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1. Introduction 

Currently, degenerative disk disease (DDD) and the subsequent chronic lower back pain 

that results from it represent a significant source of morbidity and mortality worldwide. The 

available treatment modalities such as pain therapy and surgical interventions aim to 

provide symptomatic relief; however, they do not address the underlying pathophysiology 

of DDD. The disease also has high societal health care costs (Chan et al., 2006; Cassinelli et  

al, 2001). Many modalities exist for symptomatic treatment of this condition, including bed 

rest, massage, stretching, strengthening exercises, physical therapy, epidural injections and 

other pain management therapies, and spinal surgery. Most conservative therapies are  

 

Fig. 1. Anatomy of the spine with the compartmentalization of the IVD. 
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Fig. 2. Axial slice model of the intervertebral disc with an image of a disc herniation 

 

Fig. 3. Sagittal T2-weighted MRI showing degeneration and loss of T2 signal in the L5-S1 
IVD 
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Fig. 4. Postmortem specimen and hematoxylin and eosin staining showing multilevel 
degeneration of the IVDs with fissuring of the actual disc structure 

attempted before surgery with the intent to spare patients the possible complications 
associated with surgical intervention. However, these conservative measures and even surgery 
itself with its associated risks only address the symptoms with no impact on the disease 
process in the disc itself. Recent research has given further insight into the pathogenesis of 
DDD, which has borne out a renewed interest in biologic therapies centered on the nucleus 
pulposus (NP) and the annulus fibrosus and the potential of stem cells to reverse the disease 
process at a histological and cellular level. In this chapter, we will systemically review the 
current literature and the most salient studies regarding biologic therapies in the regeneration 
of the intervertebral disc (IVD). We go on to describe the direction this field is heading in and 
the future potential of the therapies being developed using ESCs.  

2. Basic science laboratory studies 

Before examining the utility of stem cells in human and animal models, it is important to 

review several of the basic science benchtop laboratory studies that have provided the 

rationale for in-vivo testable treatments and hypotheses. These studies examined factors 

influencing both mesenchymal and embryonic stem cell proliferation and differentiation 

towards a NP-like phenotype. We will examine how these studies have provided valuable 

information regarding multiple factors that can stimulate embryonic stem cells (ESCs) and 

mesenchymal stem cells (MSCs) towards a chondrocytic lineage, as well as factors that can 

inhibit this differentiation in basic in-vitro models.  

2.1 Genetic studies 

DDD is a condition that rises from a combination of a genetic predisposition (Chan et al., 
2006) along with environmental modifiers (Stokes & Iatridis, 2004). Several causes of age-
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related degeneration of the IVD include loss of biomechanical support by surrounding 
muscular and ligamentous structures, uneven force loading as the aging spine deforms 
while trying to compensate for these changes, cell senescence, loss of viable progenitor cells, 
accumulation of degraded matrix molecules, and fatigue failure of both the disc matrix and 
surrounding annulus fibrosus. Correlations have been made between DDD and collagen, 
aggrecan, and matrix metalloproteinase polymorphisms coding for structural proteins (Ala-
Kokko, 2002).  

2.2 Factors influencing stem cell proliferation 

In order to further study how these cells would interact in various factor environments, it 
became crucial to more fully characterize these cells. This point is very important with 
regard to stem cell research because it is essential to characterize and identify what factors 
provide the best type of environment to stimulate ESCs and MSCs to differentiate toward a 
chondrocytic-type cell lineage. 

2.2.1 Mesenchymal Stem Cells   

Transforming growth factor-β3 (TGF-β3) is one factor that has been shown in multiple 

studies (Steck et al., 2005; Risbud et al., 2004; Shen, 2009) to stimulate cells to differentiate 

into chondrocytes. Several studies have shown that after TGF-β3 stimulation, MSCs turned 

positive for collagen type II protein and expressed a large panel of genes characteristic for 

chondrocytes, such as aggrecan, decorin, fibromodulin, and cartilage oligomeric matrix 

protein (Steck et al., 2005; Risbud et al., 2004). Shen et al. have shown that bone 

morphogenic protein-2 (BMP-2) can help to enhance TGF-β3-mediated chondrogenesis in 

MSCs (Shen, 2009). The combination of BMP-2 and TGF-β3 in alginate culture was found to 

be superior to the standard differentiation method using TGF-β3 alone as evinced by 

increased mRNA expression of aggrecan, type II collagen, Sox-9, BMP-2, and BMP-7, all of 

which are chondrocyte markers. This effect was even more pronounced when TGF-β3 and 

rhBMP-2 were both added (Kuh et al., 2008). This synergistic effect was consistently found 

in the study, providing further support as to an as yet unknown pathway towards 

chondrocytic differentiation.  

2.2.2 Embryonic Stem Cells 

Hoben et al performed a similar characterization study using human ESCs (Hoben et al., 
2009). Growth factors were studied with a coculture method for 3 weeks and evaluated for 
collagen and glycosaminoglycan (GAG) synthesis. The growth factors studied were TGF-β3, 
BMP-2, BMP-4, BMP-6, and sonic hedgehog protein. The investigators found that the 
combination of BMP-4 and TGF-β3 within the fibrochondrocyte coculture led to an increase 
in cell proliferation and GAG production compared to either treatment alone.  Koay et al 
had similar results with BMP-2 and TGF-β3 leading human ESCs down a differentiation 
path that produced an end product with high type I collagen content (Koay et al., 2007). 
However, they also found that human ESCs treated with TGF-β3 followed by TGF-β1 and 
IGF-1 produced constructs with no collagen I, showing that different growth factor 
application in different temporal sequences can have a marked impact on end-product 
composition and biomechanical properties. The importance of temporal sequences cannot 
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be understated with regard to stem cell development and has important implications 
pertaining to harvesting and large-scale production of these cells for future potential 
therapeutic uses. 

2.3 Stem cell growth in the native IVD microenvironment 

Several groups have conducted well-designed in-vitro studies that have gone one step 
beyond identifying environmental factors that affect differentiation of stem cells into NP-
like cells, and have actually studied how these factors may correlate to the current in-vivo 
microenvironment of the IVD. This was done in order to obtain a clear picture of what 
would happen if these stem cells were implanted into these native biological conditions. 
Culturing under IVD-like glucose conditions (1.0 mg/mL glucose) stimulated aggrecan and 
collagen I expression and deposition. IVD-like osmolarity (485 mOsm) and pH (pH = 6.8) 
conditions, on the other hand, strongly decreased proliferation and expression of matrix 
proteins. Combining these conditions resulted in decreased proliferation and gene 
expression of matrix proteins, demonstrating that, in this case, osmolarity and pH play a 
larger impact in inhibiting differentiation than glucose does in stimulating it (Wuertz et al., 
2008).  

Another study by the same group showed that acidity caused an inhibition of aggrecan and 

collagen I expression, as well as a decrease in proliferation and cell viability. This 

demonstrates that pH may be the major limitation for stem cell-based IVD repair (Wuertz, 

2009). This also illustrates the importance of early intervention and the role of 

predifferentiation when planning to use stem cells for reparative treatments. However, 

some studies have shown that implantation of stem cells at a later stage in the DDD process 

may result in a greater increase in disc height when compared to implantation at an earlier 

stage (Ho et al., 2008). This finding highlights the importance of studies involving stem cell-

based intervertebral disc regeneration being carefully controlled in the context of stage of 

disc degeneration. Again, this point highlights the importance of temporal sequence when 

examining therapeutics with stem cells. Additionally, inflammatory processes have been 

shown to inhibit the chondrogenic differentiation of stem cells, whereas hypoxic conditions 

exert beneficial effects on chondrogenesis and phenotype stability of transplanted stem cells 

(Felka et al., 2009). 

2.4 Optimizing conditions to promote proliferation 

There is currently an avid interest in using our accumulated data and knowledge of the 
factors influencing stem cell proliferation and the exact conditions in the native IVD 
microenvironment to optimize the chances for stem cell proliferation. 

Multiple studies have investigated culturing MSCs with NP cells in a co-culture system, 
allowing for cell-to-cell contact (Yang et al., 2009; Le Maitre et al., 2009; Vadalà et al., 2009; 
Richardson et al., 2006; Richardson et al., 2008). This contact has been shown to stimulate 
these MSCs to differentiate toward a chondrocytic lineage, therefore removing the need for 
pre-differentiation in-vitro (Watanabe et al., 2010; Svanvik et al., 2010; Niu et al., 2009; Wei et 
al., 2009; Tao et al., 2008; Le Visage et al., 2006; Richardson et al., 2006). This was evidenced 
by mRNA expression levels of Type II collagen and aggrecan being elevated in co-cultured 
cells and cells undergoing morphological changes to form three-dimensional micromasses 
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expressing collagen-2, aggrecan, and Sox-9 at RNA and protein levels after 14 days of co-
culture. These changes were unique and not detected in the samples of stem cells cultured 
alone (Svanvik et al., 2010; Niu et al., 2009; Wei et al., 2009). Furthermore, MSCs from older 
individuals differentiate spontaneously into chondrocyte-like NP cells upon insertion into 
NP tissue in-vitro, and thus may not require additional stimulation to induce differentiation. 
This is a key finding, as such a strategy would minimize the level of external manipulation 
required prior to insertion of these cells into the patient, thus simplifying the treatment 
strategy and reducing costs (Le Maitre et al., 2009). 

Adipose-Derived Stem Cells (ADSCs) have also been shown to be able to differentiate into 
NP cells in multiple in-vitro studies (Xie et al., 2009; Tapp et al., 2008; Lu et al., 2007; Lu et 
al., 2008; Li et al., 2005). Soluble factors released by NP cells direct chondrogenic 
differentiation of ADSCs in collagen hydrogels, and combination with a nucleus-mimicking 
collagen type II microenvironment enhances differentiation towards a more pronounced 
cartilaginous lineage (Lu et al., 2007; Lu et al., 2008). 

Studies using annulus fibrosus cells isolated from nondegenerated intervertebral discs have 
shown that these cells have the capability of differentiating into adipocytes, osteoblasts, 
chondrocytes, neurons, and endothelial cells in-vitro. These cells may also be induced to 
become more plastic, allowing them to differentiate along more mesenchymal lineages (Li et 
al., 2005; Feng et al., 2010; Saraiya et al., 2010). However, when annulus cells are 
differentiated into a chondrocyte micromass, it was not as rounded or compact as that 
which occurs with stem cells induced into chondrocyte differentiation (Saraiya et al., 2010). 
TGF-β stimulation of fetal cells cultured in high cell density led to the production of 
aggrecan, type I and II collagens and variable levels of type X collagen, although fetal cells 
had lower adipogenic and osteogenic differentiation capacity than MSCs and variability in 
matrix synthesis was observed between specific donors (Quintin et al., 2009; Quintin et al., 
2010). 

3. Animal studies 

Many studies using stem cells for disc regeneration have been performed in a wide array of 

animal models with promising results. Two recent studies were conducted utilizing ADSCs 

in a murine (Jeong et al., 2010) and a canine model (Ganey et al., 2009). Staining in both 

studies demonstrated increased Type II collagen and aggrecan in the transplantation group. 

Additionally, at 6 weeks after transplantation, discs exhibited a restoration of disc hydration 

and MRI T2 signal intensity and more closely resembled the healthy controls as evidenced 

by matrix translucency, compartmentalization of the annulus, and increased cell density 

within the nucleus pulposus. Discs also showed a significantly smaller reduction in disc 

height when compared with controls. 

Multiple studies have shown that MSCs are able to proliferate and survive inside the IVD, 
with assessments being made as far out as six months post-transplant (Tan et al., 2009; 
Jeong et al., 2009; Henriksson et al., 2009; Sobajima et al., 2008; Zhang et al., 2005; 
Crevensten et al., 2004). Additionally, these cells have been proven to differentiate into 
cells expressing chondrocytic phenotypes, as evidenced by positive immunostaining of 
collagen type II, aggrecan, and other markers (Henriksson et al., 2009; Yang et al., 2010; 
Wei et al., 2009; Sakai et al., 2005). Cells were also shown to exhibit NP phenotypic 
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markers (Sakai et al., 2005). The injected discs had a central NP-like region which had a 
close similarity to the normal biconvex structure of the IVD and contained viable 
chondrocytes forming a matrix like that of the normal disc (Sakai et al., 2003; Revell et al., 
2007). Omlor et al. studied the practical phenomenon of transplanted stem cell loss 
through the actual annular puncture which was used to not only simulate disc damage 
and herniation but also to inject the stem cells themselves. They made a logical conclusion 
that IVD regeneration strategies should increasingly focus on annulus reconstruction in 
order to reduce implant loss due to annular failure (Omlor et al., 2010). Most studies 
focusing on this point are still ongoing.  

 

Fig. 5. Hematoxylin and eosin staining of the rabbit IVD, showing healthy notochordal cell 
rests 

Several xenotransplant studies involving ESCs have been conducted with promising 
results. Jeong et al have shown that rats receiving human ESCs showed relative 
restoration of the inner annulus structure compared to a control group (Jeong et al., 2010). 
This finding may help to address the concern of loss of implanted material through the 
needle puncture. 

Many of the stem cells in these studies were xenografted from other species and the 

recipient animals were not treated with immunosuppressive agents. In spite of this, there 

was a lack of immune response suggesting an unrecognized immune-privileged site within 

the intervertebral disc space (Wei et al., 2009; Sheikh et al., 2009). On top of this, there has 

been some study with MSC showing that transplantation contributes to this 

immunosuppressive phenomenon by the differentiation of these cells into cells expressing 

FasL, which has been shown to be an immunosuppressive factor (Hiyama et al., 2008).  
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Studies Model Intervention  Results  

Jeong et al. Rat model The first coccygeal disc 
segments of Sprague-
Dawley rat were left 
undamaged as controls, and 
other two segments were 
damaged by needle 
injection. Two weeks later, 
stem cells or saline were 
injected into each of the two 
damaged segments. 

At 6 weeks after 
transplantation, the 
experimental group showed 
a significantly smaller 
reduction in disc height 
than the saline-injected 
group and exhibited a 
restoration of MRI signal 
intensity. Hematoxylin and 
eosin staining revealed a 
greater restoration of the 
inner annulus structure. 
There was also increased 
collagen type II and 
aggrecan. 

Ganey et al. Canine model 3 discs that had undergone 
partial nucleotomy were 
randomized to receive: (1) 
stem cells in hyaluronic acid 
carrier (Cells/HA); (2) HA 
only; or (3) No Intervention.

Disc levels receiving stem 
cells more closely resembled 
the healthy controls as 
evidenced in matrix 
translucency, 
compartmentalization of the 
annulus, and in cell density 
within the nucleus 
pulposus. Matrix analysis 
showed increased Type-II 
collagen and aggrecan. 

Hiyama et al. Canine model 4 weeks after nucleotomy, 
MSCs were transplanted 
into the degeneration-
induced discs. The animals 
were followed for 12 weeks 
when radiological, 
histological, biochemical, 
immunohistochemical, and 
RT-PCR analyses were 
performed. 

MSC transplantation 
effectively led to the 
regeneration of degenerated 
discs. GFP-positive MSCs 
detected in the NP region 8 
weeks after transplantation 
expressed FasL protein. 

Sobajima et al. Rabbit model MSCs were isolated New 
Zealand White rabbits, 
retrovirally transduced with 
the lacZ marker gene, and 
injected into the nucleus 
pulposus of the L2-3, L3-4, 
and L4-5 lumbar discs of 12 
other NZW rabbits. Rabbits 
each were sacrificed at 3, 6, 
12, or 24 weeks after cell 
implantation, and staining 

MSCs were detected in 
histological sections of 
rabbit discs up to 24 weeks 
after transplant with 
engraftment into the inner 
annulus fibrosus. 
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Studies Model Intervention  Results  

was done to assess cell 
survival and localization.

Henriksson et al. Porcine model Three lumbar discs in each 
of 9 were damaged with 
needle puncture. 2 weeks 
later human MSCs were 
injected The animals were 
sacrificed after 1, 3, or 6 
months. Disc appearance 
was visualized by MRI. 
Immunohistochemistry was 
used to detect human MSCs.

All injured discs 
demonstrated degenerative 
signs on MRI. 
Immunostaining for 
Aggrecan and Collagen type 
II expression were observed 
in NP after 3 and 6 months. 
mRNA expression of 
Collagen IIA, Collagen IIB, 
Versican, Collagen 1A, 
Aggrecan, and SOX9 were 
detected at 3 and 6 months 
by real-time PCR. 

Sheikh et al. Rabbit model 16 New Zealand white 
rabbits underwent needle 
puncture of the disc with 
MRIs before and after 
injection with ESCs 
expressing green fluorescent 
protein. At 8 weeks post-
ESC implantation, the 
animals were killed and the 
intervertebral discs were 
harvested and analyzed 
using H & E staining and 
immunohistochemical 
analysis.  

MRI confirmed 
intervertebral disc 
degeneration at needle-
punctured segments. 
Postmortem H & E 
histological analysis of 
Group A discs (no 
intervention) showed 
mature chondrocytes and no 
notochordal cells. Group B 
discs (needle puncture only) 
displayed an intact annulus 
fibrosus and generalized 
disorganization within the 
NP. Group C discs showed 
islands of notochordal cell 
growth (injection of ESCs).  

Sakai et al. Rabbit model Stem cells labeled with 
green fluorescent protein, 
were transplanted into 
mature rabbits. Consecutive 
counts of transplanted cells 
in the nucleus area were 
performed for 48 weeks  
with immunohistochemical  
and proteoglycan content 
analyses along with PCR 
detection of mRNA 
expression of Type I and II 
collagen, aggrecan and 
versican. 

Cells that were positive for 
green fluorescent protein 
were observed in the 
nucleus pulposus of cell-
transplanted rabbit discs 2 
weeks after transplantation. 
GFP-positive cells were 
positive for Type II collagen, 
keratan sulfate, chondroitin 
sulfate, and aggrecan. 
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Studies Model Intervention  Results  

Bendtsen et al. Porcine model DDD was induced in 15 
minipigs. After 12 weeks, 
the animals underwent 
percutaneous intradiscal 
injection of stem cells. MRI 
was performed before 
treatment and at 24 weeks. 

Stem cell treated animal had 
increased T2 signal in the 
disc along with increased 
relative vertebral blood 
flow. 

Omlor et al. Porcine model 6 minipigs underwent 
matrix based cell transfer 
after partial nucleotomy of 
lumbar IVDs. Segments 
were analyzed for  
retained volume of  
labeling particles  

There was a 90% loss of the 
implant material under in 
vivo conditions when the 
annulus was not 
reconstructed. 

Table 1. Animal Studies 

Our group recently reported seminal work with regard to ESC implantation in a rabbit 
model (Sheikh et al., 2009). This study used a needle puncture model with appropriate 
controls to simulate disc injury. The effects of implanted murine ESCs were measured at 8 
weeks using imaging, histological, and immunohistochemical analyses. In-vivo new 
notochordal cell populations were seen in ESC-injected discs, providing convincing 
evidence for stem-cell mediated regeneration of the IVD. Another study established the 
utility of stem cells implanted at 12 weeks post-injury in regenerating the IVD and 
maintaining perfusion to the endplate and subchondral bone in a porcine model (Bendtsen 
et al., 2010). Sobajima et al used a rabbit model to show that IVD cells harvested 48 weeks 
post-implantation revealed a restoration of both glycoprotein content and matrix 
characteristics (Sobajima et al., 2008). These analyses all provide further evidence that ESC 
transplantation does have strong potential for clinical use in regenerating the IVD and 
reversing the cascade of degeneration that occurs with time. 

4. Human studies 

To date, there have been only two studies where stem cells were injected into the IVD in 

humans to stimulate regeneration of the disc. Yoshikawa et al percutaneously grafted MSCs 

into degenerated IVDs in two women aged 67 and 70 years. After two years, both 

individuals had alleviation of symptoms and radiographic changes that included 

improvement of vacuum phenomenon on X-ray and increased signal intensity of IVDs on 

T2-weighted MRI (Yoshikawa et al., 2010). Another study involved intradiscal injection of 

hematopoietic stem cells into ten patients that had confirmed disc pain and these patients’ 

pain was assessed at 6-month and 12-month intervals. In contrast to previous study, none of 

these individuals had any relief of symptoms (Haufe et al., 2006). These trials suggest that 

stem cells have the potential to relieve symptoms of DDD and restore normal IVD anatomy; 

however, more human studies are needed to truly establish this. To date, there have been no 

human ESC implantation studies into the IVD in humans. Further study is needed to verify 

safety before such work is undertaken. 
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Studies Subjects Intervention  Results  Study Critique 

Yoshikawa et al. 2 patients Percutaneous stem 
cell grafting 

Clinical 
symptoms 
improved; 
increased T2 
signal in the disc 
space on MRI 

Few patients 

Haufe et al. 10 patients Percutaneous stem 
cell grafting 

No clinical 
symptom relief 

No imaging 
conducted 

Table 2. Human Studies 

5. Future potential of ESCs 

Although many laboratory and animal studies have been performed utilizing stem cells for 
the purposes of cell characterization and inducing chondrocyte formation, much further 
study is needed before human trials are undertaken on a larger scale. Several studies have 
already showcased the ability of ESCs to differentiate towards a chondrocytic lineage in-
vitro and also to improve DDD in in-vivo animal and human trials, using a combination of 
imaging and histological analyses. Several benchtop lab studies have been performed to 
show that ESCs can be successfully stimulated to differentiate into chondrocyte-like cells 
(Hoben et al., 2009; Fecek et al., 2008; Hegert et al., 2002; Kawaguchi et al., 2005; zur Nieden 
et al., 2005; Kramer et al., 2000). Similar to the case with MSCs, different factors affect this 
process in ESCs, such as TGF-β3, BMP-2, and BMP-4 (Hegert et al., 2002; Kawaguchi et al., 
2005; zur Nieden et al., 2005; Kramer et al., 2000; Sakai et al., 2005). Biological scaffolds 
seeded with chondrocytic cells derived from ESCs, when implanted in mice have been 
shown to generate cartilage tissue in-vivo (Kramer et al., 2000). Injection of ESCs in a DDD-
induced rabbit model led to viable notochordal-type cells within the discs (Sheikh et al., 
2009). These animal studies demonstrate the ability of ESCs to differentiate into a 
chondrocytic lineage in-vitro and in-vivo.   

Our group is currently developing chondroprogenitor stem cell lines that can restore the 
functional capability of the IVD (Sheikh et al., 2009). Our rationale stemmed from the idea 
that currently there is no biologic therapy for repairing a degenerated IVD and that ESCs 
have a potential to fill this role based on their regenerative potential. Studies have shown 
that ESCs can be induced to differentiate into specific cell lineages by using selective culture 
media and growth environments (Kawaguchi et al., 2005).  

Relying on the significant strides made by these basic science groups with regard to cell and 

factor characterization, our lab proceeded for further refine these methods and develop a 

protocol for both stem cell differentiation along a chondrocytic lineage and also for 

examining the utility of transplantation of these cells in a rabbit model of DDD. We initially 

developed a novel percutaneous animal model of disc degeneration using New Zealand 

white rabbits (Figure 1) and used this model to explore the possibility of ESC implantation 

for both structural regeneration and for the growth and continued presence of notochordal 

stem cells in the disc space (Sheikh et al., 2009). 

Previous research transplanting MSCs into degenerated rabbit discs has shown consistent 
biochemical and radiographic (MRI) evidence of IVD restoration (Sakai et al., 2005). Human 
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A. 

 
B. 

Fig. 6. Photographs of our group’s rabbit model for IVD degeneration. The rabbit is 
positioned prone, its back is shaved and prepared for surgery (A), with a corresponding 
fluoroscopic view (B). 
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C 

Fig. 7. Sagittal T2-weighted MRI of the rabbit spine (A), with a corresponding axial view at 
the level of the induced disc degeneration (B) and at a separate normal control level (C). 

MSCs have also been investigated for their bone-forming capabilities with good results 
(Jaiswal et al., 1997). Stem cells are already being used in therapeutic applications with 
placement of cells directly at the site of intended spinal fusion during open surgical 
procedures. 

Our lab has developed chondroprogenitor cells lines that can restore the functional capacity 
of the IVD, with these cells differentiating into chondrocytes. Using our novel percutaneous 
model of disc degeneration in a rabbit model, we obtained MRIs preoperatively and at 2, 4, 
and 8 weeks postoperatively (Figure 2). Before implantation, ESCs were cultured with cis-
retinoic acid, TGF-beta, ascorbic acid, and insulin-like growth factor to induce 
differentiation along a chondrocyte lineage. After MRI confirmation of disc degeneration, 
the discs were then injected with murine ESCs that were labeled with mutant green 
fluoroscent protein (GFP). At 8 weeks post-implantation, IVDs were harvested and analyzed 
with hematoxylin and eosin staining along with immunohistochemical analyses (Figure 3). 

Three groups were analyzed: group A consisted of control animals with nonpunctured discs; 
group B consisted of control animals with experimentally punctured discs; and group C 
consisted of animals with experimentally punctured discs that were subsequently implanted 
with ESCs. Gel electrophoresis was used to analyze ESCs for cartilaginous tissue formation. 
MRI confirmed IVD degeneration after needle puncture starting at 2 weeks postoperatively. 
Postmortem histological analysis of group A IVDs showed chondrocytes, but no 
notochordal cells. Group B disc displayed intact annulus fibrosus but disorganized  
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A. 

 
B. 

Fig. 8. Photomicrographs of tissue obtained preimplanation for histological analysis of ESCs 
grown in-vitro with Alcian blue staining showing 86% viability (A) and high power 
magnification showed adequate GFP cell labeling (B).    
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fibrous tissue in the NP. Group C discs showed new notochordal cell growth, indicating 

survival and proper differentiation of the injected ESCs. Fluorescent microscopic analysis 

was positive in group C tissue, confirming the viability of GFP-labeled ESCs within the 

injected IVD. In addition, the notochordal cells in group C stained positive for cytokeratin 

and vimentin, providing further evidence of their chondrocyte origin. There was no 

inflammatory response in group C discs, indicating no cell-mediated immune response.  

Our study provides a novel, reproducible model for the study of disc degeneration. New 

notochordal cell populations were seen in discs injected with ESCs. The lack of an immune 

response to xenograft-implanted mouse stem cells in an immune-competent rabbit suggests 

an immunoprivileged site within the IVD. Although preliminary, this study highlights the 

possible use of stem cells to promote IVD regeneration. Further ongoing studies are in the 

process of fully elucidating the processes involved with ESC differentiation along 

chondrogenic cell lines and how they may be used for new disc formation in the future. 

These studies will provide a good deal of evidence with regard to the future potential of 

ESCs for use in restoring the IVD in humans. 

6. Summary 

DDD is a high-morbidity condition with many modalities of treatment including surgery 

and more conservative measures such as pain injections, which only provide symptomatic 

treatment. No therapy has been developed that targets DDD at the cellular level. Recently, 

many biologic therapies have emerged that may be able to restore the NP and the normal 

cellular structure of the IVD. This restoration may in turn alleviate the symptoms of DDD 

through restoration of foraminal height, removing the compression of nerves. In-vitro 

studies have been performed to identify what cells are capable of differentiating towards 

a chondrocytic lineage and to best define parameters and factors that influence this 

differentiation. Multiple laboratory studies have been performed showing that MSCs, 

ADSCs, fetal cartilaginous cells, and annulus fibrosus cells all have the ability to 

differentiate towards a chondrocytic pathway. Factors that can induce these cells to 

differentiate toward a chondrocytic lineage have been identified and include TGF-β3 and 

BMP-2, which have a synergistic effect when used together. Other factors that may be 

beneficial include hypoxia, IVD-like glucose conditions (1.0 mg/mL glucose), and cell-to-

cell contact with NP cells; the latter negating the need for other soluble factors (i.e. TGF-

β3). A major limiting factor may be the acidic pH (6.8) of the IVD, one that may be 

especially important as acidic pH levels are typical of increasingly degenerated discs. 

These studies yielded encouraging results with cells in the IVD being positive for markers 

of chondrocytic differentiation such as collagen type II and aggrecan. Additionally, cells 

exhibited NP phenotypic markers and had a close similarity to the normal biconvex 

structure of the NP. In-vitro studies have clearly established that ESCs are capable of 

differentiating into a chondrocytic lineage and have delineated some of the factors that 

affect this. The optimal microenvironment needs to be more accurately characterized at 

this time. 

Animal studies of cell implantation have been performed in DDD-induction models. Weeks 
after injury, stem cells have been implanted and outcomes followed. These outcomes which 
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have included radiographic analyses along with histological and immunohistochemical 
analyses have provided preliminary data that stem cell therapies are a viable option with 
regard to IVD regeneration (Sheikh et al., 2009). Human studies have further provided some 
preliminary evidence that stem cell therapy may be of clinical value (Haufe et al., 2006). The 
use of ESCs in regenerating IVD shows exciting new possibilities and further studies are 
needed in humans to establish its efficacy. 

ESC-based regeneration of the human IVD is still in its infancy. Much progress has been 
made regarding laboratory research identifying the correct factors and microenvironment, 
and initial results from animal studies using stem cells remain promising. ESCs may be 
useful for repairing DDD as evidenced by their ability to differentiate into a chondrocytic 
lineage and yield notochordal-type cells in DDD models. ESCs need to be further studied 
and characterized with respect to safety, and larger human trials with appropriate clinical 
outcomes such as pain and disability reduction are needed to definitively establish its 
clinical efficacy. 

7. Conclusions 

The last half-century has seen an exponential rate of progress with regard to elucidating the 
mechanisms of degeneration of the IVD and how targeted therapies can help to alleviate this 
common condition. These studies have provided us with an improved understanding of the 
IVD and how it behaves under typical biomechanical forces and loads experienced in in-
vivo conditions. Novel therapies are being studied, including stem cells with their potential 
regenerative capabilities in the spine. The development and action of these stem cells can be 
further modified through gene therapy and microenvironment manipulation. Immunologic 
markers are being used for more efficient targeting of these cells. With enhanced cell 
delivery and an improved understanding of the cell differentiation process, true 
regeneration of the IVD and surrounding supportive structures of the spine will become a 
reality that can be applied to treat patients with this common, debilitating condition.  
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