) from 

Bothrops venoms can alter renal function. The isolated perfused kidney technique also 

confirmed the direct acute tubular nephrotoxicity of Bothrops venoms and showed that 

platelet activating factor might play a role in some renal functional disturbances such as the 

decreased in glomerular filtration rate (Monteiro and Fonteles, 1999). However, the systemic 

injection of baltergin, a purified metalloproteinase from B. alternatus venom, only mildly 

affected the kidney structure. At high doses, baltergin causes congestion, subcapsular 

hemorrhage and inflammatory infiltrate (Gay et al., 2009). There was no detection of tubular 

necrosis indicating that different toxins act synergistically to produce the AKI observed in 

animals treated with whole venom.  

4.1.2 Crotalus venom 

The venom of Crotalus rattlesnakes is a complex combination of different enzymes and toxic 

peptides that mainly display neurotoxic and myotoxic activities (Boldrini-França et al., 

2010). Toxins affecting hemostasis, such as thrombin-like enzymes and platelet activators are 

also found. The main protein families identified by proteomics included phospholipases A2, 

serine proteinases, cysteine-rich secretory proteins (CRISP), vascular endothelial growth 

factor-like molecules (VEGF), L-amino acid oxidases, C-type lectins-like, and snake venom 

metalloproteinases (SVMP). Crotoxin, a neurotoxic phospholipase A2, represents more than 

60 % of the proteins in the whole venom and is the major component responsible for its 

neurotoxic and myotoxic effects (Boldrini-França et al., 2010). Additionally, crotoxin also 

exhibits cardiotoxic and direct nephrotoxic activities. Structurally, crotoxin is a 

heterodimeric β-neurotoxin that consists of a toxic basic phospholipase A2 and a 

nonenzymatic, non-toxic acidic component (crotapotin). Crotapotin potentiates the activity 

of crotoxin, since it prevents the basic phospholipase subunit binding to non-specific sites 

(Sampaio et al., 2010; Soares et al., 2001). Crotoxin targets neuromuscular junctions and 

inhibits the release of acetylcholine, which leads to neuromuscular blockade and muscular 

and respiratory paralysis. In the muscle tissue, crotoxin causes selective injury of skeletal 

muscle groups composed of type I and IIa fibers, which are extremely vascularized and rich 

in myoglobin (Sampaio et al., 2010). Other important toxins are crotamine, convulxin and 

gyroxin. Crotamine is a toxic peptide with myonecrotic activity (Martins et al., 2002). 

Convulxin is a C-type lectin-like glycoprotein with high affinity to specific receptors in 

rabbit and human platelets. Convulxin binds to the putative collagen receptor glycoprotein 

VI (GPVI) and mediates platelet adhesion, aggregation and intracellular calcium 

mobilization (Francischetti et al., 1997). Gyroxin is a serine proteinase that displays several 

activities including the induction of blood coagulation (thrombin-like activity), vasodilation 

and neurotoxicity (Alves da Silva et al., 2011). 
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Intraperitoneal injection of C.d. terrificus venom in mice increased plasma creatinine and uric 

acid and caused urinary hypoosmolality. When compared to control groups injected with 

saline, the incidence of hypercreatinemia and hyperuricemia (plasma values higher than 1.8 

mg/dL) occurred in 60 % and 100 % of the experimental animals, respectively (Yamasaki et 

al., 2008). Crotalus experimental envenomation was also associated with significant renal 

blood flow and glomerular filtration rate decreases and ischemia with consequent acute 

tubular necrosis. In isolated perfused rat kidneys treated with crude venom or crotoxin, a 

large amount of protein material was observed in the glomeruli, probably due to a direct 

toxic effect of the venom on the glomeruli and tubules and/or to an increase in vascular 

permeability (Monteiro et al., 2001). Prostaglandins and TNF-α release seems to be 

important since the treatment with indomethacin and pentoxifylline (inhibitors of 

cyclooxygenase and TNF-α synthesis, respectively) were able to blockade the renal effects 

induced by supernatant of macrophages activated with Crotalus venom (Martins et al., 2003; 

Martins et al., 2004). Among the main venom components, crotoxin was able to induce 

significant changes in glomerular filtration rate and electrolyte transport in isolated kidney. 

Gyroxin caused only mild alteration in renal parameters and convulxin had no effects 

(Martins et al., 2002). 

Rhabdomyolysis is a well-known cause of AKI and is commonly observed in envenomed 

patients and envenomed experimental animals. Myoglobin toxicity has been related to renal 

vasoconstriction, intraluminal cast formation and direct heme-protein cytotoxicity. 

Myoglobin can contribute to renal vasoconstriction by directly binding to nitric oxide (NO). 

Thus, acting as NO scavenging molecules, heme-proteins (including myoglobin or 

hemoglobin) lead to renal hypoperfusion, reductions in the storage of ATP, ischemia and 

tissue injury (Zager, 1996). Intraluminal casts are formed due to the precipitation of 

myoglobin inside the renal tubules, forming obstructive casts. Precipitated myoglobin also 

can be degraded resulting in the release of free iron and heme. Once released, free iron and 

heme contribute to renal injury by generate reactive oxygen species (ROS) and lipid 

peroxidation (Khan, 2009; Zager, 1996). Indeed, Yamasaki et al. (2008), showed an increase 

of oxidized glutathione/reduced glutathione ratio (GSSG/GSH) in renal tissue during 

Crotalus envenomation. This data indicates a rise in the ROS generation by consumption of 

reduced glutathione (GSH) and production of oxidized glutathione (GSSH) which are the 

main antioxidant and oxido-reducing agents, respectively. Confirming the participation of 

ROS in Crotalus induced renal injury, envenomed animals treated with lipoic acid (an 

antioxidant molecule) had their GSSG/GSH ratios normalized when compared to control 

groups (Alegre et al., 2010). In addition to deleterious effects of obstructive myoglobin casts 

formation, the high levels of uric acid found in envenomed animals also contribute to 

tubular obstruction (Yamasaki et al., 2008). Marked hyperuricemia is known to cause AKI 

by supersaturation, crystallisation and deposition of crystals inside renal tubules (acute 

urate nephropathy). Moreover, experimental hyperuricemia causes renal vasoconstriction 

and soluble uric acid has been shown to inhibit endothelial NO bioavailability (Ejaz et al., 

2007). Recently, it was observed that systemic inhibition of uric acid synthesis, by 

allopurinol treatment, significantly reduced lethality rate, normalized GSSG/GSH ratio and 

ameliorate the renal histopathological changes. Thus, uric acid also seems to have an 

important role in renal pathophysiology of Crotalus envenomation (Frezzatti & Silveira, 

2011).   
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4.2 Loxosceles venom 

The bites of brown spiders (Loxosceles genus) led to several clinical manifestations such as 
necrotic skin degeneration and gravitational spread at the bite site, renal injury and 
hematological disturbances. Several studies concerning the structural and biological roles of 
various venom components have shown the complex nature of these venomous secretions. 
Likewise, the venom of Loxosceles spiders is a complex mixture of protein-based toxins with 
a molecular mass profile ranging from 5 to 40 kDa. The main components belong to the 
classes of phospholipases D (or dermonecrotic toxins), serine proteinases, venom allergens, 
hyaluronidases, astacin-like metalloproteinases and insecticidal peptides (Gremski et al., 
2010). Dermonecrotic toxins and astacin-like metalloproteinases are considered the major 
components responsible for the clinical profile observed in envenomed victims (Table 2) (da 
Silva et al., 2004). In fact, a transcriptomic study indicated that phospholipases D and 
astacin-like metalloproteinases represent 20.2 % and 22.6 % of total toxin-encoding 
transcripts, respectively. Other toxins also important to envenomation, such as serine 
proteinases, venom allergens and hyaluronidases represent the minority of encoding 
transcripts (Gremski et al., 2010).  

Among all the toxins found in Loxosceles spider venom, dermonecrotic toxin is undoubtedly 

the component most investigated and characterized. This toxin is able to reproduce the 

major biological effects induced by whole venom. It is involved with the development of 

dermonecrotic lesions and can trigger neutrophil migration, complement system activation, 

cytokine and chemokine release, platelet aggregation, lysis of red blood cells, among other 

effects (Abdulkader et al., 2008; da Silva et al., 2004). Dermonecrotic toxin comprises a 

family of toxins with different related isoforms that have biological, amino acid and 

immunological similarities which are found in several Loxosceles species. Only in L. 

intermedia venom, many isoforms were described being 9 out of them already expressed as 

recombinant proteins (Gremski et al., 2010). Loxosceles dermonecrotic toxins belong to 

phospholipases D (30–35 kDa) class of enzymes which was primarily designated as 

sphingomyelinases D due to their ability to convert sphingomyelin to choline and ceramide 

1-phosphate (N-acylsphingosine1-phosphate). As some Loxosceles sphingomyelinases D 

have broad substrate specificity, being able to hydrolyze not only sphingophospholipids but 

also lysoglycerophospholipids, they are now classified as phospholipases D (Lee and Lynch, 

2005). Due to sequence, structural and biochemical differences these toxins are grouped in 

two classes and their structures and substrate specificities have been recently elucidated (de 

Giuseppe et al., 2011; Murakami et al., 2005). Other important components of Loxosceles 

venom are the metalloproteinases. The enzymes have molecular weights ranging from 20 to 

35 kDa displaying gelatinolytic, fibronectinolytic and fibrinogenolytic activities. They are 

zinc endopeptidases homologous to the astacin family of metalloproteinases from the 

crayfish, Astacus astacus. The Loxosceles astacin-like metalloproteinases possess a digestive 

function used to initiate the degradation of prey molecules, facilitating the posterior 

ingestion process (Trevizan-Silva et al., 2010). Furthermore, these enzymes have an 

important role in the pathogenesis observed in envenomation, particularly inducing 

hemorrhage into the dermis, injury of blood vessels, imperfect platelet adhesion, and the 

defective wound healing observed in some cases. Likewise, these metalloproteases can also 

render tissue structures more permeable, facilitating other noxious toxins to spread 

throughout the body of victims (Veiga et al., 2000; Veiga et al., 2001b). 
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The nephrotoxic effect of the L. intermidia spider venom was demonstrated experimentally 

in mice exposed to the whole venom (Luciano et al., 2004). Histhopathological analysis 

showed morphological renal alterations including hyalinization of proximal and distal 

tubules, erythrocytes in Bowman’s space, glomerular collapse, tubule epithelial cell blebs 

and vacuoles, interstitial edema, and deposition of a protein-rich material inside the 

Bowman’s space and tubule lumen. Morphometric analysis showed that 75–80 % of the 

kidney area was affected by the venom and no glomerular or tubule leukocyte infiltration 

was described, suggesting that the involvement of inflammatory process is not important to 

renal injury in this type of envenomation. Despite the presence of erythrocytes and protein 

deposits in glomerular and tubular structures, no signs of intravascular hemolysis or 

hemoglobin were detected in envenomed animals. Supporting the evidence that L. intermidia 

venom has toxins with direct nephrotoxicity, confocal microscopy studies with antibodies 

against venom proteins were able to show direct binding of toxins to renal structures. 

Venom proteins were detected in glomerular and tubular epithelial cells and in renal 

basement membranes. Toxins with molecular weights of 30 kDa were also identified in renal 

tissue extracts by immunoblotting (Luciano et al., 2004). One of these venom proteins that 

can bind to the kidney tissue is the dermonecrotic toxin. Chaim et al. (2006), injecting the 

recombinant dermonecrotic toxin in mice, found glomerular edema and tubular necrosis 

without signs of inflammatory response. Additionally, the dermonecrotic toxin was detected 

in kidney tissue and induced changes in renal function such as urine alkalinization, 

hematuria and elevation of blood urea nitrogen levels. The treatment of renal epithelial cells 

(MDCK) with recombinant dermonecrotic toxin also caused morphological alterations 

and reduced the cell viability, confirming its direct citotoxicity (Chaim et al., 2006). Both 

effects upon renal structures in vivo and renal cells in vitro were dependent of the 

phospholipase D catalytic activity, since a mutated toxin without phospholipase activity 

showed no nephrotoxic effect (Kusma et al., 2008). Another mechanism involved in AKI 

induced by Loxosceles venom is the renal vasoconstriction and rhabdomyolysis. Recently, 

it was reported that L. gaucho caused a sharp and significant drop in glomerular filtration 

rate, renal blood flow and urinary output and increased renal vascular resistance in rats 

(Lucato-Júnior et al., 2011). In this model, the authors also found deposits of myoglobin in 

tubular cells and degenerative lesions indicative of an ischemic process (Lucato-Júnior et 

al., 2011).     

4.3 Bee and wasp venoms 

Bee and wasp venoms are composed of a mixture of proteins, peptides, and small 

molecules, which are related to different mechanisms of envenomation. In the Africanized 

bee (Apis mellifera) venom the most important components are melittin and phospholipase 

A2. Melittin is a highly toxic peptide and the most abundant component of bee venom 

comprising about 50 % of its dry weight. This peptide is able to disrupt biological 

membranes, producing many effects on living cells (Fletcher et al., 1993). Melittin has 

antibacterial activity, induces voltage-gated channel formation and can also produce 

micellization of phospholipids bilayers due to its membrane-interacting effect. This peptide 

is responsible for the direct hemolytic effect of Apis venom (Dempsey, 1990; Terra et al., 

2007). The enzyme phospholipase A2 represents approximately 11 % of whole venom and 

acts synergically with melittin. Once melittin has disrupted the membrane, phospholipase 
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A2 cleaves bonds in the fatty acid portion of the bilipid membrane layer (Vetter et al., 1999; 

Lee et al., 2001). In association, melittin and phospholipase A2, can act on erythrocytes, 

myocytes, hepatocytes, fibroblasts, mast cells, and leukocytes (Abdulkader et al., 2008; 

Fletcher et al., 1993; Habermann, 1972). Additionally, bee venom also has hyaluronidase (an 

enzyme that disrupts the hyaluronic acid in connective-tissue matrix), apamin (a 

neurotoxin), mast cell degranulating peptide (a peptide that releases histamine from mast 

cells) and other small molecules such as histamine, dopamine, and noradrenaline. Among 

all Apis mellifera venom components the main allergens are melittin, phospholipase A2 and 

hyaluronidase (Vetter et al., 1999). In wasp venoms the components are active amines 

(serotonin, histamine, tyramine, catecholamines); wasp kinins (similar in composition to 

bradykinin), which are mostly responsible for pain; and histamine-releasing peptides, which 

are responsible for the inflammatory response. The major allergens identified in wasp 

venoms are phospholipase A1, a hyaluronidase and a serine-protease (Pantera et al., 2003; 

Vetter et al., 1999).  

Despite the current knowledge on the composition of wasp venoms, little is known about 
the participation of its components, and even the whole venom, on the AKI observed in 
envenomed patients. On the other hand, the mechanisms of bee venom-induced AKI have 
been more explored in experimental models in vivo and in vitro. In the case of bee 
envenomation, the experimental injection of venom in rats caused a significant and early 
reduction in glomerular filtration rate and diuresis and an increase in plasma creatinine 
levels (dos Reis et al., 1997; Grisotto et al., 2006). Tubular alterations such as increased 
fractional sodium and potassium excretions and a reduced water transport through 
collecting tubules, were also described (dos Reis et al., 1997). The early glomerular filtration 
rate reduction was concomitant with marked cortical and medullary renal blood flow 
decrease (Grisotto et al., 2006). Neither hypertension and hypotension nor intravascular 
hemolysis were detected in experimental models. Despite of the absence of hemolysis, 
rhabdomyolysis was present with massive myoglobin deposition in the lumen of the tubules 
as well as into the tubular cells (dos Reis et al., 1997; Grisotto et al., 2006). The injection of 
purified melittin or phospholipase A2 also induced rhabdomyolysis, due to their capacity to 
disrupt the membranes of myocytes (Ownby et al., 1997). Additionally, in vitro studies have 
been demonstrated that bee venom is citotoxic to cultured isolated proximal tubule cells 
(Grisotto et al., 2006). Histological analysis showed acute tubular necrosis mainly in cortex 
and outer medulla, and cast formation in the distal and collecting tubules (dos Reis et al., 
1998). These degenerative lesions observed in AKI induced by the bee venom have been 
associated with the ischemic process induced by melittin, phospholipase A2 and histamine 
(Abdulkader et al., 2008; Grisotto et al., 2006). Indeed, melittin and phospholipase A2 may 
be related to impaired renal blood flow by causing direct vasoconstriction, smooth muscle 
cell contraction, increased renal renin secretion and release of vasoconstrictor eicosanoids 
and catecholamines. Histamine and the mast cell degranulating peptides present in the 
venom also play a role in renal blood flow decrease, since histamine can directly induce 
vascular changes (Cerne et al., 2010; Churchill et al., 1990).  

4.4 Lonomia venom 

Caterpillars of the species L. obliqua are well known in Southern Brazil by causing a severe 

hemorrhagic syndrome characterized by coagulation disorders, AKI and generalized 
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hemorrhage. The venom is composed of several active principles, including procoagulant 

and fibrinolytic activities (Pinto et al., 2010). Even though many studies have been 

performed with toxic secretions from L. obliqua aiming a better elucidation of the 

hemorrhagic syndrome resulting from this envenomation, few active principles have been 

purified from the venom and fully characterized so far. Thus, most of the molecules 

identified in this caterpillar have been characterized as putative enzymes and other proteins 

based solely on cDNA and amino acid sequences obtained by transcriptomic and proteomic 

methods (Ricci-Silva et al., 2008; Veiga et al., 2005). Through these techniques, the major 

protein found in Lonomia is a biliverdin-binding protein of the lipocalin family, which is 

mainly concentrated in the bristles and plays an important role in the caterpillar’s 

camouflage behavior. Along with the lipocalin and other housekeeping proteins, L. obliqua’s 

integument, hemolymph and bristles produce and store a variety of active principles. 

Among these proteins, the most abundant ones are serine proteases and their inhibitors 

(serpins) in the integument, and serine proteases, kininogen and lectins in the bristles. 

Besides these molecules, cysteine proteinases, phospholipase A2, cystatins, Kazal-type 

inhibitors and other protease inhibitors are also found. Serine proteases are the most 

relevant protein family when considering their potential of interfering with blood 

coagulation. Moreover, serine proteases are an expressive group, representing 16.7 % and 25 

% of the clusters derived from tegument and bristle transcriptome, respectively (Veiga et al., 

2005). This protein group presents coagulation factors-like activities, so it is expected that 

these enzymes participate in the generation of thrombin, by activation of factor X and 

prothrombin (Berger et al., 2010a; Veiga et al., 2003), and in the activation of the fibrinolytic 

system, contributing directly and indirectly to fibrinogen degradation (Pinto et al., 2006) and 

resulting in the hemorrhagic disorder. In fact, proteases with fibrinogenolytic, prothrombin 

and factor X activating activities have been purified and characterized in this venom 

(Alvarez-Flores et al., 2006; Pinto et al., 2004; Reis et al., 2006). The phospholipase A2 

enzyme also has a function in envenomation. This enzyme was isolated and characterized 

as the major component responsible to the in vitro and in vivo hemolytic activity of L. 

obliqua venom (Seibert et al., 2004; Seibert et al., 2006). Additionally, the phospholipase A2 

seems to be involved in platelet aggregation inducing activity present in the venom 

(Berger et al., 2010b). Lectins, particularly c-type lectins, are a relatively well-studied 

group of proteins in snake venoms that may exert an additional function in hemostasis 

modulation by interacting with coagulations factors and/or platelet receptors. Three 

lectin clusters were found in the bristle cDNA library with homology to many snake 

venom lectins being then another important candidate contributing to the hemorrhagic 

disorder (Veiga et al., 2005). 

Although AKI is the leading cause of death in L. obliqua envenomation, the mechanisms 

involved in kidney disorders are poorly understood. In contrast to hemostatic disturbances, 

to date, there is no experimental studies describing the renal effects of L. obliqua venom. 

Current knowledge is based only on a few case reports in which hematuria, high levels of 

serum creatinine and acute tubular necrosis are described as the main features of L. obliqua 

induced AKI. Due to this lack of knowledge, nowadays we are focused on the investigation 

of the effects of L. obliqua venom on renal function in rats. Preliminary results, indicate that 

subcutaneous injection of L. obliqua bristle extract caused severe hematuria with the 

presence of intact erythrocytes and leukocytes in urinary sediment (Berger et al., 
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unpublished data). Envenomed animals also show proteinuria and significant changes in 

glomerular filtration rate and tubular electrolytic transport (Berger et al., unpublished data). 

Currently, the contribution of intravascular coagulation, deposits of hemoglobin in renal 

tubules and hemodynamic changes are under investigation. 

5. Diagnosis and management of acute kidney injury in snake and arthropod 
envenomation 

The early intravenous administration of animal-derived antivenoms is the only specific 

treatment against snake and arthropod envenomations. Antivenoms are concentrated of 

immunoglobulins (usually pepsin-refined F(ab’)2 fragment of whole IgG) purified from the 

plasma of a horse or sheep that has been immunized with the venoms of one or more 

species of venomous animal (WHO, 2010a). The preparation of antivenoms is expensive and 

technically demanding. Around the world different manufacturers, which include public 

and private laboratories of diverse sizes and strengths, are able to produce the antivenoms 

(Gutiérrez et al., 2010; Williams et al., 2010). Some of them are small facilities, mostly located 

in public institutions, which manufacture for the needs of specific countries. Others are 

larger laboratories that manufacture and distribute antivenoms throughout various 

countries or regions. Although some countries or regions manufacture enough antivenom 

for their national and regional needs, as in Europe, USA, Brazil, Central America, Mexico, 

Australia, Thailand and Japan, in other parts of the world, specially in some regions of 

Africa, there are very few antivenom producers (Gutiérrez et al., 2010). In Brazil, three main 

Institutions are responsible for production of antivenoms: Instituto Butantan, Fundação 

Ezequiel Dias and Hospital Vital Brasil. The manufacture is government-subsidized and the 

antivenom is usually provided free to the patients. However, failures in the distribution of 

antivenoms to places where they are needed still contribute to the maintenance of high 

mortality rates (Table 1). In some instances, antivenoms are held in the main cities, where 

envenomations are rare, instead of being distributed to peripheral health clinics in rural 

areas where the accidents are frequent. This reflects defective distribution planning which is 

associated with a lack of coordination between those who understand the epidemiological 

pattern of the disease and those responsible for the antivenom distribution. Also, inadequate 

storage and transportation of antivenoms may result in physical destruction of vials and 

ampoules (e.g. by freezing of liquid antivenom) (WHO, 2010a). Besides the inadequate 

supply, distribution and accessibility to safe and effective antivenoms, another major issue is 

the lack of trained of health workers on how to use these products and how to conduct 

appropriate clinical management of medical emergencies. In fact, it is estimated that in 

Brazil in 2009, 37% of accidents with scorpions and 9% of accidents with spiders received 

inadequate treatment with antivenom, mainly because the health authorities are uninformed 

of the treatment protocols (Boletim eletrônico epidemiológico, 2010).   

The treatment with antivenom is indicated in moderate and severe cases when systemic 

signs of envenomation are observed. In general, patients with hemostatic abnormalities, 

neurotoxic signs, cardiovascular abnormalities, AKI, hemoglobinuria and myoglobinuria 

should receive antivenom therapy (WHO, 2010a). In these cases the time elapsed between 

the occurrence of the accident and administration of a correct dose of antivenom is decisive 

for a sucessful therapy. It was demonstrated that the time interval between the accident and 
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administration of the antivenom of more than 2 hours was associated with the development 

of AKI, as well as with the risk of death or permanent injuries after Bothrops and Crotalus 

envenomations (Otero et al., 2002; Pinho et al., 2005). Although the correct use of antivenom 

is an effective form of treatment, the sorotherapy is also associated with the occurrence of 

severe adverse effects. The most serious adverse effect is anaphylactic reactions. Clinical 

features such as urticaria, itching, fever, tachycardia, vomiting, abdominal colic, headache, 

bronchospasm, hypotension and angioedema have been described after antivenom 

treatment (Fan et al., 1999; Ministério da Saúde, 2001). The incidence of adverse effects 

depends on the quality, dose and speed of intravenous injection or infusion. With 

antivenoms of good quality profile, there is a low incidence (less than 10%) of generally mild 

adverse reactions, mostly urticaria and itching. However, for products containing 

contaminant proteins, the incidence of such reactions may be as high as 85 %, including 

potentially life-threatening systemic disturbances such as hypotension and bronchospasm 

(WHO, 2007). Thus the adverse effects are directly associated with lack of good 

manufacturing practices adopted by laboratories that manufacture antivenoms. Recently, in 

an attempt to improve the quality of antivenom production the WHO established the 

guidelines for production, control and regulation of snake antivenom immunoglobulins. 

These guidelines provide detailed information on the recommended steps for antivenom 

manufacture and control (WHO, 2010b).   

A number of additional interventions besides antivenom  may be necessary to restore renal 

function in patients who developed AKI. Special attention should be given to hypotension, 

shock, electrolyte balance and maintenance of an adequate state of hydration. An urinary 

flow of 30 to 40 mL/h/kg is recommended for adults and 1 to 3 mL/h/kg for children to 

prevent AKI after snake envenomations (Ministério da Saúde, 2001; Pinho et al., 2008). 

Patients presenting oliguria or anuria, despite of fluid administration, are usually treated 

with intravenous furosemide or mannitol (WHO, 2010a). In these cases, a higher urinary 

flow may decrease the expousure of tubular cells to venom components and myoglobin or 

hemoglobin, which result in injury attenuation and prevention of tubular lumen obstruction 

(Zager, 1996). Cases that are unresponsive to fluid intake and diuretics are referred to renal 

units for dialysis (Pinho et al., 2008). Early alkalinization of urine by sodium bicarbonate in 

patients with myoglobinuria or hemoglobinuria is also recommended, because in the 

presence of acidic urine, myoglobin and uric acid precipitate and form obstructive cast 

(Khan, 2009). 

6. Conclusion 

Envenomation by different venomous snakes and arthropods is a neglected disease that 

afflicts the most impoverished inhabitants of rural areas in tropical developing countries. In 

this chapter, we reviewed some important aspects related to epidemiology, prevalence, 

clinical manifestations, pathophysiology and treatment of venom-induced AKI, which is one 

of the most significant and lethal effect of animal venoms. Despite of actual knowledge 

discussed here, several aspects involving the renal manifestations remain still unclear. Thus, 

further research are needed to cover the following key points: (i) biochemical composition of 

different animal venoms and their individual contribution to renal injury; (ii) renal 

pathological mechanisms induced by some specific venoms that are still unexplored; (iii) 
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discovery of new and more specific therapeutic alternatives to treat envenomation cases and 

(iv) improvement in the production, distribution and availability of the antivenoms 

currently used. 
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