
1. Introduction

We investigate object recognition and classification in a setting with a large number of classes

as well as recognition and identification of individual objects of high similarity. Real-world

data sets were obtained for the classification and identification tasks. The considered

classification task is the discrimination of modern coins into several hundreds of different

classes. Identification is investigated for hand-made ancient coins. Intra-class variance due

to wear and abrasion vs. small inter-class variance makes the classification of modern coins

challenging. For ancient coins the intra-class variance makes the identification task possible,

as the appearance of individual hand-struck coins is unique. Figure 1 shows sample images

for the considered collections of coins.

(a) Modern coins (b) Ancient coins

Fig. 1. Examples of images of modern and ancient coins

Modern coins were acquired by a high-speed machine vision system for coin sorting described

in detail by Fürst et al. (2003). For ancient coins the setting is more general, images acquired
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2 Will-be-set-by-IN-TECH

by scanner and camera devices are considered. We will also discuss the use of a 3D acquisition

device and 3D models for ancient coins (Zambanini et al., 2009).

The initial step of object recognition will be discussed as the problem of detection. i.e.

foreground-background segmentation. Background knowledge on coins, i.e. the circular

shape, which holds for most modern coins and is approximately true for ancient coins, is

exploited in suggested segmentation methods (Zambanini & Kampel, 2009). Invariance with

respect to translation is solved by segmentation, scaling is covered by normalization and

rotation is handled in the suggested methods for invariant description, classification and

identification.

We will compare two approaches for classification of coins, a method based on matching edge

features in polar coordinates representation (Nölle et al., 2003) and a method for matching

based on an Eigenspace representation (Huber et al., 2005). Discussion on the influence of

dirt and abrasion will be included. Classification of modern coins makes additional use of

geometric measurements and information extracted from obverse and reverse side of the

coins. Incorporation of geometrical measurements and fusion of coin sides is realized by

preselection and Bayesian fusion. In order to limit the number of coin classes to discriminate

the concept of multiple Eigenspaces (Leonardis et al., 2002) is applied in the Eigenspace

framework. Rejection of unknown coins and a discussion on false classification and false

acceptance rates vs. false rejection is included.

For identification of coins we will consider an approach based on shape features describing the

edge of an ancient coin (Huber-Mörk et al., 2008; Zaharieva et al., 2007). Features are derived

from the Fourier domain representation of the coin contour. Comparison of two coins is done
by matching the features derived from contour representations. Bayesian fusion of coin sides

is studied. In order to discuss the identification performance a discussion on precision vs.

recall is included (Huber-Mörk et al., 2010). Improvement by 3D modeling and analysis is

also presented (Hödlmoser et al., 2010).

Results are presented for all considered data sets and methods. The data set for classification

of coins consisted of approximately 12 000 coins with images of reverse and obverse sides. The

data set contained 932 different coin classes. A derived data set was made publicly available as

a benchmark by the EU MUSCLE network of excellence (Nölle & Hanbury, 2006; Nölle et al.,

2006). Depending on the acceptable rejection rate correct decisions are taken in more than

92% for the Eigenspace approach. With the edge matching method approximately 86% of

the coins are either correctly classified or correctly rejected. Considering only valid coins, i.e.

coins in the database of 932 coins, the Eigenspace approach achieved a correct classification

rate of 94.58%, whereas the direct edge matching approach scored 84.79%. Correct rejection of

invalid coins was obtained at a rate of 78.45% for the Eigenspace approach and 98,29% were

achieved in the direct edge matching approach.

The data set for identification of ancient coins was provided by the Fitzwilliam Museum,

Cambridge, UK and was made publicly available by the EU COINS project (Kampel et al.,

2009). The data set consists of 240 coins of the same class with 1200 images of obverse sides

and 1200 images of reverse sides which were acquired by different acquisition devices. Results

for identification based on shape matching are on the order of magnitude of 98%.
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This contribution is organized as follows. Section 2 reviews the state of the art in

automated coin image analysis. Section 3 describes coin detection and invariant preprocessing

and Section 4 discusses matching based on various feature descriptors. Classification,

identification and information fusion is described in Section 5. Results are presented in Section
6 and conclusions are drawn in Section 7.

2. State of the art in coin image analysis

For modern coins, i.e. machine struck coins, judging systems using electromechanical devices

are wide-spread. Those systems are commonly based on measuring weight, diameter,

thickness, permeability and conductivity (Davidsson, 1996), oscillating electromagnetic field

characteristics (Neubarth et al., 1998), and photo- and piezoelectric properties (Shah et al.,

1986). Typically, such systems are only capable to discriminate a small number of different

coin denominations and are mostly limited to a specific currency.

Approaches towards classification of modern coins using image processing are described

in various papers and patents. A neural network approach capable of discriminating

between 500 Won and 500 Yen coins was published by Fukumi et al. (1992). A number

of coin authentification methods employing optical means are described in patents, e.g. a

system by which both sides of a coin are first imaged by cameras, followed by feature

extraction from binarized images, and finally combined with a magnetic sensor measurement

is described by Hibari & Arikawa (2001). The so called Dagobert coin recognition system

was developed for high volumes of coins and a large number of currencies (Fürst et al.,

2003; Nölle et al., 2003). Image binarization followed by area measurement and comparison

of coin center and center of gravity was also suggested in a patent (Onodera & M., 2002).

Another system based on the analysis of one side of a coin by transformation of its

image into polar coordinates and matching of profiles taken along angle direction was

described by Tsuji & Takahashi (1997). A special acquisition device for coins employing

colored illumination from various angles was suggested by Hoßfeld et al. (2006). Methods

based on matching gradient directions (Reisert et al., 2006; 2007) and color, shape and

wavelet features (Vassilas & Skourlas, 2006) were suggested. An approach based on multiple

Eigenspaces aims at classification for a large number of classes (Huber et al., 2005). This

approach initially obtains a translationally and rotationally invariant description and secondly

an illumination-invariant Eigenspace is selected from multiple Eigenspaces (Leonardis et al.,

2002). Finally probabilities for coin classes are derived for the obverse and reverse sides of

each coin and Bayesian fusion is performed.

For ancient coins, i.e. hand struck coins, some publications discussing approaches

for classification appeared. Early approaches, which achieved a moderate

classification performance, were based on matching of contour and texture features

(Van Der Maaten & Postma, 2006) or make use of interest point extraction and matching of

local features (Zaharieva et al., 2007). More recently, an approach based on interest points and

improved feature description and matching was reported (Arandjelović, 2010). The inherent

properties of hand struck coins result in individual features of each coin and a large intra-class

variance. Therefore, object classification becomes challenging. However, in contrast to object
classification, object identification relies on those unique features which distinguish a given

object from all other members of the same class. Results on identification of ancient coins were
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reported by Huber-Mörk et al. (2008), where the combination of shape and local descriptors

to capture the unique characteristics of the coin shape and die information was suggested.

For ancient coin recognition features from the Scale-invariant feature transform (SIFT) (Lowe,

2004) was used and compared to algorithms based on shape matching i.e. a shape context
description and a robust correlation algorithm (Zaharieva et al., 2007). Ancient coins are in

general not of a perfect circular shape. From a numismatic point of view, the shape of a coin

is a very specific feature. Thus, the shape described by the edge of a coin serves as a first clue

in the process of coin identification and discrimination. A shape based method tuned to the

properties of ancient coins was combined with matching of local features through Bayesian

fusion (Huber-Mörk et al., 2010).

3. Coin image preprocessing

The appearance of coins in 2D images is highly influenced by the lighting conditions and

the orientation of the imaged surface. Coins are characterized by a 3D surface and the

reflected light into the camera direction is typically a mixture of strong specular and diffuse
refections depending on the placement of camera and light sources, the type of light sources,

the coin surface structure, dirt and abrasion. In order to diminish the influence induced by

the lighting conditions a controlled acquisition setup is recommended. Controlled acquisition

strongly improves recognition of objects of low intra-class surface variation, e.g. modern

coins. Ancient coins are characterized by high surface variation even within a single class,

therefore different type and direction of light sources make small patterns on the coin look

very different which limits, for instance, the use of local image features for coin recognition.

Best practice for acquisition of ancient coins was summarized by Kampel & Zambanini (2008)

and Hoßfeld et al. (2006) described a sophisticated system for modern coin acquisition.

In this section, we will discuss preprocessing under controlled illumination for modern coins

and slightly varying conditions for ancient coins. Since the shape of historical coins might not

be as regular or flat as the shape of their present counterparts, it is a promising approach to

calculate 3D models for higher coin matching rates. Therefore, we will also present acquisition

of 3D data from stereo image pairs and stripe projection in this section.

3.1 Coin detection

The separation of an object of interest from background is commonly termed segmentation.

Under controlled acquisition automatic intensity thresholding approaches (Sezgin & Sankur,

2004) are feasible for modern coins (Nölle et al., 2003). Due to textured background, presence
of other objects in the image, inhomogeneous or poor illumination and low contrast,

straightforward methods based on global image intensity thresholding tend to fail.

In situations, where explicit knowledge on the properties of objects is available, this

knowledge can be used to steer segmentation parameters. For example, the compactness

measure was used in a comparable application to find an intensity threshold in

images showing circular spot welds by Ruisz et al. (2007). Similarly, ancient coins

were localized by thresholding the local intensity range, i.e. the difference between

maximum and minimum graylevel, in a local window and evaluation of the compactness

measure (Zambanini & Kampel, 2008). Typically, the shape of modern coins is circular,
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(a) Coin image (b) Smoothed image (c) Edge image (d) Label image

(e) Convex hull (f) Overlay image

Fig. 2. Image of a modern coin, intermediate detection results and segmentation.

whereas ancient coins deviate from this shape, but still stay close to a circular

outline. Therefore, approaches based on edge detection and application of the Hough

transform (Duda & Hart, 1972) were applied to modern coins (Reisert et al., 2006) as well as

to ancient coins (Arandjelović, 2010), where a modified version of the Hough transform was

used.

For a modern coin, such as shown in Fig.2 (a), we suggest an edge based technique to

segment the coin from the background. The detection of the coin employs a common

segmentation approach and works reliably for controlled lighting conditions and relatively

clean background, e.g. a moderately dirty conveyor belt. Problems might be caused by

very dark coins, i.e. coins which reflect only a small amount of light towards the camera. A

multi-stage segmentation procedure is suggested. The outline of the suggested segmentation

method is:

1. Smoothing of the image to suppress noise and background texture, see Fig.2(b).

2. Edge filtering using a Laplacian of Gaussian approach followed by zero-crossing detection

(Marr & Hildreth, 1980), see Fig.2(c).

3. Labeling of the detected regions, see Fig.2(d), and selection of the region with largest

bounding box as coin region candidate.

4. Form a blob by computing the convex hull of the coin region candidate, see Fig.2(e)

An example of an overlay of the extracted blob onto the input image is shown in Fig.2(f). Coin

position and diameter are estimated from the detected blob, which directly delivers access to

a translation invariant description.

For ancient coins we employ a measure of compactness ct related to a threshold t defined as

ct = 4πAt/P2
t (1)

where At is the area of the region covered by the coin and Pt is the perimeter of the coin.

The measures At and Pt are obtained by connected components analysis (Sonka et al., 1998)
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applied to the binary image which is derived from thresholding the intensity range image.

Figure 3 (a) shows an intensity image of an ancient coin, Fig. 3 (b) is the corresponding

intensity range image and Figs. 3 (c)-(e) show thresholded images for different selections of t

along with calculated values for compactness ct . The image thresholded at the optimal level
topt with highest compactness is given in Fig. 3 (f). A sudden decrease of the compactness

measure occurs with oversegmentation of the coin into several small regions, e.g. compare to

Fig. 3 (e).

(a) Coin image (b) Intensity
range

(c) Binarized,
t = 5,
c5 = 0.096

(d) Binarized,
t = 65,
c65 = 0.859

(e) Binarized,
t = 85,
c85 = 0.018

(f) Binarized,
t = 49,
c49 = 0.888

Fig. 3. Image of an ancient coin, intensity range image and different binary images with
corresponding threshold and compactness.

3.2 Invariant preprocessing for 2D images

Apart from illumination dependency the appearance of a coin varies considerably with

respect to its grey values depending on dirt and abrasion. These variations frequently are

inhomogeneous. This suggests, even if illumination influence could be neglected, that for

recognition purposes grey values by themselves will not give appropriate results. On the other

hand, edge information remains more or less stable or at least degrades gracefully. Therefore,

we based the feature extraction for coin recognition on edges. In principle any edge detector

may be used for this purpose. From our experience the approaches suggested by Canny

(1986), by Rothwell et al. (1995) and the Laplacian of Gaussian method (Marr & Hildreth,

1980) work satisfactorily.

For reliable matching of coins invariance with respect to rotation has to be taken into account.

Invariance with respect to translation is already discussed and taken into account by an

approach involving segmentation in Sec. 3.1. Scale variance is accounted for either by using a

calibrated acquisition device or normalization of the segmented image.

In general, rotational invariance is either approached via the use of geometrical moments

(Hu, 1962), radial coding of features (Torres-Mendez et al., 2000), or using a mapping from

Cartesian to polar coordinate representation, e.g. log-polar mapping (Kurita et al., 1998).

A method based on the construction of an Eigenspace from uniformly rotated images was

published by Uenohara & Kanade (1997). The application of their approach works through

locating of a specific small pattern in a larger image. In a later paper (Uenohara & Kanade,

1998) an improvement of the location method based on the discrete cosine transform (DCT)

was suggested.

We obtain rotational invariance by estimation of the rotational angle followed by a

rotation into a reference pose. Angle estimation is performed for images transformed

132 Advances in Object Recognition Systems

www.intechopen.com
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into polar coordinates. In the polar image shift invariance, corresponding to rotational

invariance when mapped back to Cartesian coordinates, is achieved through cross-correlation.

Cross-correlation is efficiently implemented using the fast Fourier transform (FFT)

(Cooley & Tukey, 1965).

Rotational invariance for a coin edge image involves cross-correlation with reference edge

images. The edge image is mapped from Cartesian to polar coordinates, see Fig.4. The result

of cross-correlation between the coin image to be classified and a set of reference images

is used to derive class hypotheses. In detail, for both sides of a coin under investigation

rotational invariant processing and hypothesis generation proceeds as follows:

1. Estimation of coin diameter from coin detection.

2. Selection of a set of reference images depending on thickness and diameter measure (if

available). Each reference image is associated with a coin class.

3. Cross-correlation of the coin side edge image under investigation with all reference

coin edge images in the selected reference set, resulting in a cross-correlation value and

associated rotation angle estimation for each reference class.

4. Ranking of the reference set by the maximum correlation value and generation of a set of

hypotheses for the highest-ranking classes.

Fig. 4. Processing for rotational invariance

To obtain reliable estimates for cross-correlation and rotation angle the polar image is split

into n bands along the radius coordinate, corresponding to concentric rings in Cartesian

coordinates. The peak of the correlation value Ki for band i is determined for each band and

the position of the peak is taken as an estimate for the rotation angle in band i. The sample

mean angle direction ᾱ is estimated via (Fisher, 1995):

ᾱ =

⎧

⎨

⎩

arctan(S/C) if S ≥ 0 and C > 0

arctan(S/C) + π if C < 0
arctan(S/C) + 2π if S < 0 and C > 0

(2)

with C = ∑
n
i=1 δi cos αi, S = ∑

n
i=1 δi sin αi . If band i contains a significant number of

edge pixels in reference coin and coin under investigation δi = 1, otherwise δi = 0.
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A cross-correlation estimate K for the coin under investigation is calculated using K =
1/n′

∑
n
i=1 δiKi. The number of bands n′ ≤ n used in cross-correlation and angle estimation

varies between images and is simply obtained by n′ = ∑
n
i=1 δi.

3.3 Surface analysis from 3D data

Analysis of coin images in 2D might lead to loss of important features, e.g. highlights due

to specular reflections decrease the quality of the images and handicap automatic analysis.

Especially ancient coin surfaces are reliefs visualizing inscriptions and symbols. Therefore,

the appearance of coins in 2D images is highly influenced by the lighting conditions. Different

lighting directions make small patterns on the coin look very different and limits, for instance,

the use of local image features for coin recognition. Since the surface shape of historical

coins might not be as regular or flat as the shape of their present counterparts, we suggest to

calculate 3D reconstructions for higher coin matching rates. With 3D scans, detailed models

of both coin sides are obtained which allow a more accurate analysis (Akca et al., 2007).

However, 3D acquisitions are more laborious and expensive and, to our knowledge, 3D

vision approaches applied to 3D databases of coins do not exist at the moment. By using 3D

coin models, various additional features can be obtained for object matching which are not

available in 2D (e.g. changes on the coin’s surface, thickness and volume measurements). The

profile of an exemplary ancient coin is shown in Fig. 5 (a). Two coin cuts, which are obviously

visible in the 3D reconstruction Figure 5 (a) can be seen in the profile plot in Fig. 5 (b).

(a) 3D rendering (b) Profile plot

Fig. 5. 3D reconstruction of an ancient coin.

The Breuckmann stereoSCAN 3D system (http://www.breuckmann.com/index.php?id=

stereoscan) was used for coin data acqusition (Zambanini et al., 2009). The scanner is an

active stereo system consisting of a projector and two cameras serving as stereo camera pair

and combines the shape from structured light and stereo vision approach (Stoykova et al.,

2007). In order to evaluate the accuracy of the coin models acquired by the Breuckmann

stereoSCAN 3D, real world coin data is compared to data gathered from their virtual 3D

model counterparts.
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A black and white stripe pattern is projected on the coin’s surface. The stripes get deformed

by the coin’s shape and its surface structure. By using a stereo camera pair, 3D information

can be obtained from two 2D images showing the same object at exactly the same time from

different views. In active stereo vision, a light source projects artificial features. This features
are easy to extract as their properties are known and they can be matched unambiguously. In

the setup used for coin acquisition, the scanner provides a theoretical x-y resolution of 20 μm

and a theoretical z-resolution limit of 1 μm.

The goal of stereo vision is to obtain depth information from 2D input data. Since the two

cameras have a fixed relative orientation, the distance between them is not variable and the

position of any point in 3D space can be obtained by triangulation. Therefore, the intersection

between two lines of two images, where each line is passing through the projection of the

point and the projection center, has to be determined. The setup can be described using

epipolar geometry, which is the geometry between two views (Hartley & Zisserman, 2003). As

an initial step, corresponding points must be found, which is performed using the projected

and deformed stripe pattern on the object’s surface. We fixed the coins on a rotation / tilt table

in front of the active stereo system and the object was scanned from eight different but known

viewing positions. For aligning the data from different viewpoints, the Iterative Closest Point

(ICP) algorithm, which was presented by Besl & McKay (1992) and Chen & Medioni (1992), is

used. Since the position of the rotation/tilt table is known, a preliminary alignment process

can be performed first. All eight scans are finally aligned and merged into a polygon mesh.

3.4 Extraction of coin shape features

As the appearance of an ancient coin is often unique, e.g. due to variations in the hammering
process, die, mint signs, shape, scratches, wearing, etc. its image contains important

information for identification. The uniqueness in the appearance of coins results from

variations in the coin blank material and application of the tools in minting, as well as from

wear of the coin. Therefore, for numismatists the shape of the coin edge is regarded to be an

important feature to characterize a coin.

Our approach of shape comparison is based on a description of the difference between the

shape of a coin and the shape of a circle. Therefore, the suggested approach is called deviation

from circular shape matching (DCSM). In order to represent the coin shape, a border tracing on

the binary image resulting from segmentation is performed. A list of border pixels is obtained

and resampled to l samples using equidistantly spaced intervals with respect to the arc length.

Figures 6 (a)-(d) show this operation.

A one-dimensional descriptor, i.e. a curve describing the border, is obtained from fitting the

coin edge to a circle and unrolling the polar distances between sample points and fitted circle

into a vector. The center sc = (xc, yc) of the fitted circle is derived from the center of gravity

and the radius r is the mean distance between the center and all sample points si = (xi, yi)
using

xc =
1

l ∑
i=1,...,l

xi, yc =
1

l ∑
i=1,...,l

yi, r =
1

l ∑
i=1,...,l

‖si − sc‖ (3)
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(a) Coin image (b) Coin edge (c) Fitted circle (d) Sampling along arc

(e) normalized 1D description of coin shape

Fig. 6. Processing of coin contour.

where (xi , yi) are the coordinates of sample point si and ‖ · ‖ denotes the L2-norm. The 1D

representation is given by D = (d1, . . . , dl), where

di = (‖si − sc‖ − r)/r, i = 1, . . . , l (4)

The division by r makes the representation invariant with respect to scale. Figure 6 (e) shows

the obtained 1D representation.

4. Matching for classification and identification

Matching for classification or identification is based on edge based features extracted as

described in the previous section. In this section, we will discuss direct matching of edge

features, Eigenspace matching and shape matching.

4.1 Direct matching of edges

In the direct matching approach for edge points we start with a binary edge image E derived

from a coin image. Let Ec = {(x − xm, y − ym)|E(x, y) = 1} be the list of cartesian edge point

coordinates with the center of gravity (xm , ym) as origin. The polar coordinate representation

of Ec is given by

Ep = {(θ, ρ)|(x, y) ∈ Ec} (5)

θ = arctan y/x, ρ =
√

x2 + y2, x = ρ cos θ, y = ρ sin θ
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Assume Em is a reference image, or so called master edge image, and Ea is an edge image to

be matched. Then in general there is an unknown rotation φ around the center of gravity that

aligns both edge images. In polar coordinates this rotation transforms into a cyclic translation

in the angular direction. To determine φ we may deploy a fast correlation method based
on the edge images, see Subsec 3.2 Although correlation methods based on the fast Fourier

transformation perform efficiently, there are some drawbacks using the edge images directly.

First, to preserve the visual information the resolution of the edge image cannot be too small.

Depending on the diameter of the coin we typically get coin image resolutions from 100 × 100

to 300 × 300 pixels and the correlation would add significantly to the overall computational

costs. Secondly, the outer border, which in most cases contains a substantial part of the edge

points, usually does not help to find φ as it comprises too many symmetries. To avoid both

we suggest to calculate the correlation on a two dimensional edge density function restricted

to the inner part of the coin. This is given by

Hd
i,j = |{(θ, ρ) ∈ Ep|θi−1 ≤ θ < θi, ρj−1 < ρ < ρj}| (6)

Ed
i,j = Hd

i,j/N, i = 1, . . . , n; j = 1, . . . , l, N =
n,l

∑
i,j

Hd
i,j

The sets {θ0, . . . , θn} and {ρ0, . . . , ρl} are the discrete resolutions in angular and distance

directions, respectively. Now, we may estimate φ by correlating Ed
m and Ed

a . By choosing a

high resolution in the angular direction (i.e. n ≥ 512) and a coarse resolution (i.e. l ≤ 16)

in the distance direction, omitting to include the coin borders, we found that φ usually may

be determined up to ±0.5◦. Once φ is known, we may align the actual coin image to the
master. This is done efficiently by only calculating the rotated coordinates for the edge points

in Ec
a resulting in the rotated actual coin edge image Eaφ. From here we compute two distance

measures

eabrasion =
1

|Ec
m|

∑
(x,y)∈Ec

m

(1 − Ēd
aφ(x, y)) (7)

edirt =
1

|Ec
aφ|

∑
(x,y)∈Ec

aφ

(1 − Ēd
m(x, y)) (8)

where Ēd is the result of applying a morphological dilation operation to the binary edge image

E in order to counteract the remaining uncertainty of the angular position. eabrasion tells us

how many expected (master) edge points are missing, whereas edirt sums the additional edge

points in the actual edge image. If these errors are higher than given thresholds we have to

dismiss the match. In general we cannot know which master coin corresponds to the actual

coin image. Therefore, we have to calculate eqns. 7 and 8 for all master coin candidates.

4.2 Eigenimage representation and matching

The Eigenspace decomposition for image analysis was introduced by Sirovich & Kirby (1987)

and found numerous applications over the last decades, most prominently in the field of

face recognition (Turk & Pentland, 1991). We start with the description of the mathematical
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procedure of eigenspace construction employing principal components analysis (PCA).

Subsequently, we discuss multiple Eigenspaces in the context of coin recognition.

In the Eigenspace approach, we consider a set of M images B1 to BM. Each image Bi is of

size N × N pixels. The images are reformed into vectors Γ1 to ΓM, e.g. by scanning the image

line by line. If all pixels of an image are used to produce a vector, each vector Γ1 has length

L = N2. An average vector Ψ and difference vectors ψi are calculated by

Ψ =
1

M

M

∑
i=1

Γi, where ψi = Γi − Ψ, i = 1, . . . , M (9)

Principal axes are obtained by the Eigendecomposition of the covariance matrix C defined by

C =
1

M

M

∑
i=1

ψiψ
T
i = AAT, where A = (ψ1, ψ2, . . . , ψM) (10)

The Eigenvectors are sorted in non-increasing order depending on the corresponding
Eigenvalue. A small number M′ of significant Eigenvectors is retained from the

ranked Eigenvalues, a common practice which leads to the most expressive features

(Turk & Pentland, 1991). A weighting factor ωk corresponding to the k-th Eigenimage for a

new reformed image is obtained by projection onto the k-th Eigenspace component uk using

ωi = uk(Γ − Ψ), K = 1, . . . , M′ (11)

The weights ωk are arranged in an vector Ω = (ω1, . . . , ω′
M)T. For the coin recognition task,

not the full images are reformed into a vector, only the interior pixels of the coin are rearranged

into the vector Γ, see Fig. 7.

Fig. 7. Arrangement of inner coin pixels into a vector.

To overcome limitations regarding illumination variation in the Eigenspace approach a

number of solutions were proposed, e.g. Murase & Nayar (1994) investigate the determination

of the illumination which gives best discrimination. The PCA of edge images and smoothed

edge images is suggested as an illumination invariant way of Eigenspace construction

by Yilmaz & Gökmen (2000), gradient images are used as input to PCA by Venkatesh et al.

(2002) and Bischof et al. (2001) use a set of gradient based filter banks applied to the

Eigenimage representation.

Figure 8(a) shows the first 32 Eigenimages constructed from graylevel images, the top left

image is the Eigenimage corresponding to the largest Eigenvalue. Histogram equalization is

sometimes suggested as a way to achieve illumination invariance. Figure 8(b) shows the most

expressive Eigenimages constructed from histogram equalized images. Figure 8(c) shows the
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most expressive Eigenimages constructed from edge images. Eigenhills have been suggested

by Yilmaz & Gökmen (2000). There Eigenhills are derived from application of the PCA to edge

images which are covered by a "membrane". We used a 2D Gaussian filter kernel with a s of

1.5 to smooth the edge images which are of size 128x128 pixels. Figure 8(d) shows the most
expressive Eigenimages, i.e. Eigenhills, constructed from smoothed edge images.

(a) Intensity Eigenspace (b) Equalized intensity Eigenspace

(c) Edge Eigenspace (d) Eigenhills

Fig. 8. First 32 Eigenimages ranked by corresponding Eigenvalues for different variants of
Eigenspace representation.

Figure 9 gives the normalized cumulative sum of the sorted Eigenvalues for all the considered

variants of Eigenspace representation. For intensity Eigenspace i.e. the first 32 Eigenimages

retain approximately 78% of the variance present in the original set of intensity images.

Approximately 60% of the variance present in the original set of histogram equalized intensity

images is contained in the first 32 sorted Eigenimages. For edge Eigenspace, only about 42%

of the variance present in the original set of edge images is contained in the first 32 sorted

Eigenimages. Approximately 76% of the variance present in the original set of smoothed

edge images is contained in the first 32 sorted Eigenhills. Therefore, the Eigenhills approach

achieves a compact representation comparable to intensity Eigenspace, while also being

illumination invariant.

4.3 Shape matching

The shape descriptions of two coins are compared by a linear combination of global and

local shape matching. The local matching is derived from the difference of Fourier shape

descriptors, whereas the correlation coefficient between the curves serves as global measure

of shape similarity.

139Automatic Coin Classification and Identification

www.intechopen.com



14 Will-be-set-by-IN-TECH

(a) Intensity Eigenspace (b) Equalized intensity Eigenspace

(c) Edge Eigenspace (d) Eigenhills

Fig. 9. Cumulative sum of Eigenvalues depending on the number of Eigenvectors for
different variants of Eigenspace representation.

The mean absolute or squared distance between the magnitude values of the Fourier

coefficients is used as local measure of dissimilarity, i.e.

DL = ∑
i=v,...,l−u

‖sdA(i)− sdB(i)‖p

l − u − v + 1
(12)

where ‖ · ‖p, p ∈ {1, 2} is the Lp norm. The lower v ≥ 1 and upper offsets u ≥ 0 for the Fourier

descriptors are small constants and used to limit errors stemming from imprecise circle fitting

and quantization noise.

The global shape matching is obtained from a measure of dissimilarity or similarity, e.g. from
the mean squared error (MSE) or the normalized cross correlation (NCC) coefficient ncc(u) for

a shift of u samples

ncc(u) =
∑i=1,...,l dA(i) · dB(i + u)

√

∑i=1,...,l dA(i)2 · ∑i=1,...,l dB(i)2
(13)
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where i + u might exceed l and modulo addition is applied. The maximum DG = (1 −
maxi=1...,l ncc(i))/2 is used as a measure of global shape match. Similarly, the MSE is given

by

mse(u) =
1

l ∑
i=1,...,l

(

dA(i)− dB(i + u)
)2

(14)

In the case of MSE, the maximum DG = maxi=1...,l mse(i) is used as a measure of global
dissimilarity. The position of the minimum of DG is related to the rotation angle between the

compared coins. While the MSE requires l shifts of the signal and l evaluations of eqn. 14, the

NCC is efficiently computed in a more efficient way (Lewis, 1995).

The overall measure of shape dissimilarity becomes

DAB = αDL + (1 − α)DG (15)

where the weighting factor α ∈ [0, 1] controls the influence of local and global dissimilarity

terms.

In order to be invariant with respect to mirroring, the DG is replaced by the minimum of global

dissimilarity obtained from matching the signal and the reversed signal. Mirror invariance

enables the matching of coins irrespective of which side is shown on the image.

5. Classification and information fusion

A framework for classification and identification based on preselection, classification

and Bayesian fusion is presented. For modern coins preselection based on correlation,

classification based on Eigenspace representation and prior information, and fusion of obverse

and reverse class probabilites is discussed. For identification of ancient coins preselection

on shape features and classification based on fusion of shape and a local features based

representations is demonstrated.

5.1 Classification and information fusion of modern coins

In the Eigenspace approach, we consider a collection of reference coefficient vectors Ωr =
(ωr1, . . . , ωrD)

T, r = 1, . . . , R and an observed coefficient vector Ωs = (ωs
1, . . . , ωs

D)
T ,

corresponding to the coin side to be classified. Classification starts from two observation

vectors together with a set of hypotheses, ranked by their corresponding correlation measure.

We introduce the following notation with typical values of parameters given in brackets:

R number of reference coefficient vectors (typically R = K · 20) ,

S number of coin sides (usually S = 2),

K number of classes (typically K = 2 . . . 113),

H number of hypotheses (usually H = 5),

D dimension of coefficient vector (typically D = 32),

Gs
h hypothesis number h on side S,

ds
r distance to r-th coefficient vector on side S,

ls
r label of r-th coefficient vector on side S.
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The selection of the parameter R is motivated by the balance between representing occurring

variation within a coin and efficient construction of the Eigenspace. The Eigenproblem for

general R × R matrices require on the order of R3 arithmetic operations (Pan & Chen, 1999),

accordingly a small R is preferred. The number of coin sides S is obviously equal to 2.
The maximum number of classes per Eigenspace is determined by preselection of classes,

usually based on measurements of diameter and thickness, if available. This means multiple

Eigenspaces, each of which holding a limited number of classes to discriminate, are build

and selected from geometric measurements (Huber et al., 2005). The number of hypotheses H

generated from ranking of correlation values was limited to 5. This decision is motivated by

observing the necessary number of hypotheses to ensure that the valid decision is included

in the considered set of hypotheses. From a validated set of coins, it was observed, that

the correct coin class is contained in 92.62, 95.15, 96.91, 98.04 or 98.88% of all cases when

retaining the first 1,2,3,4 or 5 hypotheses, respectively. This means, a classification scheme

considering the highest ranking result only would not do better than 92.62%. On the other

hand, considering 5 hypotheses limits a classification and fusion system to 98.88%, which is a

reasonable limit for practical application.

5.1.1 Classification of modern coins

The distance to the r-th coefficient vector on side s is calculated by the Euclidean distance

ds
r =

D

∑
i=1

(ωs
i − ωri)

2 (16)

The class labels ls
r ∈ {1, . . . , K} correspond to the distances ds

r. The distance for hypothesis h on

side s is derived as the average distance to coefficient vectors with class label Gs
h ∈ {1, . . . , K}

Ds
h =

1

Nh

R

∑
r=1

ds
rδs

rh, δs
rh =

{

1 if ls
r = Gs

h
0 else

(17)

where Nh is the number of training samples for class Gs
h. The conditional probability for

observation Ωs depending on hypothesis Gs
h on side s is estimated to be inversely proportional

to the distance Ds
h

Ps(Ωs|Gs
h) = 1/(Ds

h

H

∑
i=1

1/Ds
i ) (18)

where the summation term in the denominator accounts for normalization.

5.1.2 Information fusion of modern coins

A-priori probabilities Ps(Gs
h) are either set to equal probability, e.g. P1(G1

h) = 1/H for side

1 and P1(G1
h) = 1/H for side 2, respectively. If the coins are imaged in way that there is no

rotation between obverse and reverse images, one can make use of this knowledge as modern

coins are characterized by either 0 or 180 degrees of rotation between sides. In this case, the

Ps(Gs
h) are derived from the difference in rotation angle αh for side 1 (e.g. obverse) and angle
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αj for side 2 (e.g. reverse) using

P2(G2
j ) = P2(G1

h , G2
j ) = a + bP(α1

h, α2
j ), a + b = 1 (19)

The weights a and b account for the fact that a number of coins exist which appear similar

under rotation. The constant term is chosen relatively small, in our study a = 0.08 turned out

to be a good choice.

The prior probability P2(G1
h , G2

j ) is assumed normally distributed around zero angle

difference for coins with same orientation on front and back side and around 180 degree angle

difference for coins turned upside down between sides.

The fusion of probabilities estimated of both coin sides and prior information uses the Bayes

formula

Ps(Gs
h|Ω

s) =
Ps(Ωs|Gs

h)P
s(Gs

h)

∑
H
i=1 PS(Ωs|Gs

i )P
s(Gs

i )
(20)

We concentrate on the nominator since the denominator is a constant term. Combination of

both sides is done by the product rule (Kittler et al., 1998)

P(Gk|Ω) = P(G1
h = G2

j |Ω
1, Ω2) = P1(G1

h |Ω
1) · P2(G2

h |Ω
2) (21)

where probabilities are only derived for hypotheses present for both sides. The product rule of

combination is equivalent to naive Bayes fusion of classifiers. Naive Bayes fusion of classifiers
in turn coincides with Bayes classification over composite descriptors if the individual features

are conditionally independent (Shi & Manduchi, 2003).

5.2 Classification and information fusion of ancient coins

Apart from shape features, descriptors based on local features were used for classification and

identification of ancient coins in related papers (Huber-Mörk et al., 2008; Kampel et al., 2009;

Zaharieva et al., 2007). Local features based on SIFT (Lowe, 2004) were used in preselection for

shape feature matching. Probabilities are derived from ranked results from shape matching

and fused with results from local features based matching. Fusion of ancient coins is

performed similar to modern coins. In cases were images of both coin sides are available,

fusion of coin side results is also possible.

5.2.1 Classification of ancient coins

Local features based approaches and shape descriptors deliver distance measures between

the coin in question and all other images in the database. In this case, a two-stage rank

based strategy is possible, i.e. a small subset is preselected based on shape comparison and

further processed using local features based matching (Huber-Mörk et al., 2008). Here, we

follow a strategy combining probabilities which are derived from distance measures through

a rule of combination (Huber-Mörk et al., 2010), e.g. the product rule Kittler et al. (1998).

Conditional independence between shape and local features, as well as between coin sides,

can be assumed.
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From ranking the shape dissimilarity DAB for shapes given in eqn. 15 for shape B matched to

shape A results in a preselection set P . From an observed shape description A we derive a

conditional probability for a coin side label L assigned to B. The conditional probability for

a Pshape(L|A) is estimated to be inversely proportional to the dissimilarity given in eqn. 15
between coin A and coin B labelled L:

Pshape(L|A) =
1

DAB ∑C∈P 1/DAC
(22)

where the summation term in the denominator accounts for normalization.

A similar argument is applied to derive a conditional probability for observed local

descriptors X matched to local descriptors Y labeled L and corresponding to an image

contained in the preselection set P :

Plocal(L|X) =
MXY

∑Z∈P MXZ
(23)

where MXY denotes the number of matches between the query image with local descriptors

X and the coin side image with local descriptors Y and the denominator accounts for

normalization.

5.2.2 Information fusion of ancient coins

As local and shape features describe different properties of a coin, it is reasonable to

assume statistical independence between shape and local feature measurements. Thus, the

combination is performed by the product rule Kittler et al. (1998):

P(L|A, X) = P(Lshape = Llocal|A, X) (24)

= Pshape(L|A) · Plocal(L|X)

where Lshape and Llocal are labels derived from shape and local descriptions.

The idea of fusion of different descriptor outputs is extended to a fusion of more than one

image of a coin. Typically, a coin is presented by images of the obverse and reverse side.

Fusion of coin sides is obtained in a straightforward fashion. Eqn. 24 is extended to the

following four terms

P(L|Ai, Xi) = Pshape(L|A1) · Plocal(L|X1) · Pshape(L|A2) · Plocal(L|X2) (25)

where Ai and Xi corresponds to shape and local feature descriptions of the i−th coin side.

6. Results

In this section we summarize results for classification of modern coins and identification of

ancient coins.
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6.1 Results for modern coins

Image data of modern coins was acquired trough a coin collection which took place in the

course of the implementation of the Euro currency in twelve European countries at the turn
of the year 2001 to 2002. During this campaign 300 tons of coins coming from virtually all

countries of the world but predominately from the twelve Euro member states have been

collected by the Dagobert coin sorting system. Results are presented for two samples of

11 949 coins and 12 949 coins, respectively, taken randomly from the collected money. Those

coins have been manually labeled into valid and invalid coins. Valid coins are coins from

30 countries including most European countries, the USA, Canada and Japan. The portion

of valid coins in the sample was 91.6% or 94.15%, depending on the considered set. The

remaining 8.4% or 5.85%, respectively, are dominated by coins from Asia, South-America,

Africa and former socialist countries. Figure 1 (b) shows examples for these coin images.

6.1.1 Direct edge matching based approach

Apart from image sensors for obverse and reverse coin sides sensors for thickness and area

measurements are present in the Dagobert system. Based on their measurements a first

rough pre-selection of potential master coins is determined, in our case a set of 6 coins are

preselected. This provides us with a set of master coins that have almost the same diameter

and that have to be distinguished. A total number of 12949 coin images were validated

manually as well as tested against 913 master coin patterns of all diameters in the recognition

pattern set. Table1 shows the results. The set of incorrectly sorted coins is quite small.

Acceptance Rejection

Valid coins Correct classification False classification False Rejection
94.15% 79.83% 0.10% 14.22%

Invalid coins False acceptance Correct rejection
5.85% 0.10% 5.75%

All coins Correct descisions
100% 85.58%

Table 1. Classification results for modern coins using edge based matching

The Dagobert system was used to sort several tons of coins and is able to meet the real-time

conditions, i.e. to process 5 to 6 coins per second. Using the obverse and reverse face for the

recognition task, approximately 85% of the material is either sorted into classes defined in the

recognition pattern set, i.e. the set of valid coins, which contained around 1500 patterns of

coin faces, or is correctly rejected. Random tests performed on classified sets of coins indicate

that we seem to meet the goal of having less than 0.1% false classifications.

6.1.2 Edge Eigenspace based matching

We discuss results including rejection based on the a-posteriori probability P(Gk|Ω). A coin

pattern Ω is accepted to be of class Gk if P(Gk|Ω) ≥ t, and rejected if P(Gk|Ω) < t , where

t ∈ [0, 1] is the rejection threshold. The parameter t is used to tune the system towards the

desired trade-off between false rejection and false acceptance. The trade-off between false

acceptance rate (FAR) and false rejection rate (FRR) is an important performance measure in

verification and recognition systems. False acceptance of invalid coins is measured by the
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FAR, and false rejection for valid coins is measured by FRR. A classification method should

maximize correct classification for valid coins and correct rejection for invalid coins. Apart

from FAR and FRR the case of wrong classification of a valid coin is also an undesired event

termed false classification rate (FCR).
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Fig. 10. Results for modern coin classification.

Figure 10 (a) shows the distribution of fused probabilities for correctly classified valid coins

as the solid line. Incorrectly classified valid coins are shown by the dashed line. The

fused probability distribution for invalid coins is represented by the dotted line. Selection

of threshold t on governs FAR, FCR and FRR, e.g. increasing t reduces FAR and FCR

and increases FRR. From a receiver operator characteristics (ROC) curve, as shown in

Fig. 10 (b), the tradeoff between FCR plus FAR and FRR can be identified. An operating

point, corresponding to a specific t, is found on the ROC curve, e.g. for perfect classification

with FAR + FCR ≈ 0, a very high FRR has to be taken into account (i.e. FRR > 0.5). If the
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incorrect decisions FCR, FRR and FAR are equally weighted and we aim at minimization of

the sum of false decisions FD=FCR+FAR+FAR. We find the optimum value for the rejection

threshold t as the minimum of FD. This can be seen from Fig. 10 (c), in which the minimum

of FD is found for t = 0.006. At the same time correct decisions, i.e. correct classification and
correct rejection rates, are maximized.

Considering only valid coins, i.e. the 91.6% coins included in the 30 countries mentioned

above, and using no rejection mechanism, correct classification was made for 98.27% of

valid coins, which is close to the practical optimum of 98.88% mentioned in Section 5.1 With

rejection at the chosen level of t=0.006, a percentage of correct classification of 94.54%, 0.53%

false classification and 4.93% false rejection is achieved for valid coins. Considering only

invalid coins, i.e. the 8.4% coins not included in the 30 countries mentioned above, and

rejection at the chosen level of t=0.006 classification into any of the known coin classes happens

for 20.47% of the unknown coins. Correct rejection of unknown coins is performed for 79.53%

of invalid coins. Examining at the mixed sample, a correct decision, i.e. correct classification

or rejection, was made for 93.23% of all coins. False decisions, i.e. either false classification,

false rejection or false acceptance, took place for 6.77% of all coins. Table 2 summarizes the

final results.

Acceptance Rejection
Valid coins Correct classification False classification False Rejection

91.6% 86.64% 0.49% 4.52%
Invalid coins False acceptance Correct rejection

8.4% 1.76% 6.59%
All coins Correct descisions

100% 92.23%

Table 2. Classification results for modern coins using edge Eigenspace based matching.

6.2 Results for ancient coins

To evaluate our approach on coin data, we use an image database provided by the Fitzwilliam

Museum, Cambridge, UK, which consists of 2400 images of 240 different ancient coins of the

same class. Figure 1 (b) shows four of the coins contained in the data set. Each row shows

the same coin acquired by different devices at varying conditions and different orientations.

In particular, each coin side was acquired at three different angles of rotation using a scanner

device and two acquisitions were made using a digital camera and varying illumination. At

first sight, all coins bear the same characteristics. However, the coins shown in the different

rows are produced by different dies. What makes this data set special and ideal to thoroughly

test identification methods, is that all the coins are very similar. All the images are issued in

the time of, or at least in the name of, Alexander the Great who came to power in Macedonia

in 336 BCE and died as emperor in 323 BCE. Some of the coins are from much later and were

minted in places around the Black Sea, in Egypt, in modern-day Turkey, Iran, etc. All coins

follow the same basic standard: on the obverse side there is the head of Heracles in a lion-skin.

The reverse side shows the god Zeus, seated left on a throne. Nevertheless, there is a huge

range of detail in the minor variations that experts use to deduce the mint and date of the coin.
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6.2.1 2D matching

It takes 0.006 seconds to compare two coins based on their shape description on a Intel Core

2 CPU with 2.5 GHz. Therefore, shape matching is suited as a preselection step to the less

efficient matching based on local features which typically takes two orders of magnitude

longer (Bay et al., 2006). The size of the preselection set is determined experimentally from

Precision-Recall curves. Recall measures the ratio given by true positives divided by the sum

of true positives and false negatives, i.e. rec = TP/(TP + FN) and precision is given by

prec = TP/(TP + FP), where FP is the number of false positives. Figure 11 (a) shows plots

of precision versus recall for the test set of 240 different images containing 10 images of each

coin. Different settings of the shape matching weight parameter α show that a relatively large

value of α, which directs the matching dissimilarity towards more local influence, performs

best. In order to obtain a preselection set of moderate size and high quality, i.e. the coin in

question should likely be contained, a high recall is aspired. This is obtained by selecting the

set size corresponding to the sudden decrease in Fig. 11 (a). Figure 11 (b) shows that this

sudden decrease in precision versus recall corresponds to a preselection set size of 9 to 10

images.
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Fig. 11. Results for ancient coin classification based on shape.

We combine shape and local descriptors to increase the identification rate. Preselection

based on shape matching allows for the restriction of required comparisons for local features

matching. As a result we achieve speed up of the identification process and higher accuracy

rate. Since our shape descriptor is mirroring invariant, preselection can be performed either

on the whole available coin data, i.e. the preselected set can contain images of the second coin

side, or preselection can be performed on the relevant coin side directly.

As a conclusion the preselection size was set to 10. Therefore, for the experiments presented

here, Pshape(L|A) is computed for the 10 images with lowest dissimilarity and Plocal(L|X) for

the same 10 images. The final decision is made according to the product rule given in Equ 24.
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Table 3 shows the identification rates for the single descriptors and their combination with

a leave-one-out evaluation scheme. The shape-based preselection of size 10 was performed

accordingly to the given side of the test coin image. The DCSM alone gives an identification

rate of 97.04% on the whole data set of 2400 images. For a preselection size of 10, there are only
13 cases (0.54%) where the correct coin is not contained in the preselected set. Consequently,

local feature matching on the preselected set and fusion with the label probabilities from

DCSM lead to an identification rate of 98.54%.

Descriptor DCSM SIFT DCSM + SIFT

Accuracy 97.04% 71.77% 98.54%

Table 3. Identification rates derived from leave-one-out accuracy estimation.

6.2.2 3D extensions

Usually, a reference object, e.g. a cone, a square prism or a cylinder, is scanned and measured

manually when the accuracy of the scanner needs to be calculated. After gathering all the

dimensions, the values can be compared to the values determined from the 3D reconstruction.

Additionally, scanner resolution evaluations can be made. Due to the fact that in our case the

scanned object is small and both the surface and the shape of historical coins are not regular

or flat, many dimensions cannot be measured precisely (e.g. coin profile details). Since we

cannot provide the same accurate values for coins as we can provide for known objects, like

cones or cylinders, our results will be based on a comparison between manually measured

values from ancient coins and the values determined from the 3D model counterparts. As

evaluation parameters, the maximal diameter and the volume of each coin are used.

The models are analyzed using Geomagic Studio, a commercial software for 3D data

processing. The volumes of the original coins are calculated manually after computing the

density by using the uplift of the coin in water and by measuring the weight of the coin. The

compared diameter value represents the maximal existing value on the coin’s surface. The

maximal diameter from a real world coin is also determined manually. From a 3D model, the

volume can be calculated using Geomagic Studio. The maximum diameter can be computed

by segmenting one side of the coin and taking the largest distance between two border points.

Because of the irregular shape of some coins, both the obverse and the reverse side of a coin

must be taken into account.

In total, we scanned 22 coins: 14 ancient coins from the Roman era and 8 tornese silver

coins from medieval age. Figure 12 (a) shows the volume of both the original ancient coins

using the water volume calculation and their 3D model counterparts using Geomagic Studio.

The maximum difference between manual and automatic measurements is 36.24 mm3. The

smallest difference between real-world data and the data gathered from 3D models is 0.57

mm3. Figure 12 (b) shows the maximum diameter of both the real world manually measured

one and the value calculated by using 3D models in Geomagic Studio. A maximum difference

of 1.12 mm is measured, two coins have exactly the same diameter measured from 3D models

and from real-world data. Table 4 shows maximum difference, minimum difference, and the

mean variation coefficient of all volume and diameter measurements.
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(a) Coin volume

(b) Coin diameter

Fig. 12. Results for automatic 3D measurements and manual 2D measurements of ancient
coin properties.

Maximum difference Minimum difference Coefficient of variation

Volume 36.24 mm3 0.57 mm3 1.23%
Diameter 1.12 mm 0.00 mm 0.26%

Table 4. Maximum difference, minimum difference and coefficient of variation between
automatic 3D measurements and manual 2D measurements of ancient coin properties.

7. Conclusion

We have presented methods for coin classification and identification applicable to coin

collections comprising either a large number of coin classes, e.g. modern coins, or high

intra-class variation, e.g. ancient coins.

Modern coins represent financial value only if the coins are sorted and returned to the

respective national banks. A tunable system is required as national banks accept coins

only if they are delivered with a high degree of purity. The rejection mechanism based

on the probabilistic fusion result allows to adjust a tradeoff between rigorous classification

(yielding high reliability against false acceptance but a higher rate of false rejections) versus

tolerant classification (yielding more false acceptances but fewer false rejections). Coin class

probabilities for both coin sides are combined through Bayesian fusion including a rejection

mechanism. Correct decision into one of the 932 different coin classes and the rejection

class, i.e. correct classification or rejection, was achieved for 93.23% of coins in a test sample
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containing 11 949 coins. False decisions, i.e. either false classification, false rejection or false

acceptance, were obtained for 6.77% of the test coins.

In order to facilitate prevention and repression of illicit trade of stolen ancient coins

technologies aimed at allowing permanent identification and traceability of coins become of

interest. Since every individual coin has signs, caused by minting techniques for pre-industrial

ones or by use-wear for more recent ones, that make it unique and recognizable to an expert’s

eye, traceability of pre-industrial coins can make use of visual inspection. We presented an

approach for object identification based on the combination of shape and local descriptors and

applied it to the task of ancient coins identification. Shape matching was used to match coin

edges whereas the die of the coin was matched by means of local features. From the output of

each of these two methods individual coin label probabilities were estimated and finally fused.

On a data set of 2400 coin images the combination of shape and local features outperform the

accuracy rate of the single features and achieved an identification rate of 98.83%.

The results for classification of modern coins and identification of ancient coins are regarded

to be almost perfect. Due to large intra-class variance, the classification of ancient coins is still

a challenging task, especially if attempted from single 2D images. Additional information, e.g.

from 3D measurements, or complementary information, e.g. textual descriptions, is supposed

to improve the classification task for ancient coins significantly.
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Arandjelović, O. (2010). Automatic attribution of ancient roman imperial coins, Proc. of

Conference on Computer Vision Pattern Recognition, pp. 1728–1734.

Bay, H., Tuytelaars, T. & Gool, L. V. (2006). SURF: Speeded up robust features, Proc. of Europ.

Conf. on Comput. Vision, Vol. 3951/2006 of LNCS, Springer, pp. 404–417.

Besl, P. & McKay, N. (1992). A method for registration of 3D shapes, IEEE Trans. Patt. Anal.

Mach. Intell. 14(2): 239–256.

Bischof, H., Wildenauer, H. & Leonardis, A. (2001). Illumination insensitive eigenspaces, Proc.

of International Conference on Computer Vision, pp. 233–238.

Canny, J. (1986). A computational approach to edge detection, IEEE Trans. Patt. Anal. Mach.

Intell. 8(6): 679–698.

Chen, Y. & Medioni, G. (1992). Object modeling by registration of multiple range images,

Image and Vision Computing 10(3): 145–155.

Cooley, J. W. & Tukey, J. W. (1965). An algorithm for the machine calculation of complex

fourier series, Math. Comput. 19: 297–301.

151Automatic Coin Classification and Identification

www.intechopen.com



26 Will-be-set-by-IN-TECH

Davidsson, P. (1996). Coin classification using a novel technique for learning characteristic

decision trees by controlling the degree of generalization, Proc. Conf. Industrial &

Engineering Appl. of Artif. Intell. & Expert Syst., pp. 403–412.

Duda, R. & Hart, P. E. (1972). Use of the hough transformation to detect lines and curves in
pictures, Comm. ACM 15: 11–15.

Fisher, N. (1995). Statistical analysis of circular data, Cambridge University Press, chapter 2:

Descriptive methods, pp. 15–37.

Fukumi, M., Omatu, S., Takeda, F. & Kosaka, T. (1992). Rotation-invariant neural pattern

recognition system with application to coin recognition, IEEE Trans. Neural Netw.

3: 272–279.

Fürst, M., Kronreif, G., Wögerer, C., Rubik, M., Holländer, I. & Penz, H. (2003). Development

of a mechatronic device for high speed coin sorting, Proc. Conf. Industrial Technology,

Vol. 1, pp. 185–189.

Hartley, R. & Zisserman, A. (2003). Multiple View Geometry in Computer Vision, Cambridge

University Press.

Hibari, E. & Arikawa, J. (2001). Coin discriminating apparatus. European Patent EP1077434.

Hödlmoser, M., Zambanini, S., Kampel, M. & Schlapke, M. (2010). Evaluation of historical 3D

coin models, Proc. Conf. Computer Appl. and Quantitative Methods in Archaeology.

Hoßfeld, M., Chu, W., Adameck, M. & Eich, M. (2006). Fast fast 3D-vision system to classify

metallic coins by their embossed topography, Elec. Let. on Comp. Vis. and Image Anal.

5(4): 47–63.

Hu, M.-K. (1962). Visual pattern recognition by moment invariants, IRE Transactions on

Information Theory 8: 179–187.

Huber-Mörk, R., Zaharieva, M. & Czedik-Eysenberg, H. (2008). Numismatic object

identification using fusion of shape and local descriptors, Proc. Symp. on Visual

Computing, pp. 368–379.

Huber-Mörk, R., Zambanini, S., Zaharieva, M. & Kampel, M. (2010). Identification of ancient

coins based on fusion of shape and local features, Machine Vision and Applications (in

press, published online July 11, 2010).

Huber, R., Ramoser, H., Mayer, K., Penz, H. & Rubik, M. (2005). Classification of coins using

an Eigenspace approach, Pattern Recogn. Lett. 26(1): 61–75.

Kampel, M., Huber-Mörk, R. & Zaharieva, M. (2009). Image-based retrieval and identification

of ancient coins, IEEE Intell. Syst. 24(2): 26–34.

Kampel, M. & Zambanini, S. (2008). Coin data acquisition for image recognition, Proc. Conf.

Computer Applications and Quantitative Methods in Archaeology.

Kittler, J., Hatef, M., Duin, R. & Matas, J. (1998). On combining classifiers, IEEE Trans. Patt.

Anal. Mach. Intell. 20(3): 226–239.

Kurita, T., Hotta, K. & Mishima, T. (1998). Scale and rotation invariant recognition method

using higher-order local autocorrelation features of log-polar images, Proc. Asian

Conf. Comput. Vis., Vol. II, pp. 89–96.

Leonardis, A., Bischof, H. & Maver, J. (2002). Multiple eigenspaces, Pattern Recognition

35(11): 2613Ű2627.
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