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1. Introduction 

There is great interest in the biology of liver progenitor cells (LPCs) because of their stem 

cell-like ability to regenerate the liver when the hepatocyte pool is exhausted. Barely 

detectable in healthy tissue, they emerge upon chronic insult in periportal regions, 

proliferate and migrate to injury sites in the parenchyma and eventually differentiate into 

hepatocytes and cholangiocytes to restore liver mass, morphology and function. The 

increasing worldwide shortage of livers for orthotopic transplantation means LPCs have 

assumed more prominence as candidates for cell therapy as an alternative therapeutic 

approach for the treatment of various liver diseases. However, an LPC response is usually 

seen in pre-cancerous liver pathologies and their high proliferation potential makes them 

possible transformation targets; associations that overshadow their restorative capability. 

This mandates that we continue to investigate the factors that govern their activation, 

proliferation and especially their differentiation into mature, functional cells to effectively 

direct transplanted cells towards regeneration and not tumorigenicity. 

2. Normal liver tissue turnover 

Tissue regeneration and maintenance in healthy intestine and skin is achieved within days 
and weeks respectively. In contrast healthy liver has a very slow cell turnover rate and the 
vast majority of hepatocytes is considered to be in the quiescent, non-proliferative G0 phase 
of the cell cycle. It has been estimated that at any one time only 1 in 20,000 to 40,000 
hepatocytes is undergoing mitotic cell division with an average life span of 200 to 300 days 
(Bucher & Malt, 1971). 

The mechanisms by which hepatic cells are replaced in healthy liver are controversial. An 
early model, the “streaming liver” hypothesis is based on the metabolic zonation and 
differential gene expression patterns of periportal compared to pericentral hepatocytes. 
Periportal cells were proposed to proliferate and migrate (“stream”) towards the central 
area with maturation during the journey and terminal differentiation achieved when the 
cells reached the central zone (Zajicek et al., 1985; Arber et al., 1988; Sigal et al., 1992). 
However there is no convincing evidence for a periportal to pericentral differentiation 
gradient and while hepatocytes in opposing lobular areas are responsible for different 
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metabolic functions, cells in either location are considered to be fully differentiated. By 
reversing the blood flow in the liver, Thurman and Kauffman demonstrated that this lobular 
zonation is not dependent on hepatocyte lineage progression but rather due to metabolite-
induced gene regulation (Thurman & Kauffman, 1985). Retroviral marking studies provided 
additional evidence against the “streaming liver” model since transplanted cells, traceable 

by β-galactosidase expression, remained in the original location for 15 months (Bralet et al., 
1994). Furthermore, experiments performed with mosaic livers of chimeric rats (Ng & 

Iannaccone, 1992) as well as approaches using transgenic hAAT/β-gal mice (Kennedy et al., 
1995) demonstrated that hepatocytes proliferate clonally during normal tissue renewal 
throughout the whole liver lobule. Collectively, these findings led to the conclusion that 
normal liver cell plates lack the existence of a main proliferative compartment and instead 
randomly distributed hepatocytes mediate normal liver turnover by slow clonal expansion 
without involvement of a liver stem cell (Ponder, 1996). 

3. Liver regeneration 

The liver has an enormous capacity to regenerate by (1) replication of remaining, healthy 

hepatocytes, (2) activation, expansion and differentiation of a stem cell compartment, or (3) 

by a combination of these processes. Which pathway is employed depends on the nature of 

the injury, its severity and duration. This is discussed in greater detail in the sections to 

follow. 

3.1 Hepatocyte-mediated regeneration 

The hepatic regenerative capacity is most clearly seen after surgical removal of liver mass. 

This model, referred to as partial hepatectomy (PHx), was introduced by Higgins and 

Anderson (Higgins & Anderson, 1931) and it is unquestionably the best studied liver 

regeneration model due to its simplicity of design and reproducibility. In the rat two-thirds 

PHx is performed, whereas in the mouse usually only the left lobe is removed due to 

technical difficulties in the performance of two-thirds PHx surgery in mice, with resultant 

high mortality (Fausto et al., 2006). The removed lobes do not re-grow. Instead there is 

compensatory, hyperplastic growth of all residual cellular populations until the size of the 

organ achieves proportionality to the body size, as determined by metabolic demands of the 

organism (Kawasaki et al., 1992; Starzl et al., 1993). The different liver cell types do not 

divide simultaneously but show different kinetics in DNA synthesis. Periportal hepatocytes, 

with a presumably shorter G1 phase than pericentral cells (Rabes, 1976), are the first to 

undergo a wave of mitosis but DNA synthesis progresses to eventually involve the whole 

lobule with the exception of a few glutamine synthetase-positive, pericentral cells 

(Gebhardt, 1988). The proliferating hepatocytes are thought to provide mitogenic stimuli for 

the other hepatic cell populations. Biliary ductular cells, Kupffer and hepatic stellate cells 

(HSCs) and finally sinusoidal endothelial cells enter DNA synthesis about 24 hours later 

(Michalopoulos & DeFrances, 1997) with synchronised proliferation of each cell type for at 

least the first wave of replication. The greatest increase in liver mass can be seen by 72 hours 

with complete mass restoration after about one week (Grisham, 1962). 

Although it was known from early experiments that repeated PHx does not exhaust 
hepatocyte growth (Simpson & Finck, 1963), the enormous proliferative capacity of adult 
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hepatocytes has previously been underestimated. Rhim et al. showed that newborn uPA 
overexpressing mice with continuous hepatocytic necrosis could be rescued by 
transplantation of a small number of hepatocytes that required between 10 to 15 rounds of 
replication to generate sufficient liver mass (Rhim et al., 1994; Rhim et al., 1995). In addition, 
serial transplantation experiments performed in tyrosinemic mice caused by a deficiency for 
fumarylacetoacetate hydrolase (FAH) revealed that hepatocytes are capable of undergoing 
more than 70 cell doublings without loss of functionality (Overturf et al., 1997). Conversely 
there is also recent evidence that hepatocytes might reach a state of “replicative senescence” 
under certain chronic conditions such as advanced cirrhosis, perhaps due to telomere 
shortening (Paradis et al., 2001; Wiemann et al., 2002). 

3.2 Liver progenitor cell-mediated regeneration 

Repeated replication of healthy hepatocytes is the most efficient way to restore liver mass 
and function during normal tissue renewal and repair. If this process is inhibited or blocked 
during chronic chemical or carcinogenic hepatocyte insult, the liver relies on stem cell-like 
LPCs for its restoration. These cells are also referred to as “oval cells” in rodents (Fausto & 
Campbell, 2003) and the “Ductular Reaction” in humans due to their rather ductular 
phenotype in most human chronic liver diseases (Roskams & Desmet, 1998; Theise et al., 
1999). 

3.2.1 History, origin and features of liver progenitor cells 

The appearance of oval-like cells in the livers of rats treated with the azo dye “Butter 

Yellow” was originally reported in 1937 (Kinosita, 1937). Two decades later, Farber 

introduced the term “oval cell” for this population after observing small ovoid cells with a 

scant basophilic cytoplasm and a high nuclear to cytoplasmic ratio following treatment of 

rats with carcinogenic agents (Farber, 1956a, 1956b). Shortly after, Wilson and Leduc 

documented the proliferation of ductular cells that gave rise to hepatocytes and possibly 

new interlobular bile ducts in mice fed a methionine-rich, bentonite-supplemented diet and 

they were the first to suggest the existence of a bipotential liver progenitor or stem cell 

(Wilson & Leduc, 1958). Many experimental models involving toxins and carcinogens, alone 

or in combination with other surgical or dietary regimes, have since been developed and 

these facilitated the study of these progenitor cells, which are now widely accepted to 

represent adult LPCs; the progeny of hepatic stem-like cells. 

The precise origin of LPCs remains uncertain, even though many researchers have 
addressed this question. The lack of definite evidence regarding the cellular source of LPCs 
may reflect differences in the models used to induce them and has also been hampered by a 
lack of specific LPC markers. Lenzi et al. suggested bile ducts as the structure of origin and 
argued that LPCs express biliary markers such as cytokeratin (CK) 7 and CK19 and lack 
expression of the mesenchymal cell markers vimentin and desmin. Additionally, the degree 
of LPC proliferation during early ethionine-induced carcinogenesis was found to be 
proportional to the increase in biliary tree volume and the authors claimed that LPCs are 
simply part of spatially expanded cholangioles (Lenzi et al., 1992). 

Other investigators have proposed an extrahepatic origin for LPCs. After it became apparent 
that some LPCs share c-kit, CD34 and Thy-1 expression with haematopoietic stem cells 

www.intechopen.com



 
Liver Regeneration 

 

20

(Fujio et al., 1994; Omori et al., 1997; Petersen et al., 1998a), Petersen et al. were the first to 
suggest that LPCs could be derived from epithelial precursors in the bone marrow (Petersen 
et al., 1999). Bone marrow-derived cells that potentially contribute to liver regeneration 
would enter via the portal vasculature and locate adjacent to the ducts in the periportal 
region, which is why Sell extended the preceding proposition by suggesting the 
periductular LPC as the candidate cell for an extrahepatic, bone marrow-derived stem cell in 
the liver (Sell, 2001). To test the hypothesis that cells from the bone marrow contribute to the 
formation of LPCs and hepatocytes, several investigators performed cell transplantation 
studies. They generally followed the fate of male bone marrow cells or purified 
haematopoietic stem cells transplanted into lethally irradiated female recipients that were in 
most cases subjected to liver injury. It was demonstrated that very minor fractions of LPCs 
or hepatocytes were donor-derived in both healthy and diseased livers (Petersen et al., 1999; 
Theise et al., 2000a, 2000b; Krause et al., 2001; Wang et al., 2002). The responsible population 
in the bone marrow capable of repopulating the liver was thought to be of c-
kithighThylowLinnegSca-1pos phenotype (Lagasse et al., 2000). Soon after, the bone marrow was 
found to contain another stem cell subpopulation, the multipotent adult progenitor cell 
(MAPC), which can be induced to express hepatocyte phenotype and functions in vitro 
(Schwartz et al., 2002) and is capable of differentiating into hepatocyte-like cells when 
transplanted into the liver (Jiang et al., 2002). When donor-derived hepatocytes were examined 
genotypically, it was noted that they contained both donor and host genetic markers, 
indicating cell fusion as the likely mechanism by which hepatocytes are generated from bone 
marrow and not by transdifferentiation of haematopoietic stem cells (Vassilopoulos et al., 2003; 
Wang et al., 2003b). On the other hand, haematopoietic stem cells co-cultured with injured liver 
tissue separated by a trans-well membrane were shown to convert to a hepatocyte phenotype 
without fusion due to humoral factors released from the liver tissue. When engrafted into 
injured liver the haematopoietic stem cells differentiated into functional hepatocytes and their 
plasticity was proposed to facilitate the conversion, rather than the rare cell fusion event that 
was only seen at later stages of the experiment (Jang et al., 2004). Recently it was demonstrated 
by transplantation of lacZ-transgenic bone marrow into virally or steatotically challenged mice 
that the contribution of extrahepatic cells to LPC-generated hepatocytes is minimal (Tonkin et 
al., 2008). Collectively, these experiments show that some bone marrow cells are capable of 
producing hepatocytes (with or without fusion, depending on the model and cell population 
used) to restore injured liver. However, it occurs at a low frequency and efficiency unless a 
strong selective pressure is applied (Thorgeirsson & Grisham, 2006). It is likely that the more 
significant role of bone marrow cells is to generate non-parenchymal cells during liver 
regeneration (Forbes et al., 2004). The usual regeneration processes after acute and chronic liver 
injuries appear to rely predominantly on intrahepatic cells. 

The most widely accepted view is that LPCs originate from liver-resident precursor or stem 

cells, which lie dormant and present in such low numbers as to be undetectable in normal 

liver. However, they can be activated to proliferate under certain pathological conditions 

(Fig. 1). Evidence from experiments showing that LPCs always emerge from periportal liver 

zones and the fact that selective periportal damage inhibits the LPC response (Petersen et al., 

1998b) have led to the conclusion that the precursor cell likely resides somewhere in the 

vicinity of the portal triad. Grisham and Porta found ductular proliferation in carcinogen-

treated rats that they attributed to activated stem-like cells from the Canals of Hering, the 

anatomical boundary between terminal bile ducts and the most distal hepatocytes of the 
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hepatic plate (Grisham and Porta, 1964). Microscopic studies of early histological changes in 

rats following 2-acetylaminofluorene (2-AAF)/partial hepatectomy (PHx) treatment also 

show elongated ductular branches that are formed by proliferating LPCs, which originate 

from a stem cell compartment located in these canalicular-ductular junctions. The newly 

formed biliary structures represent cellular extensions of the Canals of Hering and remain 

connected to the terminal biliary ductules by a continuous basement membrane (Paku et al., 

2001). Reid and colleagues suggested epithelial cell adhesion molecule (EpCAM) as a 

suitable marker for isolation and study of these Canals of Hering-derived LPCs (Schmelzer 

et al., 2007). Lineage tracing of Sry (sex determining region Y)-box 9 (Sox9)-expressing cells 

supports the hypothesis that LPCs derive from the epithelial lining of bile ducts (Furuyama 

et al., 2011). Theise et al. conducted studies comparing normal with acetaminophen-induced 

necrotic liver and identified the human equivalent to the rodent Canals of Hering, a niche 

which is similarly thought to harbour stem-like cells that give rise to LPCs or the Ductular 

Reaction (Theise et al., 1999).  

 

Fig. 1. LPC ontogeny. During liver development hepatoblasts (Hb) differentiate into 

cholangiocytes (C) and hepatocytes (Hep) and might be incorporated into the Canals of 

Hering to serve as a stem cell compartment during chronic liver injury. Activated liver 

progenitor cells (LPC) proliferate after appropriate stimuli, are capable of self-renewal and 

later commit towards either the cholangiocytic or hepatocytic lineage to regenerate the liver. 

If kept in a proliferative state, LPCs are likely candidates for transformation and might 

represent cancer stem cells (CSCs). 

LPCs are a heterogeneous cell population and immature as well as intermediate phenotypes 

are observed before cells that express a differentiated phenotype are identified. Importantly, 

from activation to differentiation or transformation, they continuously change their 

morphology, phenotype and accordingly marker expression. LPCs express different 

combinations of phenotypic markers from both the hepatocytic and biliary lineage (Fig. 2) 

and also share epitopes with haematopoietic cells and cancer stem cells (CSCs; see table 1).  
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Fig. 2. Bipotentiality of LPCs. Immunofluorescent characterisation of the clonally established 

LPC line BMOL (Tirnitz-Parker et al., 2007) demonstrates the cells’ bipotentiality. Immature 

BMOL cells co-express the hepatocytic markers muscle 2-pyruvate kinase (A, green) and 

transferrin (B, green) with the biliary markers A6 (A, red) and CK19 (B, red). 

 

 

Table 1. Marker expression by adult liver cells. A6, murine marker, epitope unknown; AFP, 

α-fetoprotein; Alb, albumin; CD, cluster of differentiation; CK, cytokeratin; c-kit, CD117, stem 

cell factor receptor; Cx, connexin; Dlk, delta-like protein; E-cad, E-cadherin; EpCAM, epithelial 

cell adhesion molecule; GGT IV, γ-glutamyl transpeptidase IV; M2PK, muscle 2-pyruvate 

kinase ; OV-6, rat and human marker, epitope shared by CK14 and 19; π-GST, pi-glutatione-S-

transferase; Sca-1, stem cell antigen 1; Thy-1, thymocyte differentiation antigen 1. 

www.intechopen.com



 
Liver Progenitor Cells, Cancer Stem Cells and Hepatocellular Carcinoma 

 

23 

They have been shown to differentiate at least bipotentially into hepatocytes and 
cholangiocytes (Tirnitz-Parker et al., 2007), and in some models display multipotentiality, 
also producing intestinal and pancreatic lineages (Tatematsu et al., 1985; Yang et al., 2002; 
Leite et al., 2007). Hence it is not surprising that there is still not a single LPC-specific marker 
available and a combination of phenotypic markers is required for their identification or 
isolation. 

LPCs infiltrate the parenchyma in close spatial and temporal association with hepatic 
stellate cells (HSCs). Following activation, HSCs differentiate from quiescent, vitamin A-rich 
cells into α-smooth muscle actin-positive myofibroblastic cells, which are capable of matrix 
degradation to generate space for cell migration as well as fibrogenesis and collagen 
deposition to provide chronically injured liver with architectural support. The activation, 
proliferation, migration and differentiation status of LPCs and HSCs, as well as their 
beneficial as opposed to pathological contributions, are controlled by key cytokines. LPCs 
and HSCs have been reported to influence each other’s behaviour through paracrine 

signalling. LPCs produce a range of cytokines, including lymphotoxin β (LTβ), which 
signals via the LTβ receptor on HSCs to activate the NFkB pathway. This results in 
production of intercellular adhesion molecule 1 (ICAM-1) and regulated upon activation, 
normal T-cell expressed and secreted (RANTES), which then act as chemotactic agents for 
LPCs and inflammatory cells involved in the wound healing response to chronic liver injury 
(Ruddell et al., 2009). Several other factors mediating the LPC response have been identified, 
including tumour necrosis factor (TNF), TNF-like weak inducer of apoptosis (TWEAK), 
interferon gamma (IFNγ), and transforming growth factor beta (TGFβ) among others (Knight 
et al., 2000; Akhurst et al., 2005; Knight et al., 2005; Knight & Yeoh, 2005;  Knight et al., 2007; 
Tirnitz-Parker et al., 2010). Abrogation of these key signalling pathways inhibits the LPC 
response to injury and prevents or diminishes liver fibrosis in animal models (Davies et al., 
2006; Lim et al., 2006; Knight et al., 2008). In the setting of impaired wound healing combined 
with chronic inflammation, the regenerative fibrotic response turns into pathological 
fibrogenesis, which can progress to cirrhosis and eventually hepatocellular carcinoma (HCC). 

3.2.2 Rodent liver progenitor cell induction models 

The majority of commonly used LPC induction models was originally developed to study 
the process of hepatocarcinogenesis. They generally combine an injuring mitotic stimulus, 
usually in the form of functional liver mass loss (chemically or otherwise-induced), with a 
manipulation that chronically damages hepatocytes or blocks their ability to divide and 
prevents them from contributing to the liver regeneration process. Described below are four 
examples of the most commonly used regimens. 

3.2.2.1 D-galactosamine 

This model is mainly used to induce liver injury in the rat. Administration of D-
galactosamine inhibits RNA and protein synthesis in centrilobular hepatocytes by trapping 
and depleting uridine-nucleotides and UDP-glucose (Decker & Keppler, 1972), leading to 
acute necrosis. Hepatocyte replication is not fully blocked in this model; the response is only 
delayed. LPCs are resistant to the chemical as they do not metabolise D-galactosamine and 
are induced to proliferate within 48 hours after injury. They migrate into the parenchyma, 
where they generate both ductular cells and small hepatocytes (Lemire et al., 1991; Dabeva & 
Shafritz, 1993).  
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3.2.2.2 Solt-Farber model and the modified 2-AAF/PHx regime 

In this model, which is commonly used in rats and only rarely in mice, injection of the 
ethylating hepatocarcinogen diethylnitrosamine (DEN) is followed two weeks later by a 
two-week treatment with 2-AAF and PHx one week into 2-AAF feeding (Solt & Farber, 
1976). The most commonly used regimen is a modification to the original Solt-Farber 
protocol, in which the “initiation” step of DEN injection is omitted and 2-AAF is 
administered four days before and after PHx, the 2-AAF/PHx regime (Tatematsu et al., 1984). 
Both models induce proliferation of ductular or periductular LPCs, which accelerates when 2-
AAF feeding is terminated, indicating that not only hepatocytes are growth-inhibited by 2-
AAF but also LPCs, although to a lesser extent. LPCs differentiate more efficiently into 
hepatocytes at low doses of 2-AAF, whereas they tend to undergo apoptosis at higher dosages 
(Alison et al., 1997). As a consequence, the rate at which LPCs differentiate into hepatocytes 
can easily be controlled through variation of the 2-AAF dose (Paku et al., 2004). 

3.2.2.3 Choline-deficient, ethionine supplemented diet (CDE diet) 

A dietary deficiency of the lipotrope choline is known to induce hepatic steatosis (Lombardi 
et al., 1966; Lombardi et al., 1968). This pathology reflects an impaired release of triglycerides 
in the form of very low-density lipoprotein (VLDL) from hepatocytes, leading to 
intracytoplasmic deposition of fat vacuoles within a few hours of choline withdrawal. 
Choline-deficiency has also been reported to induce hepatocarcinogenesis (Ghoshal & 
Farber, 1984; Yokoyama et al., 1985; Locker et al., 1986). Similar effects were shown for 
another well-known carcinogen, DL-ethionine. Administered alone, ethionine is an 
antagonist of methionine and as such an inhibitor of de novo choline-biosynthesis thus 
induces fatty liver (Farber, 1967) and also leads to HCC (Farber, 1956a). When tested in 
combination with choline-deficiency, ethionine enhances the formation of liver tumours 
(Shinozuka et al., 1978b), yet surprisingly diminishes the formation of fatty liver during 
choline-deficiency (Sidransky & Verney, 1969). 

An interesting observation during early choline-deficient, ethionine-supplemented (CDE) 

diet-induced hepatocarcinogenesis studies in rats was the massive proliferation of α-
fetoprotein-positive LPCs in the liver (Shinozuka et al., 1978a). Numerous studies using this 
model to provoke an LPC response in rats were subsequently described. Due to the 
extensive availability of genetically engineered mouse strains, it became desirable to apply 
this regimen to mice. The conventional CDE diet used in rats however caused high mortality 
in mice and was therefore modified to a CD diet with separate administration of 0.165% DL-
ethionine in the drinking water. This customised CDE diet (Akhurst et al., 2001) reliably 
induces the proliferation of LPCs (Fig. 3, Tirnitz-Parker et al., 2007; Tirnitz-Parker et al., 2010) 
as well as inflammatory cells (Knight et al., 2005) and serves as a murine model of hepatic 
fibrogenesis (Ruddell et al., 2009; Van Hul et al., 2009) and tumorigenesis following 
prolonged CDE diet exposure (Knight et al., 2000; Knight et al., 2008).  

3.2.2.4 3,5-diethoxycarbonyl-1,4-dihydro-collidine diet (DDC diet) 

The hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydro-collidine is also an effective inducer of 
LPCs as it causes extensive and prolonged liver damage while the diet is administered 
(Jakubowski et al., 2005). However, in contrast to the CDE diet (see above), a fraction of 
hepatocytes continue to proliferate for the duration of diet administration (Wang et al., 
2003a). Thus the model is unusual in that liver regeneration is accomplished by both 
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hepatocytes and LPCs. It offers an alternate model to investigate mechanisms that regulate 
LPC proliferation and differentiation. In the context of liver cancer, the DDC model has been 
used extensively to demonstrate a link between LPCs and HCC.  LPCs isolated from p53 
null mice subjected to a DDC diet are able to generate both hepatocarcinomas and 
cholangiocarcinomas following transplantation into immunodeficient mice (Suzuki et al., 
2008).  By placing a Hepatitis B Virus X transgenic mouse on a DDC diet, Wang and 
colleagues were able to show that LPCs overexpressing HBx were tumorigenic (Wang et al., 
2012). Interestingly, over the same period of seven months, DDC treatment did not induce 
tumours in wild type mice. In another study, the importance of the Hippo-Salvador 
pathway, working through inhibition of the yes-associated protein YAP, was shown by 
subjecting mice with liver-specific ablation of WW45 (drosophila homolog of Salvador and 
adaptor for the Hippo kinase) to a DDC diet.  These mice displayed liver tissue overgrowth, 
an enhanced LPC response and they developed liver tumours with HCC as well as 
cholangiocarcinoma characteristics that appeared to be LPC-derived (Lee et al., 2010). 

 

Fig. 3. Histology of normal and chronically injured liver. Adult mice on a control diet 
display normal liver architecture with orderly cords of hepatocytes and sinusoidal 
structures in-between the plates (A). On day 21 of the CDE diet, the liver architecture is 
highly disrupted by steatosis, scattered aggregates of infiltrated inflammatory cells and 
proliferating LPCs (B). 

3.2.3 Liver progenitor cells in human pathologies 

LPCs have been identified in a variety of human liver pathologies and are activated like 
their rodent counterparts to regenerate chronically injured liver (Haque et al., 1996; Theise et 
al., 1999). Like oval cells in rodents, human LPCs are usually associated with prolonged 
fibrosis, hepatocellular necrosis, cirrhosis and chronic inflammatory liver diseases. Hence, 
their proliferation is frequently seen in patients with hereditary haemochromatosis, chronic 
hepatitis B or C infection, alcoholic liver disease (ALD) and non-alcoholic fatty liver disease 
(NAFLD) when hepatocytes are inhibited by DNA-damaging oxidative stress (Lowes et al., 
1999; Roskams et al., 2003a; Clouston et al., 2005). The degree of stem cell activation and the 
number of proliferating LPCs in these pathologies was demonstrated to correlate with the 
progression and severity of the underlying liver disease (Lowes et al., 1999).  The activation 
of human LPCs is characterised by the appearance of reactive ductules, also referred to as 
Ductular Reaction. Cirrhotic livers have been shown to contain nodules that are usually in 
close contact with reactive ductules and consist entirely of intermediate hepatocytes, which 
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strongly suggests they originate from LPCs (Roskams et al., 2003a; Roskams et al., 2003b, 
Falkowski et al., 2003). LPCs always emerge in pathologies with a predisposition to cancer 
and their proliferation in an environment rich in inflammatory mediators, growth factors or 
reactive oxygen species renders them likely targets for transformation. Furthermore, 
inhibition of the LPC response has been demonstrated to reduce the formation of cancerous 
lesions, strongly supporting a role for LPCs in hepatocarcinogenesis (Davies et al., 2006; 
Knight et al., 2005; Knight et al., 2008). Very recently LPCs have not only been discussed as 
cellular precursors for liver cancer but also as potential liver cancer stem cells, which could 
be responsible for tumour maintenance and recurrence (Marquardt et al., 2011; Rountree et 
al., 2012).  

4. Cancer stem cells 

The similarities between adult stem cells and CSC have led to confusion regarding their 
identity and it has often not been clear in the literature whether CSCs represent transformed 
progenitor or stem cells or whether both cell types are distinct cell populations that only 
share the expression of certain cell markers and display a similar biology.  Adult tissue stem 
cells and CSCs are both defined by (i) highly efficient self-renewing ability through 
asymmetrical cell division and (ii) differentiation capacity along at least two if not more cell 
lineages. CSCs manifest the additional property of tumour initiation and/or maintenance. 
Nowadays the consensus is that the term CSC simply describes a cell’s potential for self-
renewal and ability to give rise to the hierarchic organisation of the heterogeneous lineages 
of cancer cells that constitute the tumour and does not consider the cell’s origin. CSCs may 
arise from the differentiation arrest and transformation of a normal adult stem cell through 
oncogenic and/or epigenetic aberrations or the dedifferentiation of a mature cell that 
subsequently acquires self-renewing capacity. The CSC concept has been debated for many 
decades and compelling evidence of their existence has only emerged in the past decade. 

4.1 Haematopoietic cancer stem cells 

The existence of CSCs was first demonstrated in the haematological malignancy acute 
myeloid leukaemia (AML). Dick and colleagues isolated human AML cells from peripheral 
blood and transplanted them into non-obese diabetic/severe combined immunodeficient 
(NOD/SCID) mice. The vast majority of cells was unable to induce leukaemia, even when 
transplanted in larger numbers, despite the fact that they displayed a leukaemic blast 
phenotype such as the CD34+/CD38+ subpopulation. Only 0.01-1% of all AML cells, the 
CD34+CD38- fraction, initiated AML and gave rise to a heterogeneous leukaemia tumour 
cell mass, classifying them as CSCs. The CD34+CD38- cells could be serially transplanted 
and reliably developed AML with the same morphology and cell surface marker expression 
as the original tumour (Bonnet & Dick, 1997). Additional tumour–initiating AML cell 
populations were later identified and described to be of a CD34+CD19- or CD34+CD10- and 
CD34+CD4- or CD34+CD7- phenotype (Cox et al., 2004; Cox et al., 2007). 

4.2 Solid tumour cancer stem cells 

Using similar approaches involving cell transplantation into immunodeficient mice, CSCs 
have subsequently been identified in a variety of solid tumours, including breast, brain and 
liver cancer. 
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4.2.1 Breast cancer stem cells 

Metastatic breast cancer was the first solid tumour in which CSCs were identified and 
prospectively isolated. The CD44+CD24-/lowLineage- cell population initiated tumours upon 
transplantation into mice with as few as 100 cells per injection. Importantly, they could be 
serially passaged and reliably reproduced the heterogeneous phenotype of the original 
breast cancer. In contrast, unsorted cells from the primary tumour or injection of a large 
number of alternate phenotypes, such as CD44+CD24+ cells, failed to form tumours (Al-Hajj 
et al., 2003). Furthermore, it was established that increased expression of the detoxifying 
enzyme aldehyde dehydrogenase (ALDH) identifies the tumorigenic breast stem cell 
fraction and high ALDH1 activity correlates with poorer prognosis (Ginestier et al., 2007). 

4.2.2 Central nervous system cancer stem cells 

The discovery of breast CSC was reported in the same year as the identification of tumour-
initiating stem cells in the brain. Singh and colleagues identified and prospectively isolated 
a CD133+ population of cells from a range of human brain tumours including 
medulloblastomas, pilocytic astrocytoma, glioblastoma and anaplastic ependymoma that in 
vitro exhibited stem cell properties and gave rise to heterogeneous cell populations with the 
same phenotype as the original tumour cells. Upon transplantation of as few as 100 CD133+ 
glioma cells into the frontal lobes of NOD/SCID mice, serially transplantable tumours were 
initiated that mirrored the original tumour phenotype, whereas no tumours developed after 
injection of a much larger number of CD133- cells from the same tumour (Singh et al., 2003; 
Singh et al., 2004). 

4.2.3 Liver cancer stem cells 

Only very recently have liver CSCs been described. However the mounting evidence is 
compelling and ever more markers are suggested to describe the population of cells that 
may be responsible for liver cancer initiation, maintenance and potentially tumour 
recurrence after HCC resection, as described below.  

4.2.3.1 Side population (Hoechst 33342 dye efflux) 

The first evidence for the existence of liver CSCs came from Haraguchi and colleagues who 
performed Hoechst 33342 side population (SP) analyses of various human gastrointestinal 
cell lines and identified a subpopulation of cells with CSC properties. The SP approach is 
based on the finding that cells without stem cell characteristics accumulate the fluorescent 
nucleic acid-binding dye Hoechst 33342, whereas stem cells and CSCs do not as they are 
capable of effectively effluxing the dye through high activity of adenosine triphosphate 
(ATP)-binding cassette (ABC) transporters such as the multidrug resistance transporter 1 
(MDR1) or breast cancer resistance protein (BCRP, also known as ABCG2). These ABC 
transporters employ ATP hydrolysis to facilitate substrate export across membranes against 
steep concentration gradients and thereby protect cells from cytotoxic agents and 
importantly from chemotherapeutic drugs such as cisplatin and doxorubicin. The authors 
report that the HCC lines HuH7 and Hep3B contained 0.9% to 1.8% SP cells with CSC 
properties, respectively, whereas no SP cells could be purified from the less aggressive 
hepatoma cell line HepG2 (Haraguchi et al., 2006). These results were confirmed shortly 
after by Chiba and colleagues who identified SP cells in some human liver cell lines, which 
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successfully induced xenograft tumours in NOD/SCID mice upon transplantation of as few 
as 1000 SP cells, while attempts to produce tumours with 1 x 106 non-SP cells failed 
consistently (Chiba et al., 2006). 

4.2.3.2 CD133 (Prominin 1) 

Several recent studies have used this glycoprotein initially identified as a marker for CD34+ 
haematopoietic stem cells and later as a marker of LPCs for the isolation of liver CSCs. 
Suetsugu et al. reported that both the hepatoblastoma cell line HepG2 as well as the human 
fetal hepatoblast cell line Hc lacked CD133 expression, and that CD133+ cells could only be 
demonstrated in the human HCC line Huh7. CD133+ cells showed a higher proliferative 
potential in culture but also a greater ability to initiate tumour growth in vivo compared to 
the CD133- population (Suetsugu et al., 2006). Hepatic cells with a CD133 phenotype have 
been shown to be more resistant to chemotherapeutic drugs such as doxorubicin and 5-
fluorouracil than their CD133- counterparts through preferential activation of the Akt/protein 
kinase B and Bcl-2 cell survival pathways. Furthermore, resistance of normal stem cells to 
cyclophosphamide is facilitated by the differentially expressed marker ALDH. Studies on 
ALDH and CD133+ cells found ALDH expression only in the CD133+ subpopulation and 
suggested a hierarchical cell organisation with regard to tumorigenicity in the order 
CD133+ALDH+ > CD133+ALDH- > CD133-ALDH-, which suggests ALDH as an additional 
marker useful for liver CSC identification (Ma et al., 2007, Ma et al., 2008). In addition, it has 

been demonstrated that TGFβ signalling can induce CD133 expression in the HCC cell line 
Huh7 through epigenetic regulation, which results in a significant increase in tumour initiation 
capacity in these cells compared to CD133- Huh7 cells (You et al., 2010). 

4.2.3.3 Epithelial cell adhesion molecule (EpCAM) 

Myajima and colleagues identified EpCAM as a biliary and LPC marker, which is expressed 
in biliary epithelial cells and becomes upregulated in liver upon 2-AAF/PHx and DDC 
treatment (Okabe et al., 2009). Since EpCAM expression has been reported in many normal 
epithelial as well as in tumour cells, it is not surprising that it has been suggested as a useful 
CSC marker. EpCAM+ cells isolated from human HCC tissues were shown to be more 
tumorigenic and invasive than EpCAM- cells and consistently formed invasive tumours in 
NOD/SCID mice, even after serial transplantation, whereas the EpCAM- population did not 

(Yamashita et al., 2009). EpCAM is a direct transcriptional target of Wnt/β-catenin 
signalling, which has been implicated as a CSC self-renewal pathway (Yamashita et al., 

2007). Activation of the Wnt/β-catenin pathway increased the EpCAM+ cell population, 
whereas knockdown of EpCAM resulted in decreased proliferation, colony formation, 
migration and drug resistance (Yamashita et al., 2009). 

5. Hepatocellular carcinoma  

Mortality from chronic liver disease is the most rapidly increasing cause of death in many 
western nations. The commonest aetiologies contributing to this escalation are chronic viral 
hepatitis C or B infection, alcoholic and non-alcoholic fatty liver disease. All these conditions 
can cause fibrosis and, subsequently, cirrhosis and HCC. Much evidence has been gathered 
demonstrating that HCC can arise from deregulated LPC proliferation and maturation 
during chronic liver injury in humans and in animal models of liver disease and 
carcinogenesis.  

www.intechopen.com



 
Liver Progenitor Cells, Cancer Stem Cells and Hepatocellular Carcinoma 

 

29 

5.1 HCC: A clinically important end-stage complication of chronic liver disease 

End-stage complications of chronic liver disease (cirrhosis and HCC) are the 9th commonest 
global cause of death and will remain so for at least the next 20 years. Of great concern is the 
prediction by the World Health Organisation that by 2030, deaths from HCC will for the 
first time exceed those from non-malignant complications of cirrhosis, such as liver failure 
and portal hypertension (Mathers et al., 2006). 

Most cases of HCC in the western world arise in the setting of established cirrhosis (Bruix & 
Sherman, 2005; Olsen et al., 2010; Sherman, 2011). The median survival of untreated HCC is 
in the order of 6-16 months. In view of the poor survival in the absence of therapy, strategies 
have been implemented to reduce the incidence of HCC through immunisation to prevent 
chronic HBV infection and screening of high-risk groups (i.e. those with cirrhosis). Despite 
these approaches, we are still faced with an escalation in the number of cases and 
requirement for treatment (El-Serag & Mason, 1999; Bruix & Sherman, 2005; Llovet et al., 
2005; Mathers & Loncar, 2006; Llovet et al., 2008).  

Presently the treatment of choice for HCC is liver resection or orthotopic liver 
transplantation (OLT), either with or without adjunctive chemotherapy or non-surgical 
ablative therapy.  Liver resection is the treatment of choice for HCC in non-cirrhotic livers, 
and accounts for 5% of HCC cases in western countries and 40% of cases in non-western 
countries. Patients with well compensated cirrhosis and who do not have portal 
hypertension may also be considered for resection, provided that lesions are confined to the 
liver and enough “functional reserve” of liver is retained to ensure survival of the patient 
(Bruix & Sherman, 2005; Llovet et al., 2005). Currently, tumour size, number and vascular 
invasion are still the strongest predictors of survival with up to 70% of subjects surviving 
five years. Tumour recurrence complicates 70% of cases at five years, reflecting either 
intrahepatic metastases (true recurrences) or the development of de novo tumours (Llovet et 
al., 2005). Based on comparative genomic hybridisation, DNA fingerprinting using loss of 
heterozygosity assays, or DNA microarray studies, it is estimated that just over half of 
recurrences correspond to intrahepatic metastases undetected by the time of resection, 
whereas less than half are de novo HCCs (Chen et al., 2000; Finkelstein et al., 2003; Ng et al., 
2003). OLT is indicated in individuals who fulfil the “Milan criteria”: patients with a single 
HCC of up to five centimetres in size or up to three nodules not larger than three 
centimetres each. Strict adherence to these criteria results in 5-year survival of up to 70% 
with recurrence rates usually less than 15%(Bismuth et al., 1993; Mazzaferro et al., 1996; 
Llovet et al., 2005; Mazzaferro et al., 2009). 

5.2 Pathogenesis of HCC: The emerging role of LPCs and CSCs  

The activation and proliferation of LPCs during chronic liver injury is associated with an 
inflammatory response that involves activation of resident and recruited inflammatory cells 
(Fig. 4). These inflammatory cells initiate tissue regeneration by promoting the removal of 
cellular debris and by stimulating LPCs to proliferate through release of mitogenic growth 
factors and cytokines (Lowes et al., 2003; Knight et al., 2005). Whilst LPCs play an important 
role in normal liver repair processes, dysregulation of their proliferation and differentiation 
has been linked to fibrogenesis and carcinogenesis (Lowes et al., 1999; Clouston et al., 2005; 
Knight et al., 2008; Ruddell et al., 2009; Tirnitz-Parker et al., 2010). Clear demonstration of a 
role for LPCs, and possibly CSCs, in HCC development was reported by Shachaf and 
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colleagues (Shachaf et al., 2004). Inactivation of the Myc oncogene was sufficient to induce 
sustained regression of invasive HCC in a murine model. Tumour cells differentiated into 
hepatocytes and biliary epithelial cells. This process was associated with rapid loss of 

expression of the tumour marker α-fetoprotein, increase in expression of liver cell markers 
CK8 and carcinoembryonic antigen, and in some cells the biliary LPC marker CK19. Many 
of the “reverted” tumour cells remained dormant as long as Myc remained inactivated; 
however, Myc reactivation immediately restored their neoplastic features. Using array 
comparative genomic hybridisation, Shachaf and coworkers confirmed that the dormant 
liver cells and the restored tumour retained the identical molecular signature and hence 
were clonally derived from the tumour cells. Thus, tumours have pluripotent capacity to 
differentiate into normal cellular lineages and tissue structures, while retaining their latent 
potential to become cancerous  

Several other studies have confirmed a LPC phenotype in a substantial number of HCCs. 

Detailed immunophenotyping revealed that 28–50% of HCCs express markers of LPCs, such 

as CK7 and CK19. Histologically, these tumours consist of cells that have an intermediate 

phenotype between LPCs and mature hepatocytes. Furthermore, HCCs that express both 

hepatocyte and biliary cell markers such as albumin, CK7 and CK19, carry a significantly 

poorer prognosis and higher recurrence after surgical resection and liver transplantation 

(Roskams, 2006; Yao & Mishra, 2009). The “precursor-product” relationship between LPCs, 

CSCs and HCC is further strengthened by the observation that 55% of small dysplastic foci, 

which represent the earliest premalignant lesions, are comprised of LPCs and intermediate 

hepatocytes (Weinstein et al., 2001). Finally, inhibition of the LPC response to liver injury 

using a broad range of pharmacological therapies such as interferon alpha 2b (Lim et al., 

2006), COX-II inhibitors (Davies et al., 2006), or tyrosine kinase inhibitors (Knight et al., 2008) 

is associated with a reduction in the severity of hepatic fibrosis and incidence of HCC. These 

observations provide more evidence in support of a critical role for LPCs and CSCs in the 

carcinogenic process. Collectively these studies suggest that anti-inflammatory agents may 

be useful therapeutically in reducing the incidence of liver cancer among patients with 

chronic liver pathologies. 

 

 

Fig. 4. Co-regulation of inflammatory response and LPC proliferation in hepatitis C patients. 

Haematoxylin and eosin (H&E) staining of a liver section from a hepatitis C virus-infected 

patient demonstrates disrupted liver architecture through infiltration and proliferation of 

small basophilic cells as well as steatotic changes in hepatocytes (A). Staining for the 

common leukocyte marker CD45 (B) and the biliary LPC marker CKpan (C) suggests  

co-regulation of the inflammatory response with the Ductular Reaction. 
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6. Conclusion 

The cellular target of transformation leading to HCC is currently undefined.  Potential 
candidates include the hepatocyte and the LPC and they need not be mutually exclusive. 
However, there is substantial circumstantial as well as some direct evidence implicating 
LPCs. This view would also be compatible with the increasingly popular theory of the stem 
cell basis of cancer. In the context of HCC, a variety of animal models, which induce chronic 
liver injury ultimately produce liver cancers and most of these pathologies display increased 
proliferation of LPCs. To conform to current views on carcinogenesis i.e. it is a rare event 
that affects a few cells and there are multiple stages in the process, it is necessary to 
hypothesise that a minority of LPCs are tumorigenic and that these have incurred the early 
genetic alterations that have initiated their progression to cancer.  The challenge for future 
strategies to treat liver cancer is to identify these initiated LPCs and to show their direct link 
to HCC. This should be followed up with studies to elucidate progressive changes at the 
molecular level, which govern their behaviour and to exploit their vulnerability. Such 
knowledge will facilitate better diagnosis as well as treatment and prevention of HCC. 
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