Fuzzy Modelling Stochastic Processes
Describing Brownian Motions

Anna Walaszek-Babiszewska
Opole University of Technology
Poland

1. Introduction

Wiener process, as a special mathematical model of Brownian motions, has been investigated and modelling in many probabilistic examples. In the topic literature it is easy to find many procedures of numeric probabilistic simulations of the Wiener process. Fuzzy modelling does not give us more accurate models than probabilistic modelling. Fuzzy knowledge-based modelling allows to determine linguistic description of non-precise relationships between variables and to derive the reasoning procedure from non-crisp facts. Moreover, using the notions of probabilities of fuzzy events, it is possible to determine a frequency of a conclusion as well as its expected value.

Wiener process and a random walk are very often used for modelling phenomena in physics, engineering and economy. In the area of robot control theory these processes can represent some time-varying parameters of the environments where the object of control operates. Fuzzy models of these processes can constitute a part of a fuzzy model of a tested complex system.

In paragraph 2. of this chapter, the mathematical descriptions of Brownian motions has been reminded, according to the theory of probability and stochastic processes. Some basics of fuzzy modelling has been presented in paragraph 3., to show the method of creating the knowledge base and rules of reasoning. Attention is focused on identification techniques for building empirical probabilities of fuzzy events from input-output data. Exemplary calculations of knowledge bases for real stochastic processes, as well as, some remarks on future works have been presented in paragraphs 4 and 5.

2. Mathematical models of Brownian motion

The Brownian motion it is well known in physics, a random movement of a particle suspended in a liquid or a gas. The name of the movement is given after the botanist Robert Brown (1827), who was studying the movement of pollen grains suspended in water. There are many similar phenomena, where the time evolutions of the object depend on stochastic, microscopic contacts (collisions) with elements of the surrounded system. In mathematics, many models describing Brownian motion are well known and applied, e.g. the random walk stochastic process, Wiener stochastic process, Langevin stochastic differential equation, general diffusion equations and others.

Observations of the microscopic particle behavior show, that at any time step, the particle is changing its position in the space, according to collisions with liquid particles. Crashes of
particles are frequent and irregular. It is usually assumed by mathematicians, that the displacements of the particle $Z_1, Z_2, \ldots, Z_n, \ldots$ at particular time steps, are independent, identically distributed random variables. The stochastic process $\{Z_i, i = 1, 2, \ldots, n, \ldots\}$ is named **random walk**.

In macroscopic scale, if the time between two observations of the particle, $t - \tau$, is larger than the time between successive crashes, then the increment of the particle positions, $X_i - X_{\tau}$, is a sum of many small displacements, $X_i - X_{\tau} = \sum_{i=1,\ldots,k} Z_i$. Since the increments $X_i - X_{\tau}$ constitute sums of independent, identically distributed random variables, they are normal distributed random variables.

In mathematics, scalar stochastic process $\{X_t, 0 \leq t < \infty\}$, is the **Wiener process** if and only if

i. increments $X_i - X_{\tau}$, $0 \leq \tau < t < \infty$ are homogeneous (stationary) and independent for disjoint time intervals,

ii. the initial condition, $P(X_0 = 0) = 1$, is fulfilled,

iii. trajectories of the process $\{X_t, 0 \leq t < \infty\}$ are continuous (almost surely),

iv. random variables X_t, are normal distributed, with the probability density function

$$f(t, x) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left(-\frac{x^2}{2t\sigma^2}\right).$$

Wiener process is also known as the **Brownian motion process** (Fisz, 1967; van Kampen, 1990; Kushner, 1983; Sobczyk, 1991).

The increments, $X_i - X_{\tau}$, $0 \leq \tau < t < \infty$, are normal distributed random variables with the expected value and variance as follows:

$$E(X_i - X_{\tau}) = 0, \quad D^2(X_i - X_{\tau}) = (t - \tau)\sigma^2.$$ (2)

Random variables X_{t_1}, \ldots, X_{t_n}, where

$$X_{t_n} = X_{t_{t_1}} + (X_{t_2} - X_{t_{t_1}}) + \ldots + (X_{t_n} - X_{t_{t_{n-1}}}),$$ (3)

are also normal distributed with parameters:

$$E(X_{t_k}) = 0, \quad D^2(X_{t_k}) = t_k\sigma^2, \quad k = 1, 2, \ldots, n;$$ (4)

and with a non-zero covariance matrix.

If $\sigma^2 = 1$ then $\{X_t, 0 \leq t < \infty\}$ is the **standard Wiener process**.

Probability, that a particle occurs in some interval $[a, b]$, at the moment t, is given by the relationship

$$\Pr[X_t \in [a, b]] = \int_a^b f(t, x)dx = \frac{1}{\sqrt{2\pi t\sigma^2}} \int_a^b \exp\left(-\frac{x^2}{2t\sigma^2}\right)dx.$$ (5)

For any $t_1 \leq t_2$ probability density function of the random vector variable (X_{t_1}, X_{t_2}) can be obtained as follows:

www.intechopen.com
where

$$f(t_2, x_2 / t_1, X_{t_1} = x_1) = \frac{1}{\sqrt{2\pi \sigma(t_2 - t_1)}} \exp\left(-\frac{(x_1 - x_2)^2}{2(t_2 - t_1)\sigma^2}\right)$$

is a conditional probability density function, and $f(t_1, x_1)$ is given by formula (1) with parameters: $E(X_{t_1}) = 0$, $D^2(X_{t_1}) = t_1\sigma^2$.

For any $t_1 \leq t_2 \leq \ldots \leq t_n$ probability density function of the multidimensional random vector $(X_{t_1}, \ldots, X_{t_n})$ can be obtained, taking into account Markov features of the process and using (3), as follows (Sobczyk, 1991):

$$f(t_n, x_n, \ldots, t_1, x_1) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi \sigma(t_i - t_{i-1})}} \exp\left(-\sum_{i=1}^{n} \frac{(x_i - x_{i-1})^2}{2(t_i - t_{i-1})\sigma^2}\right).$$

Stochastic vector process $\{(X_t(t_1), \ldots, X_t(t_n))\}$ is called the nD stochastic Wiener process if its every component, $\{X_i(t), 0 \leq t < \infty\}, i = 1, \ldots, n$, is the scalar stochastic Wiener process and particular scalar stochastic processes are independent.

As an example of the 3D stochastic Wiener process we can show three coordinates of the Brownian particle trajectory.

The Wiener process is also the special diffusion stochastic process, fulfilling the Fokker-Planck diffusion equation

$$\frac{\partial f(x,t)}{\partial t} = \gamma \frac{\partial^2 f(x,t)}{\partial x^2}, \quad \lim_{\Delta t \to 0, \Delta x \to 0} \frac{(\Delta x)^2}{\Delta t} = \text{const} = 2\gamma$$

where the solution is given by the normal probability density function, and the diffusion coefficient is equal to $\gamma = \sigma^2 / 2$ (van Kampen, 1990).

In macroscopic scale, in physics and in industrial practice, the probability value $f(x)dx$ that scalar variable X assumes its value from the interval $[x, x+dx]$ is equivalent to the quotient n/N (concentration of particles), where n defines the power of subset of particles, whose feature X determines the value over the interval $[x, x+dx]$, and N is the population size. This idea is consistent with Einstein’s experiments who considered collective motion of Brownian particles. He assumed that the density (concentration) of Brownian particles $\rho(x,t)$ at point x at time t, met the following diffusion equation:

$$\frac{\partial \rho(x,t)}{\partial t} = \gamma \frac{\partial^2 \rho(x,t)}{\partial x^2}$$

where γ is a diffusion coefficient. The solution has the known exponential form. From the analytical form of the solution the second central moment of the displacement is expressed as

$$E(X_t^2) = 2\gamma t$$
Diffusion coefficient, \(\gamma \), has been expressed by Einstein as a function of macro- and microscopic parameters of the fluid and particles, respectively. Einstein confirmed statistical character of the diffusion law (cited by van Kampen, 1990).

3. Fuzzy knowledge representation of the ‘short memory’ stochastic process

3.1 Stochastic process with fuzzy states

Let \(X(t) \) be a ‘short memory’ stochastic process, the family of time-dependent random variables, where \(X \in \mathcal{X} \subset \mathbb{R} \), \(t \in T \subset \mathbb{R} \) and \(B \) is the Borel \(\sigma \)-field of events. Let \(p \) be a probability, the normalized measure over the space \((\mathcal{X}, B) \).

Moreover, assume that according to human experts’ suggestions, in the universe of process values, the linguistic random variable has been determined with the set of linguistic values, \(L(X) = \{ \text{low, middle, high} \} \), according to Zadeh’s definition of the linguistic variable (Zadeh, 1975). The meanings of the linguistic values are represented by fuzzy sets \(A_i, i = 1, 2, \ldots, I \) determined on \(\mathcal{X} \) by their membership functions, \(\mu_{A_i}(x) : \mathcal{X} \rightarrow [0,1] \), which are Borel measurable functions, fulfilling the condition

\[
\sum_{i=1}^{I} \mu_{A_i}(x) = 1, \quad \forall x \in \mathcal{X}.
\]

(12)

According to above assumptions, the probability distribution of linguistic values of the process \(X(t) \) can be determined as follows

\[
P(X_i) = \{ P(A_i), i = 1, 2, \ldots, I \},
\]

(13)

based on Zadeh’s definitions of the probability of fuzzy events (Zadeh, 1968)

\[
P(A) = \int_{\mathcal{X} \subseteq \mathbb{R}^n} \mu_{A}(x) dp.
\]

(14)

The following conditions must be fulfilled

\[
0 \leq P(A_i) \leq 1, \quad i = 1, 2, \ldots, I; \quad \sum_{i=1}^{I} P(A_i) = 1.
\]

(15)

Let now \(t = t_1, \quad t = t_2, \quad t_2 > t_1 \) be fixed, so the stochastic process at that moments is represented by two random variables \((X(t_1), X(t_2)) \). Assume, that \((\mathcal{X}^2, B, p) \) is a probability space, where \(\mathcal{X}^2 \subseteq \mathbb{R}^2 \), \(B \) is the Borel \(\sigma \)-field of events and \(p \) is a probability, the normalized measure over \((\mathcal{X}^2, B) \). The assumptions mean that the probability distribution \(p(x_{t_1}, x_{t_2}) \) over the realizations \((X_{t_1}, X_{t_2}) \) exists.

Let also two linguistic random variables (linguistic random vector) \((X_{t_1}, X_{t_2}) \) be generated in \(\mathcal{X}^2 \), taking simultaneous linguistic values \(L_{X_1} \times L_{X_2}, i, j = 1, 2, \ldots, I \); corresponding collection of fuzzy events \(\{ A_i \times A_j \}_{i, j = 1, \ldots, I} \) is determined on \(\mathcal{X}^2 \) by membership functions
\(\mu_{A_i \times A_j}(x_{t_1}, x_{t_2}), i,j=1,2,...,I \). Membership functions for joint fuzzy events \(A_i \times A_j \) should fulfill

\[
\sum_i \sum_j \mu_{A_i \times A_j}(x_{t_1}, x_{t_2}) = 1, \quad \forall (x_{t_1}, x_{t_2}) \in \mathcal{X}^2.
\]

(16)

The joint 2D probability distribution of linguistic values (fuzzy states) of the stochastic process \(X(t) \) is determined by the joint probability distribution of the linguistic random vector \((X_{t_1}, X_{t_2}) \)

\[
P(X_{t_1}, X_{t_2}) = \{P(A_i \times A_j)\}_{i,j=1,2,...,I}
\]

(17)

calculated according to

\[
P(A_i \times A_j) = \int_{(x_{t_1}, x_{t_2}) \in \mathcal{X}^2} \mu_{A_i \times A_j}(x_{t_1}, x_{t_2}) dp
\]

(18)

and fulfilling

\[
0 \leq P(A_i \times A_j) \leq 1, \quad \forall i,j = 1,\ldots,I \quad \text{and} \quad \sum_{i=1}^{I} \sum_{j=1}^{I} P(A_i \times A_j) = 1
\]

(19)

(Walaszek-Babiszewska, 2008, 2011). From the joint probability distribution (17), the conditional probability distribution of the fuzzy transition

\[
P[(X_{t_2} = A_j) \mid (X_{t_1} = A_i)], j=1,2,...,I; \ i=\text{const}
\]

(20)

can be determined according to

\[
\{P[(X_{t_2} = A_j) \mid (X_{t_1} = A_i)]\}_{j=1,...,I} = \frac{\{P(X_{t_2} = A_j, X_{t_1} = A_i)\}_{j=1,...,I}}{P(X_{t_1} = A_i)}.
\]

(21)

The following relationships should be fulfilled for the conditional distributions of fuzzy states (probability of the transitions)

\[
\sum_{j=1,...,I} P[(X_{t_2} = A_j) \mid (X_{t_1} = A_i)] = 1; \ i=\text{const}.
\]

(22)

3.2 Rule based fuzzy model

The proposed model of the stochastic process, formulated into fuzzy categories, for two moments \(t_1, t_2, \quad t_2 > t_1 \), is a collection of file rules, in the following form (Walaszek-Babiszewska, 2008, 2011):

\[
\forall A_i \in \mathcal{L}(X), i=1,...,I
\]

www.intechopen.com
or as a collection of the elementary rules in the form

\[\forall A_j \in L(X), \forall A_l \in L(X), i,j=1,2,...,I \]

\[R^{(i,j)}: w_{ij}[If (X_{t_i} \quad is \quad A_i) \quad Then \quad (X_{t_j} \quad is \quad A_j)] \]

(24)

where the weights \(w_i, w_{j|i}, w_{ij} \) represent probabilities of fuzzy states, determined by (13) – (15), (20) – (22) and (17) - (19), respectively. The weights stand for the frequency of the occurrence of fuzzy events in particular parts of rules and show the probabilistic structure of the linguistic values of the linguistic random vector \((X_{t_i}, X_{t_j})\). The weights do not change logic values of the conditional sentences.

3.3 Reasoning procedures

Considering reasoning procedure, we assume that some non-crisp (vague) observed value of the stochastic process at moment \(t_1 \) is known and equal to \(X_{t_1} = A^* \), or some crisp value \(X_{t_1} = x_{t_1}^* \) of the stochastic process at moment \(t_1 \) is given. Then, the level of activation of the elementary rule (24) is determined according to one of the following formulas

\[\tau_i = \max_{A_t} \min[\mu_{A_t}(x), \mu_{A^*}(x)] , \]

(25)

\[\tau_i = \mu_{A_t}(x_{t_1}^*) , i=1,...,I , \]

(26)

respectively (Yager & Filev, 1994; Hellendoorn & Driankov, 1997). The conclusion according to the generalized Mamdani-Assilian’s type interpretation of fuzzy models has the following form

\[\mu_{A_{ji}}(x_{t_2}) = T(\tau_i, \mu_{A_j}(x_{t_2})), j=1,...,I; i=\text{const} ; \]

(27)

thus the conclusion derived based on logic type interpretation of fuzzy models is as follows

\[\mu_{A_{ji}}(x_{t_2}) = I(\tau_i, \mu_{A_j}(x_{t_2})), j=1,...,I; i=\text{const} , \]

(28)

where \(T \) denotes a \(t \)-norm and \(I \) means the implication operator. Aggregation of the conclusions from particular rules is usually computed by using any \(s \)-norm operator (Yager & Filev, 1994; Hellendoorn & Driankov, 1997).

Weights of rules, representing the probability of a fuzzy event in antecedent \((w_i)\), as well as, the conditional probability of a fuzzy event at the consequence part \((w_{j|i})\), can be used to determine probabilistic characteristics of the conclusion. It is worth to note, that fuzzy
conclusions (27) and (28) represent some functions, \(\varphi[L(X)] \), of linguistic values of the linguistic random variable \(X_{t_2} \). The fuzzy expected value of the following prediction,

\[
E[(X_{t_2} \text{ is } \varphi(A_j)) | (X_{t_1} \text{ is } A')] = \tilde{A},
\]

computed as the aggregated outputs of all active \(i \)-th file rules, can be determined by the following formula (Walaszek-Babiszewska, 2011)

\[
\mu_A(x_{t_2}) = \sum_i w_i \mu_{A_i}(x_{t_2}) = \sum_i w_i \sum_j w_{j/i} \mu_{A_{j/i}}(x_{t_2}).
\]

where membership functions, \(\mu_{A_{j/i}} \), of the conclusions from elementary rules are given by (27) or (28), depending on the type of input data and the interpretation of a fuzzy model. Also, it is possible to determine probability of the fuzzy conclusion, taking into account a marginal probability distribution \(P(X_{t_2}) \) of the output linguistic random variable.

4. Creating fuzzy models of stochastic processes - Exemplary calculations

4.1 Fuzzy model of the stochastic time-discrete increments

First example show the fuzzy representation of the simplest form of the considered above stochastic processes, the one-dimensional time-discrete stochastic process of the increments, \(\Delta X_t = X_t - X_{t-1} \). The increments, at given \(t \), are normal distributed random variables, so it is useful to use the standard normal probability distribution function, over the domain of the process values, \(\Delta X \in [-3, 3] = \chi \subset \mathbb{R} \) (Table 1). Linguistic random variable, \(Y_t \), with the

<table>
<thead>
<tr>
<th>(x \in [a, b])</th>
<th>(p(x))</th>
<th>(\mu_{NH}(x))</th>
<th>(\mu_{NL}(x))</th>
<th>(\mu_Z(x))</th>
<th>(\mu_{PL}(x))</th>
<th>(\mu_{PH}(x))</th>
<th>Probability of fuzzy events (P(Y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>[-3, -2.5)</td>
<td>0.00486</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>(P(NH)=0.014)</td>
</tr>
<tr>
<td>[-2.5, -2)</td>
<td>0.01654</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td>(P(NL)=0.220)</td>
</tr>
<tr>
<td>[-2, -1.5)</td>
<td>0.044057</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>(P(Z)=0.532)</td>
</tr>
<tr>
<td>[-1.5, -1)</td>
<td>0.091848</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>(P(PL)=0.220)</td>
</tr>
<tr>
<td>[-1, -0.5)</td>
<td>0.149882</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td>(P(PH)=0.014)</td>
</tr>
<tr>
<td>[-0.5, 0)</td>
<td>0.191463</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>(P(NH)=0.014)</td>
</tr>
<tr>
<td>[0, 0.5)</td>
<td>0.191463</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>(P(NL)=0.220)</td>
</tr>
<tr>
<td>[0.5, 1)</td>
<td>0.149882</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td>(P(Z)=0.532)</td>
</tr>
<tr>
<td>[1, 1.5)</td>
<td>0.091848</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>(P(PL)=0.220)</td>
</tr>
<tr>
<td>[1.5, 2)</td>
<td>0.044057</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>(P(PH)=0.014)</td>
</tr>
<tr>
<td>[2, 2.5)</td>
<td>0.01654</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td>(P(NH)=0.014)</td>
</tr>
<tr>
<td>[2.5, 3]</td>
<td>0.00486</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>(P(NL)=0.220)</td>
</tr>
</tbody>
</table>

Table 1. Probability function of random variable \(X_t \), fuzzy sets representing linguistic values \(L(Y) \) of the linguistic random variable \(Y_t \) and probability distribution \(P(Y) \).
name ‘Increment at moment \(t \)’ has been assumed, with the set of its linguistic values:
\(L(Y) = \{ \text{negative high NH, negative low NL, zero Z, positive low PL, positive high PH} \} \). The linguistic values are represented by respective fuzzy sets. The probability distribution of the linguistic random variable, \(P(Y) \), calculated according to (13) - (15), has been presented in Table 1.

Also, the second linguistic random variable, \(Y_{t-1} \), with the name ‘Increment at moment \(t-1 \)’ has been determined with the same set of linguistic values \(L(Y) \). Increments of the tested process are independent random variables, so conditional probabilities (probabilities of transitions) fulfill the relationship:
\[
P(Y_t / Y_{t-1}) = P(Y_t).
\]

The fuzzy knowledge base for the short memory stochastic process consists of the following, five file rules (25 elementary rules) with respective probabilities (according to Table 1):

\[
R^1: 0.014 (\text{If } Y_{t-1} \text{ is NH}) \text{ Then } (Y_t \text{ is NH}) 0.014
\]

Also (\(Y_t \) is NL) 0.220

Also (\(Y_t \) is Z) 0.532

Also (\(Y_t \) is PL) 0.220

Also (\(Y_t \) is PH) 0.014;

\[
R^2: 0.220 (\text{If } Y_{t-1} \text{ is NL}) \text{ Then } (Y_t \text{ is NH}) 0.014
\]

\[
R^5: 0.014 (\text{If } Y_{t-1} \text{ is PH}) \text{ Then } (Y_t \text{ is NH}) 0.014
\]

\[
\text{Also (} Y_t \text{ is PH) 0.014.}
\]

In the created rule base of the stochastic process, the same probability distributions for random variables, \(\Delta X_t \) and \(\Delta X_{t-1} \), have been assumed. It is result of the simplification, under the assumption of a constant time interval \(\Delta t = 1 \).

4.2 Exemplary fuzzy models constructed based on realizations of stochastic processes

4.2.1 Fuzzy model constructed based on data of a floating particle

In the object literature the problem of the fulfilling the Wiener process assumptions by empirical data is often raised, e.g. the expected values of empirical increments are non-zero or increments do not fulfill the criterion of probabilistic independence. These facts have been also observed based on data representing increments of one coordinate, \(\Delta x = x_t - x_{t-1} \), \(\Delta x \in [-3.3, 3.3] \subset R \), describing the behavior of the particle floating in some liquid. It was assumed, that data stand for the realization of a certain stochastic process \(Y(t) \). Also, the linguistic random variable \(Y_t \) has been determined, with the name ‘Increment at moment \(t \)’.
The set of the linguistic values, \(L(Y) = \{\text{negative high \(NH\), negative low \(NL\), positive low \(PL\), positive high \(PH\)\} \) has been assumed. In domain \(\chi \) of the process values, the linguistic values are represented by respective fuzzy sets. Also, second linguistic random variable, \(Y_{t-1} \), with the name ‘Increment at moment \(t-1\)’ has been determined with the same set of linguistic values \(L(Y) \). For the tested process, the criterion of independent increments is not fulfilled, thus, the conditional probabilities (probabilities of transitions) \(P(Y_t / Y_{t-1}) \) should be found.

The empirical joint probability of two linguistic random variables, \(P(Y_t, Y_{t-1}) \), has been calculated according to (16) - (19), based on the joint probability of numeric values of pairs, \(p(\Delta x_{t-1}, \Delta x_t) \), as well as, the assumed fuzzy events, representing the linguistic values \(L(Y_t) = \{\text{NH, NL, PH, PL}\} \) (Table 2). Marginal probability \(P(Y_{t-1}) \) is presented at the last row of the table. It is not a symmetrical distribution, the highest value of the probability, 0.39251, it is a probability that increments take the linguistic value ‘Positive Low’.

Conditional probabilities \(P(Y_t / Y_{t-1}) \), calculated according to (20) – (22) and presented in Table 3, may be treated as the transitions probabilities from fuzzy states \(\{\text{NH, NL, PL, PH}\} \) at moment \(t-1 \) to the particular fuzzy states at moment \(t \).

Table 2. Joint probability distribution, \(P(Y_t, Y_{t-1}) \), of linguistic random variables representing empirical set of increments at moments \(t \) and \(t-1 \)

<table>
<thead>
<tr>
<th>(L(Y_t))</th>
<th>(NH)</th>
<th>(NL)</th>
<th>(PL)</th>
<th>(PH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>0.0178</td>
<td>0.05355</td>
<td>0.10702</td>
<td>0.03572</td>
</tr>
<tr>
<td>PL</td>
<td>0.0060</td>
<td>0.06555</td>
<td>0.19024</td>
<td>0.09532</td>
</tr>
<tr>
<td>NL</td>
<td>0.0953</td>
<td>0.05955</td>
<td>0.02975</td>
<td>0.06555</td>
</tr>
<tr>
<td>NH</td>
<td>0.04765</td>
<td>0.03570</td>
<td>0.0655</td>
<td>0.0298</td>
</tr>
<tr>
<td>(P(Y_{t-1}))</td>
<td>0.16675</td>
<td>0.21435</td>
<td>0.39251</td>
<td>0.22639</td>
</tr>
</tbody>
</table>

Table 3. Conditional probability distributions \(P(Y_t / Y_{t-1}) \) of linguistic random variables

<table>
<thead>
<tr>
<th>(L(Y_t))</th>
<th>(\sum P(Y_t / Y_{t-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>1.00000</td>
</tr>
<tr>
<td>PL</td>
<td>1.00000</td>
</tr>
<tr>
<td>NL</td>
<td>1.00000</td>
</tr>
<tr>
<td>NH</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

\(\sum P(Y_t / Y_{t-1}) \)
The fuzzy knowledge base of the behavior of some particle, determined by changes of its coordinate Y_t, consists of four file rules (20 elementary rules) with respective probabilities, as follows:

- R^1: 0.16675 (If Y_{t-1} is NH) Then (Y_t is NH) 0.28575
 Also (Y_t is NL) 0.57150
 Also (Y_t is PL) 0.036
 Also (Y_t is PH) 0.10675;

- R^2: 0.21435 (If Y_{t-1} is NL) Then (Y_t is NH) 0.16655

- R^3: 0.22639 (If Y_{t-1} is PH) Then (Y_t is NH) 0.13163

- R^4: 0.22639 (If Y_{t-1} is PH) Then (Y_t is NH) 0.13163

Probabilities (weights) at the consequent stand for transitions probabilities.

4.2.2 Fuzzy model of the stochastic increments observed in some technological situation

In a certain technological situation some parameter of a non-homogeneous grain material was measured at discrete moments (Figure 1). It is assumed that observed values $X(n)$, $n=1,…,400$ represent realization of a certain stochastic process whose variance is high and changes are very quick. For human experts, engineers of the technological process, it is very
important to recognize a probabilistic character of the changes, especially the changes determined in linguistic categories, like: Positive Big, Positive Small, Zero, Negative Small, Negative Big. To determine characteristic of the process with fuzzy states, first, we have calculated the increments

\[DX(n) = X(n) - X(n-1) \]

and a joint probability distribution \(p(DX(n), DX(n-1)) \) of non-fuzzy values of the process. The range of the increments values, a real number interval \([-4.8, 4.8]\), has been divided into 14 disjoint intervals and the frequency of the occurrence of measurements in particular intervals has been determined. The disjoint intervals have been used for the description of membership functions of particular linguistic values of the set \(L\{DX(n)\} = \{NB, NS, Z, PS, PB\} \).

The empirical joint probability distribution of the linguistic random variables, \(P(L\{DX(n-1)\}, L\{DX(n)\}) \), has been calculated and presented in Table 4. In the last row, the marginal probability values of one linguistic random variable, are presented. It is almost symmetrical distribution, with the highest value of the probability, 0.6114, for the linguistic value of increments equal to ‘Zero’. Conditional probability distributions for particular linguistic values of the variable \(DX(n) \) have been also calculated and they represent weights of particular consequent parts of the rule-base fuzzy model (34). The model of the knowledge base consists of the following five file rules with weights:

R1: 0.6114 IF \((DX(n-1) \text{ IS } Z)\) THEN \((DX(n) \text{ IS } Z)\) 0.6450

- ALSO \((DX(n) \text{ IS } NS)\) 0.1945
- ALSO \((DX(n) \text{ IS } PS)\) 0.1462
- ALSO \((DX(n) \text{ IS } PB)\) 0.0113
- ALSO \((DX(n) \text{ IS } NB)\) 0.0030

R2: 0.2123 IF \((DX(n-1) \text{ IS } NS)\) THEN \((DX(n) \text{ IS } Z)\) 0.6739

- ALSO \((DX(n) \text{ IS } PS)\) 0.2032
- ALSO \((DX(n) \text{ IS } NS)\) 0.1114
- ALSO \((DX(n) \text{ IS } PB)\) 0.0111
- ALSO \((DX(n) \text{ IS } NB)\) 0.0004

R3: 0.1474 IF \((DX(n-1) \text{ IS } PS)\) THEN \((DX(n) \text{ IS } NS)\) 0.4258

- ALSO \((DX(n) \text{ IS } Z)\) 0.4181
- ALSO \((DX(n) \text{ IS } NB)\) 0.0791
- ALSO \((DX(n) \text{ IS } PS)\) 0.0714
ALSO \((DX(n) \text{ IS } PB)\) 0.0056

\[R4: \quad 0.0184 \text{ IF } (DX(n-1) \text{ IS } NB) \text{ THEN } (DX(n) \text{ IS } Z) \quad 0.6044 \]

ALSO \((DX(n) \text{ IS } PS)\) 0.2363

ALSO \((DX(n) \text{ IS } NS)\) 0.1263

ALSO \((DX(n) \text{ IS } PB)\) 0.0330

\[R5: \quad 0.0105 \text{ IF } (DX(n-1) \text{ IS } PB) \text{ THEN } (DX(n) \text{ IS } NB) \quad 0.4762 \]

ALSO \((DX(n) \text{ IS } NS)\) 0.4286

ALSO \((DX(n) \text{ IS } Z)\) 0.0952.

<table>
<thead>
<tr>
<th>(P(L{DX(n-1)}, L{DX(n)}))</th>
<th>(L{DX(n-1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L{DX(n)})</td>
<td>NB</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>PB</td>
<td>0.0051</td>
</tr>
<tr>
<td>PS</td>
<td>0.0115</td>
</tr>
<tr>
<td>Z</td>
<td>0.0017</td>
</tr>
<tr>
<td>NS</td>
<td>0.0001</td>
</tr>
<tr>
<td>NB</td>
<td>0</td>
</tr>
<tr>
<td>(P(L{DX(n-1)}))</td>
<td>0.0184</td>
</tr>
</tbody>
</table>

Table 4. Joint empirical probability distribution of two linguistic random variables representing increments

To determine the predicted value \(DX(n)=b^*\), for given value (crisp or fuzzy) \(DX(n-1)=a^*\), the reasoning procedure, described in 3.3 is used, e.g. for \(DX(n-1)=1.55\), predicted value is approximated as equal to \(DX(n)=0.30538\). This value depends on many parameters of the fuzzy model and the reasoning procedure. It is very useful to create the computing system with many options of changing the reasoning parameters. In Fig. 2 the predicted, mean values of the increments has been underlined by thick line.
Fig. 2. Realization of the stochastic processes of increments $DX(n), DX(n-1)$ and the predicted mean value

5. Conclusion and future works

In this chapter the new approach to fuzzy modelling has been presented. Knowledge base in the form of weighted fuzzy rules represents in the same time the probability distribution of the fuzzy events occurring in the statements. Considered examples show the creating a few simple models of stochastic increments processes. In the future, in modelling the Wiener process, the time dependent probability of the increments should be taken into account.

6. References

The robotics is an important part of modern engineering and is related to a group of branches such as electric & electronics, computer, mathematics and mechanism design. The interest in robotics has been steadily increasing during the last decades. This concern has directly impacted the development of the novel theoretical research areas and products. This new book provides information about fundamental topics of serial and parallel manipulators such as kinematics & dynamics modeling, optimization, control algorithms and design strategies. I would like to thank all authors who have contributed the book chapters with their valuable novel ideas and current developments.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
