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1. Introduction 

The wavelet transform (WT) a powerful tool of signal and image processing that have been 
successfully used in many scientific fields such as signal processing, image compression, 
computer graphics, and pattern recognition (Daubechies 1990; Lewis and Knowles 1992; Do 
and Vetterli 2002; Meyer, Averbuch et al. 2002; Heric and Zazula 2007). On contrary the 
traditional Fourier Transform, the WT is particularly suitable for the applications of non-
stationary signals which may instantaneous vary in time (Daubechies 1990; Mallat and 
Zhang 1993; Akay and Mello 1998). It is crucial to analyze the time-frequency characteristics 
of the signals which classified as non-stationary or transient signals in order to understand 
the exact features of such signals (Rioul and Vetterli 1991; Ergen, Tatar et al. 2010). For this 
reason, firstly, researchers has concentrated on continuous wavelet transform (CWT) that 
gives more reliable and detailed time-scale representation rather than the classical short time 
Fourier transform (STFT) giving a time-frequency representation (Jiang 1998; Qian and Chen 
1999).  

The CWT technique expands the signal onto basis functions created by expanding, 
shrinking and shifting a single prototype function, which named as mother wavelet, 
specially selected for the signal under considerations. This transformation decomposes the 
signal into different scales with different levels of resolution. Since a scale parameter 
shrinking or expanding the mother wavelet in CWT, the result of the transform is time-scale 
representation. The scale parameter is indirectly related to frequency, when considered the 
center frequency of mother wavelet. 

A mother wavelet has satisfy that it has a zero mean value, which require that the 
transformation kernel of the wavelet transform compactly supports localization in time, 
thereby offering the potential to capture the spikes occurring instantly in a short period of 
time (Mallat 1989; Rioul and Vetterli 1991; Akay and Mello 1998).  

A wavelet expansion is representation of a signal in terms of an orthogonal collection of 
real-valued generated by applying suitable transformation to the original selected wavelet. 
The properties and advantages of a family of wavelets depend upon the mother wavelet 
features. The expansion is formed by two dimensional expansion of a signal and thus 
provides a time-frequency localization of the input signal. This implies that most of the 
energy of the signal will be captured a few coefficient. The basis functions in a wavelet 
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transform are produced from the mother wavelet by scaling and translation operations. 
When the scaling is chosen as power of two, this kind of wavelet transform is called dyadic-
orthonormal wavelet transform, which makes a way for discrete wavelet transform (Zou 
and Tewfik 1993; Blu 1998) . If the chosen mother wavelet has orthonormal properties, there 
is no redundancy in the discrete wavelet transforms. In addition, this provides the 
multiresolution algorithm decomposing a signal into scales with different time and 
frequency resolution (Mallat 1989; Daubechies 1990).  

The fundamental concept involved in mutiresolution is to find average features and details 

of the signal via scalar products with scaling signals and wavelets. The spikes in signal are 

typically of high frequency and it is possible discriminate the spikes with other noises 

through the decomposition of multiresolution into different levels. The differences between 

mother wavelet functions (e.g. Haar, Daubechies, Symlets, Coiflets, Biorthogonal and etc.) 

consist in how these scaling signals and the wavelets are defined (Zou and Tewfik 1993; Blu 

1998; Ergen, Tatar et al. 2010).  

The continuous wavelet transform is computed by changing the scale of the mother wavelet, 

shifting the scaled wavelet in time, multiplying by the signal, and integrating over all times. 

When the signal to be analyzed and wavelet function are discredited, the CWT can be 

realized on computer and the computation time can be significantly reduced if the 

redundant samples removed respect to sampling theorem. This is not a true discrete wavelet 

transform. The fundamentals of discrete wavelet transform goes back to sub-band coding 

theorem (Fischer 1992; Vetterli and Kova evi 1995; Vetterli and Kovacevic 1995). The sub-

band coding encodes each part of the signal after separating into different bands of 

frequencies.  Some studies have made use of wavelet transform as a filter bank in order to 

separate the signal.   

After discovering the signal decomposition of a signal into frequency bands using discrete 

wavelet transform, the DWT has found many application area, from signal analysis to signal 

compression (Chang and Kuo 1993; Qu, Adam et al. 2003; He and Scordilis 2008).  

The one of the first application of the DWT is the denoising process, which aims to remove 

the small part of the signal assumed as noise (Lang, Guo et al. 1996; Simoncelli and Adelson 

1996; Jansen 2001). All kind of the signal obtained from the physical environment has 

contains more or less disturbing noise. Therefore, wavelet denoising procedure has applied 

many one or two dimensional signal after particularly soft or hard thresholding methods 

had proposed (Donoho and Johnstone 1994; Donoho 1995). Such signals some time are one-

dimensional simple power or control signals  (Sen, Zhengxiang et al. 2002; Giaouris, Finch et 

al. 2008) as well as more complex medical images (Wink and Roerdink 2004; Pizurica, Wink 

et al. 2006). Especially, wavelet denoising has found an application field about image 

processing recently (Nasri and Nezamabadi-pour 2009; Chen, Bui et al. 2010; Jovanov, Pi 

urica et al. 2010).   

2. Noise consideration 

A signal or an image is unfortunately corrupted by various factors which effects as noise 
during acquisition or transmission. These noisy effects decrease the performance of visual 
and computerized analysis. It is clear that the removing of the noise from the signal facilitate 
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the processing. The denoising process can be described as to remove the noise while 
retaining and not distorting the quality of processed signal or image (Chen and Bui 2003; 
Portilla, Strela et al. 2003; Buades, Coll et al. 2006). The traditional way of denoising to 
remove the noise from a signal or an image is to use a low or band pass filter with cut off 
frequencies. However the traditional filtering techniques are able to remove a relevant of the 
noise, they are incapable if the noise in the band of the signal to be analyzed. Therefore, 
many denoising techniques are proposed to overcome this problem.  

The algorithms and processing techniques used for signals can be also used for images 

because an image can be considered as a two dimensional signal. Therefore, the digital 

signal processing techniques for a one dimensional signal can be adapted to process two 

dimensional signals or images.  

Because the origin and nonstationarity of the noise infecting in the signal, it is difficult to 
model it. Nevertheless, if the noise assumed as stationary, an empirically recorded signal 
that is corrupted by additive noise can be represented as; 

 ( ) ( ) ( )y i x i i  , 0,1,..., 1i n   (1) 

Where ( )y i  noisy signal, ( )x i is noise free actual signal and ( )i are independently normal 

random variables and  represents the intensity of the noise in ( )y i . The noise is usually 

modeled as stationary independent zero-mean white Gaussian variables (Moulin and Liu 

1999; Alfaouri and Daqrouq 2008).  

When this model is used, the objective of noise removal is to reconstruct the original 

signal ( )x i  from a finite set of ( )y i  values without assuming a particular structure for the 

signal. The usual approach to noise removal models noise as high frequency signal added to 

an original signal. These high frequencies can be bringing out using traditional Fourier 

transform, ultimately removing them by adequate filtering. This noise removal technique 

conceptually clear and efficient since depends only calculating DFT (Discrete Fourier 

Transform)(Wachowiak, Rash et al. 2000).  

However, there is some issue that must be under consideration. The most prominent having 

same frequency as the noise has important information in the original signal. Filtering out 

these frequency components will cause noticeable loss of information of the desired signal 

when considered the frequency representation of the original signal. It is clear that a method 

is required in order to conserve the prominent part of the signal having relatively high 

frequencies as the noise has. The wavelet based noise removal techniques have provided 

this conservation of the prominent part. 

3. Discrete Wavelet Transform (DWT) and Wavelet Packet Decomposition  

The wavelet transform has become an essential tool for many applications. However, the 
wavelet transform has been presented a method representing a time-frequency method, 
continuous wavelets transform (CWT), and the wavelet transform generally has used for the 
decomposition of the signal into high and low frequency components. The wavelet 
coefficient represents a measure of similarity in the frequency content between a signal and 
a chosen wavelet function. These coefficients are computed as a convolution of the signal 
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and the scaled wavelet function, which can be interpreted as a dilated band-pass filter 
because of its band-pass like spectrum (Valens ; Rioul and Vetterli 1991) .  

In practice, the wavelet transform is implemented with a perfect reconstruction filter bank 

using orthogonal wavelet family. The idea is to decompose the signal into sub-signals 

corresponding to different frequency contents. In the decomposition step, a signal is 

decomposed on to a set of orthonormal wavelet function that constitutes a wavelet basis 

(Misiti, Misiti et al.). The most common wavelets providing the ortogonality properties are 

daubechies, symlets, coiflets and discrete meyer in order to provide reconstruction using the 

fast algorithms (Beylkin, Coifman et al. 1991; Cohen, Daubechies et al. 1993). 

The use of wavelet transform as filter bank called as DWT (Discrete Wavelet Transform). 

The DWT of a signal produces a non-redundant restoration, which provides better spatial 

and spectral localization of signal formation, compared with other multi-scale 

representation such as Gaussian and Laplacian pyramid. The result of the DWT is a 

multilevel decomposition, in which the signal is decomposed in ‘approximation’ and ‘detail’ 

coefficients at each level (Mallat 1989). This is made through a process that is equivalent to 

low-pass and high passes filtering, respectively.  

As stated previous section, the wavelet transform is firstly introduced for the time-

frequency analysis of transient continuous signals, and then extended to the theory of 

multi-resolution wavelet transform using FIR filter approximation. This managed using 

the dyadic form of CWT. In dyadic form, the scaling function is chosen as power of two. 

And then, the discrete wavelets /2
, ( ) 2 (2 )m m

m n t t n     used in multi-resolution 

analysis constituting an orthonormal basis for 2( )L  (Vetterli and Herley 1992; Donoho 

and Johnstone 1994). 

If a signal, ( )x t , decomposed into low and high frequency components, that they are 

respectively named as approximation coefficients and detail coefficients, ( )x t reconstructed as; 

 , ,
1

( ) ( ) ( ) ( ) ( )
L

m m k l l k
m k k

x t D k t A k t  
  
        (2) 

Where , ( )m k t  is discrete analysis wavelet, and , ( )l k t  is discrete scaling, ( )mD k is the 

detailed signal at scale 2m , and ( )lA k  is the approximated signal at scale 2l . ( )mD k  and 

( )lA k is obtained using the scaling and wavelet filters (Mallat 1999).  

 

1/2

1/2
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The wavelet coefficient can be computed by means of a pyramid transfer algorithm. The 

algorithms refer to a FIR filter bank with low-pass filter h, high-pass filter g, and down 

sampling by a factor 2  at each stage of the filter bank. Fig. 1 shows the tree structure of 

DWT decomposition for three levels.  DWT decomposition leads to a tree structure as 

shown in Fig. 1, where approximation and detail coefficients are presented.  
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(a)                 (b) 

Fig. 1. The DWT decomposition and reconstruction steps of a 1D signal for level of 2;  
a. Decomposition, b. Reconstruction  

In this figure, ↓2 and ↑2 refers to down sampling and up sampling, respectively. This 
decomposition sometimes called as sub-band coding. The low pass filter produces the 
approximation of the signal, and the high pass filers represent the details or its high 
frequency components. The decomposition successively can be applied on the low 
frequency components, approximation coefficients, in DWT.   

Whereas the successive decomposition is applied on the approximation coefficients only as 
in the DWT, the decomposition may be applied on both sub part of the signal, 
approximation coefficients and detail coefficients. If the decomposition is applied on the 
both sides, approximation and details, this kind of decomposition called as wavelet packet 
transform or wavelet packet tree decomposition. Fig. 2 represents wavelet packet 
decomposition and reconstruction. 

 

  

(a)     (b) 

Fig. 2. The wavelet packet decomposition and reconstruction steps of a 1D signal for level of 2; 
a. Decomposition, b. Reconstruction  

In 2D case, the image signal is considered as rows and columns as if they are one 
dimentional signals.  In DWT, firstly the each rows of the image is filtered, then the each 
columns are filtered as in 1D case. Figure 3 demonstare the decompositon of an image for 
one level.  As in signal decomposition, after each filtering, the subsampling is realized. The 
result of this process gives four images; approximation, horizantal details, vertical details 
and diagonal details. Because of subsampling after each filtering, the result subimages of the 
original image has the quarter size of the original image.   
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(a)         (b) 

Fig. 3. The DWT decomposition and reconstruction steps of a 2D image signal for level of 2; 
a.Decomposition, b. Reconstruction 

4. Thresholding and threshold estimation techniques 

The simpler way to remove noise or to reconstruct the original signal from a contaminated 
signal, in case of 1D or 2D, using the wavelet coefficients which are the result of 
decomposition in wavelet transform, is to eliminate the small coefficient associated to the 
noise. After updating the coefficients by removing the small coefficients assuming as noise, 
the original signal can be obtained by the reconstruction algorithm using the noise free 
coefficients. Because it is usually considered that the noise has high frequency coefficients, 
the elimination of the small coefficient generally applied on the detail coefficients after the 
decomposition. Indeed, the main idea of the wavelet denoising to obtain the ideal 
components of the signal from the noisy signal requires the estimation of the noise level. The 
estimated noise level is used in order to threshold the small coefficient assumed as noise. 

The procedure of the signal denoising based on DWT is consist of three steps; 
decomposition of the signal, thresholding and reconstruction of the signal. Several methods 
use this idea proposed and implements it in different ways. When attempting to decrease 
the influence of noise wavelets coefficient, it is possible to do this in particular ways, also the 
need of information of the underlying signal leads to different statistical treatments of the 
available information.  

In the linear penalization method every wavelet coefficient is affected by a linear shrinkage 
particular associated to the resolution level of the coefficient. It can be said that linear 
thresholding is appropriate only for homogeny signals with important levels of regularity. 
The wavelet thresholding or shrinkage methods are usually more suitable. Since the work of 
Donoho and Johnstone (Donoho and Johnstone 1994), there has been a lot of research on the 
way of defining the threshold levels and their type. Donoho and Johnstone proposed a 
nonlinear strategy for thresholding. In their approaches, the thresholding can be applied by 
implementing either hard or soft thresholding method, which also called as shrinkage.  

In the hard thresholding, the wavelet coefficient below a give value are stetted to zero, while 
in soft thresholding the wavelet coefficient are reduced be a quantity to the thresh value.  
The threshold value is the estimation of the noise level, which is generally calculated from 
the standard deviation of the detail coefficient (Donoho 1995). Fig. 4 indicates the two types 
of thresholding, which can be expressed analytically as; 
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y x     if   x
Hard threshold :  

y      if   x




      (4) 

   Soft threshold :  y sign x x    (5) 

Where x  is the input signal, y is the signal after threshold and   is the threshold value, 
which is critical as the estimator leading to destruction, reduction, or increase in the value of 
a wavelet coefficient. 
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(a)          (b) 

Fig. 4. Threshold types; a. Hard, b. Soft. 

Hard thresholding method does not affect on the detail coefficients that grater the threshold 
level, whereas the soft thresholding method to these coefficients. There are several 
considerations about the properties and limitation of these two strategies. However the hard 
thresholding may be unstable and sensitive even to small changes in the signal, the soft 
thresholding can create unnecessary bias when the true coefficients are large. Although 
more sophisticated methods has been proposed to overcome the drawbacks of the described 
nonlinear methods, it is still the most efficient and reliable methods are still the hard and 
soft thresholding techniques (Donoho 1995).  

One important point in thresholding methods is to find the appropriate value for the 
threshold. Actually, many approaches have been proposed for calculating the threshold 
value. But, all the approaches require the estimation of noise level. However the standard 
deviation of the data values may be use as an estimator, Donoho proposed a good estimator  for the wavelet denoising given as; 

 1, 1( )
,     0,1,...,2 1

0.6745
L k Lmedian d

k      (6) 

where L denotes the number of decomposition levels. As mentioned above, this median 
selection made on the detail coefficient of the analyzed signal.  
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The most known threshold selection algorithms are minimax, universal and rigorous sure 
threshold estimation techniques (Donoho and Johnstone 1994; Donoho and Johnstone 1998). 

The minimax threshold value M  proposed by Donoho consists an optimal threshold that 

derived from minimizing the constant term in an upper bound of the risk involved in the 
estimation. The proposed threshold depends of the available data and also takes into 
account the noise level contaminating the signal. The optimal threshold is defined as; 

 *
M n   (7) 

where *
n  is defined as the value of   and satisfying as; 

 *
1

( )
inf sup

( )
n d

oracle

R d

n R d
 

        (8)  

where 2( ) ( ( ) )R d E d d    and ( )oracleR d  named as oracle used to account for the risk 

associated to the modification of the value of a given wavelet coefficient. Two oracles are 
considered, the diagonal liner projection (DLP) and the diagonal linear shrinker 
(DLS)(Donoho and Johnstone 1994). The ideal risks for these oracles are given by 

 2( ) min( ,1)DLP
oracleR d d  (9) 

 
2

2
( )

1

DLS
oracle

d
R d

d
   (10) 

The minimax method is used in statistics to design estimator. The minimax estimator is 

realizes the minimum of the maximum mean square error, over a given set of functions. 

Another proposed threshold estimator by Donoho is the universal threshold, or global 

threshold, as an alternative to the minimax threshold, however it uses a fixed threshold 

form given as; 

 2 log( )U n   (11) 

Where n denotes the length of the analyzed signal and  is given by Eq. (6). The advantage 

of this thresholding appears in software implementation due to easy to remember and 

coding. Additionally, this threshold estimator ensures that every sample in the wavelet 

transform in which the underlying function is exactly zero will be estimated as zero.  

Again another common estimator is Rigorous Sure (rigresure) threshold proposed by 

Donoho. This threshold describes a scheme which uses a threshold    at each resolution 

level l of the wavelet coeffient. The Rigorous Sure, also known as SureShrink, uses the Stein’s 

Unbiased Risk Estimate criterion to obtain unbiased estimate. The threshold is given as 

follows; 

 0

( , )
arg min ,

US

S a b
Sure           (12) 
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Where Sure is defined as 

   2
( , ) 2 : min( ,i iSure X n i X X           (13) 

Where the operator ( )  returns the cardinality of the set  : ii X  , it is found that Sure is 

an un biased estimate of the 2l risk . 

5. Denoising application examples 

5.1 Comparison assessments 

The best way to test the effect of noise on a signal is to add a Gaussian white noise, in which 

case its values independently and identically distributed (i.i.d) Gaussian real values. After 

the denoising process, the performance can be measure by comparing the denoised signal 

and the original signal. However, many methods have been proposed to measure the 

performance of denoising algorithms, the signal to noise ratio (SNR) and peak signal to 

noise ratio (PSNR) has generally accepted to measure the quality of signal and images, 

respectively. For one dimensional signal, measuring the performance of the denoising 

method by calculation of the residual SNR given as; 

  1 1 2
2

10
0 0

10log ( ) ( ) ( ])r

N N

n n

SNR x n x n x n
 
 

       (14) 

where ( )x n is the original signal, ( )rx n  is the denoised signal and ( )x n  refers to the mean 

value of ( )x n . 

In order to measure the quality of image, it is generally used PSNR, which given as; 

   1 1 2

10
0 0

10log ( , ) ( , )r
N M

n m

PSNR L x n m x n m
 
 

       (15) 

where L denotes the quantized gray level of the images, ( )x n is original images, ( , )x n m is 

the mean value of ( )x n , and ( , )rx n m  refers to reconstructed image. In order to get visible 

alteration on signal, the power of noise should be chosen adequately. Indeed, SNR is usually 

the most important measure rather than the power of noise, when taking into consideration 

that the power of the signal to denoise can be varied.  When the SNR is chosen above 3dB, it 

is generally enough to get the visible corruption.   

5.2 Phonocardiogram denoising  

The records of the acoustical vibrations produced by heart, acquired through microphones 

from human chest, called phonocardiogram (PCG), consist of the heart sounds and the 

murmurs. This records of acoustic signals are unfortunately disturbed by various factors 

which effecting as noise. These effects decrease the performance of visual and computerized 

analysis (Akay, Semmlow et al. 1990; Ergen, Tatar et al. 2010).  
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The respiration sounds by lung mechanical actions, patient movement, and improper 
contacts of microphone to the skin, and external noises from the environments are added as 
noise signal into PCG records. The traditional method to remove the noise from a PCG 
signal is to use a low or band pass filter with cut off frequencies. However the filtering 
techniques are able to remove a relevant of the noise, they are incapable if the noise in the 
band of the signal to be analyzed. 

The frequency components of a normal PCG signals can be rise up 200Hz, and the energy of 

the most significant components concentrates around the frequency band 100-150Hz (Ergen, 

Tatar et al. 2010). The frequency bands of the signal are very important when we use the 

denoising technique using DWT approaches. Because the DWT approaches decomposes the 

signal into frequency bands to eliminate the small detail components assumed as noise, the 

decomposition level reflects directly on the frequency components that cause the smoothed 

version of the signal. 

As stated previous section, the most reasonable way to determine the effectiveness of 

denoising method is to compare an original signal and the denoised signal obtained from its 

noise added form. Therefore, here, we will use the noise added signal to examine the 

effectiveness of wavelet denoising method through the comparison between the original 

signal and the denoised signal (or reconstructed) signal. Figure 5.a shows a PCG during 

cardiac period and its noise added form. 

 

 

(a)   (b) 

Fig. 5. Wavelet denoising of a PCG signal, a) Original signal, b) Noisy signal 

The result of the DWT is a multilevel decomposition, in which the signal is decomposed in 

‘approximation’ and ‘detail’ coefficients at each level. This is made through a process that is 

equivalent to low-pass and high passes filtering, respectively. DWT decomposition leads to 

a tree structure as shown in Fig. 6, where approximation and detail coefficients are 

presented. 

The approximation coefficients and the detail coefficients of the noisy signal for the 

decomposition level of one and two are given Figure 7. In Fig. 7c and Fig. 7d are the results of 

the decomposition of the approximation coefficient at level one, which represented in Fig. 8a. 
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As an example of denoising process for PCG signal, the denoised signal and the difference 
between the original signal and the denoised signal are given in Fig. 7, respectively. 
‘symlet8’, ‘rigresure’ and ‘soft thresholding’ parameters are used in the denoising process. 
When we compared even the original the original signal and the denoised signal visually, 
the wavelet denoising process has a quite success. 

x

Ax

AAx

AAAx DAAx

DAx

DxL1

L2

L3

N

N/2

N/4

N/8

 

Fig. 6. The approximation and the detailed coefficients in the tree structure of the DWT. 

  
(a)    (b) 

  
(c)    (d) 

Fig. 7. Decomposition of the noisy signal,  
a) Approximation coefficients at level one, b) Detail coefficients at level one, 
c) Approximation coefficients at level two, b) Detail coefficients at level two. 
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(a)    (b) 

Fig. 8. Denoised signal, a) Denoised signal, d) Difference between the original and the 
denoised signal.  

Also, the effected components in DWT decomposition are related to not only decomposition 
level but also sampling frequency. The decomposition level influences the frequency bands 
by dividing the sampling frequency respect the power of two.  When we choose the 
decomposition level is as five, the interested frequencies are about 300Hz while the 
sampling frequency is 11.5KHz.  

Therefore, the most important factor determining the SNR level is the level of the 
decomposition. Table 1 presents the SNR results respect to the decomposition level by using 
symlet8 and rigresure estimation for hard and soft thresholding as denoising parameter. For 
the both tresholding techniques, it is seen that the highest SNR value obtained when the 
decomposition level is five. If the decomposition level is chosen too high, the thresholding 
will effect on the main frequencies of the original signal. Thus, the SNR has lower values for 
the level higher than five. 

 

Level Hard Soft 

1 8.1209 7.8843 

2 11.1471 10.9218 

3 14.3251 14.0031 

4 17.2973 16.9275 

5 20.1305 19.4396 

6 13.2248 13.2472 

7 12.1531 9.8726 

8 10.8010 8.3255 

9 10.4986 8.1632 

10 10.4912 8.1593 

Table 1. SNR level respect to the depth of decomposition. 
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The other parameters to obtain best SNR level are the kind of the wavelet and the thresholding 
rule. Table 2 presents the SNR levels using different wavelet when the decomposition level is 
five.  In table 2, there is no significant difference in SNR in terms of wavelet types.  

 

Wavelet Type Hard  Soft  

Daubechies2 16.5378 16.5057 

Daubechies3 18.9391 18.8353 

Daubechies4 19.8138 19.8002 

Daubechies5 19.8747 19.7425 

Symlet2 16.3487 16.4181 

Symlet3 18.5401 18.7874 

Symlet4 19.5732 19.8002 

Symlet5 19.4795 19.5458 

Coiflet1 16.7746 16.7658 

Coiflet2 19.4866 19.4501 

Coiflet 3 19.7812 19.6252 

Discrete Meyer 19.9018 19.7154 

Table 2. SNR values respect to wavelet types  (Rigrsure, level=5) 

Nevertheless, it is attracting that the mother wavelets having high oscillation number 
produces better SNR results. For instance, the symlet wavelet having eight oscillations in its 
mother wavelet produces better SNR level than the lower ones. In this case, it can be say 
that the choice of the very lower oscillation frequency to avoid the computational 
complexity of the wavelet causes the lower SNR results.  

When the performance of the noise estimation techniques is considered in the respect of the 
decomposition level and the initial SNR level, the estimation techniques show the same 
performance for the level five respects to the initial SNR level. For the comparison, the initial 
SNR level before denoising is increased from 1dB to 30dB, and the result SNR level after 
denoising is calculated.  Fig. 9 presents a comparison of the four noise estimation methods 
for level five and level six when ‘symlet8’ used. 

 

(a)     (b) 

Fig. 9. The SNR values after denoising before denoising for level 5 and 8. 
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(a)      (b) 

 

(c) 

Fig. 10. The denoised signal using three different threshold rules at level eight.  

We have observed no distinguishing evidence among the noise level estimation methods 
until level six. After this level, rigresure method has produced better SNR values. And it is 
observed that rigresure preserve the second heart sound in PCG signals while the other 
methods destroying. This situation is clearly seen in Fig. 10. The signal part related to 
second heart sound taking place at around 0.7s in Fig.10a is not able to seen in Fig. 10b and 
Fig. 10c. This shows that the rigresure preserve the main characteristic of the signal. 
Therefore, we can conclude that the rigresure is the better noise estimation method. 

A level-dependent scaling of the thresholds was used to remove Gaussian white noise from 
the signal. Although it could not found evidence that a single wavelet was the best suited 
for denoising PCG signal, some wavelets used in this study were slightly better than the 
others. We conclude that reasonable decomposition level is absolutely depending on the 
sampling frequency and the frequency band of the signal.  Just in this study, the 
decomposition level of 5 produced reasonable results because the frequency band of a 
normal PCG signal is around 150-200Hz and the sampling frequency is 11.5KHz. Since the 
noise level method is one of the important parameter in wavelet denoising, it is examined 
for different levels. We have not seen any noteworthy differences in the methods from level 
1 to level 6. After this level, rigresure method has showed superiority to the other methods 
in terms of SNR level. Consequently, it is determined that the wavelet type is not very 
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important if the oscillation number is not very low, the decomposition level is absolutely 
depends on the frequency band of the PCG signal and its sampling frequency, and rigresure 
method is best of the noise estimation techniques.  

5.3 Image denoising 

All digital images contain some degree of noise due to the corruption in its acquisition and 
transmission by various effects. Particularly, medical image are likely disturbed by a 
complex type of addition noise depending on the devices which are used to capture or store 
them. No medical imaging devices are noise free. The most commonly used medical images 
are received from MRI (Magnetic Resonance Imaging) and CT (Computed Tomography) 
equipments. Usually, the addition noise into medical image reduces the visual quality that 
complicates diagnosis and treatment. 

Because the wavelet transform has an ability to capture the energy of a signal in few energy 
transform values, the wavelet denoising technique is very effective as stated previous parts. As 
stated previous sections, when an image is decomposed using wavelet transform, the four sub-
images are produced, approximation, horizontal details, vertical details and diagonal details. 
Fig. 11 represents a sample medical image which belongs to a patient having cranial trauma 
and its four subimages when decomposed for one level using DWT. This image has acquired 
from a BT device. A noise added MRI image and its denoised form using wavelet denoising 
procedure is given Fig. 12. The added noise has Gaussian distribution, and symlet6, 
decomposition level of two, hard thresholding are chosen as wavelet denoising parameters. 

     

Fig. 11. Decomposition of a sample medical image; original, approximation, horizontal 
details, vertical details,  and diagonal details in left to right. 

  

Fig. 12. A noisy image having PSNR 62dB and its denoised version. 
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Quantitatively assessing the performance in practical image application is complicated issue 
because the ideal image is normally unknown. Therefore the rational approach is to use 
known images for the tests, as in other image processing applications, in order to test the 
performance of the wavelet denoising methods like one dimensional signal denoising. 
Figure 13 represents the medical test images to be used. 

Here, we use again a classical comparison receipt based on noise simulation. The comparison 
can be realized on the result reconstructed image and the original image after adding Gaussian 
white noise with known power to the original signal. Then it will be computed the best image 
recovered from the noisy one for each method. Firstly, we should determine the effective 
decomposition level because the most important factor in wavelet denoising is decomposition 
level. For this purpose, a noise added image will be used to obtain how the performance is 
changing respect to the decomposition level. The recovering process is made on the test image 
given in Fig 11, on which a Gaussian noise added to be PSNR is 62dB. The noisy image and a 
sample recovered or denoised is given Fig. 12a and Fig. 12b, respectively. The PSNR values 
after denosing process is given Table 3. In this denoising process, the symlet6 and universal 
thresholding is chosen as mother wavelet and noise level estimator.  

 

     

     

Fig. 12. Medical test images. 

 

Level PSNR 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

68.1196 
69.3269 
70.5006 
70.7768 
68.6232 
68.8183 
68.7272 
69.8037 
66.8912 
66.3877 

Table 3. PSNR values respect to decomposition level after DWT denoising. 
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The best PSNR is obtained at the decomposition level of two. As can be seen in Table 3, the 

result PSNR value is decreasing if the decomposition level getting higher. The wavelet 

transform concern the main component of the original signal when the decomposition level 

is increased. If the higher decomposition level is used, the thresholding can eliminate some 

coefficients of the original signal, as in 1D signal denoising process. Therefore, to increase 

the decomposition level too high will decrease the PSNR after an optimal level and also 

increase the complexity of decomposition. In further part of the study, the decomposition 

level is chosen as two because the performance of the DWT denoising obtained at this level. 

Another question about the performance of the wavelet denoising is if it is dependent on the 

content or the distribution of the coefficient of the image. We can answer the question by 

applying the denoising algorithm on different images. Table 4 represents the PSNR values 

respect to the number of the test images given in Fig. 9 after the denoising process. 

 

Number Noisy Image
Denoised 

Image 
(level1) 

Denoised 
Image 

(level2) 

Denoised 
Image 

(level3) 

Denoised 
Image 

(level4) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

62.0974 
62.1251 
62.1140 
62.0942 
62.0974 
62.1023 
62.1138 
62.0995 
62.1224 
62.1070 

68.1252 
67.3979 
67.9648 
67.9819 
67.0273 
67.8774 
67.6268 
68.1391 
67.9712 
67.9048 

73.2903 
69.3305 
71.7193 
72.2531 
69.5873 
71.7282 
70.6594 
73.7535 
71.3191 
71.0798 

72.9250 
68.4441 
70.4829 
72.4830 
69.9803 
71.4382 
70.8403 
74.2233 
69.4574 
69.1241 

70.3792 
67.3593 
68.8435 
70.8092 
69.2444 
70.0891 
69.8362 
71.6437 
67.9060 
67.4048 

Mean 
Standard 
Deviation 

62.1069 
0,176 

 

67.8016 
0.3521 

71.4721 
1.4230 

70.9399 
1.8322 

69.3515 
1.4656 

Table 4. PSNR’s respect to image number, mean and standart deviation. 

6. Conclusion 

The wavelet denoising techniques offers high quality and flexibility for the noise problem of 
signals and image. The performances of denoising methods for several variations including 
thresholding rules and the type of wavelet were examined in the examples in order to put 
forward the suitable denoising results of the methods. The comparisons have made for the 
three threshold estimation methods, wavelet types and the threshold types. The examinations 
have showed that most important factor in wavelet denoising is what the decomposition level 
is rather than the wavelet type, threshold type or the estimation of threshold value. 

However,  someone has not seen any noteworthy differences in the methods from level one to 
level six, after this level, rigresure method has showed a better performance than the other 
methods in terms of SNR level. Consequently, it is determined that the wavelet type is not 
very important if the oscillation number is not very low, the decomposition level is absolutely 
depends on the frequency band of the signal to be analyzed and its sampling frequency. 
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