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1. Introduction 

In the field of artificial intelligence, Neuro-Fuzzy (NF) refers to combinations of artificial 
neural networks and fuzzy logic and first time introduced in 1990s. Neuro-fuzzy results in a 
intelligent system that synergizes these two techniques by combining the human-like 
reasoning style of fuzzy systems with the learning and connectionist structure of neural 
networks. NF is widely termed as Fuzzy Neural Network (FNN) or Neuro-Fuzzy System 
(NFS) in the literature. NFS (the more popular term is used henceforth) incorporates the 
human-like reasoning style of fuzzy systems through the use of fuzzy sets and a linguistic 
model consisting of a set of IF-THEN fuzzy rules. The main strength of neuro-fuzzy systems is 
that they are universal approximations with the ability to solicit interpretable IF-THEN rules. 

The strength of neuro-fuzzy systems involves two contradictory requirements in fuzzy 

modeling: interpretability versus accuracy. In practice, one of the two properties prevails. 

The neuro-fuzzy in fuzzy modeling research field is divided into two areas: linguistic fuzzy 

modeling that is focused on interpretability, mainly the Mamdani model; and precise fuzzy 

modeling that is focused on accuracy, mainly the Takagi-Sugeno-Kang (TSK) model. 

The previous studies made full use of the advantages of the neural-network and the fuzzy 

logic controller and solved the different problems in suspension systems. Few researches 

involved combination of the two techniques to solve the time-delay and the inherent 

nonlinear nature of the Magneto-Rheological (MR) dampers in semi-active strategy for full 

car model with high degrees of freedom. In this chapter, four MR dampers are added in a 

suspension system between body and wheels parallel with passive dampers. For the 

intelligent system, fuzzy controller which inputs are relative velocities across MR dampers 

that are excited by road profile for predicting the force of MR damper to receive a desired 

passenger’s displacement is applied. When predicting the displacement and velocity of MR 

dampers, a four-layer feed forward neural network, trained on-line under the Levenberg–

Marquardt (LM) algorithm, is adopted. In order to verify the effectiveness of the proposed 

neuro-fuzzy control strategy, the uncontrolled system and the clipped optimal controlled 

suspension system are compared with the neuro-fuzzy controlled system. Through a 

numerical example under actual road profile excitation, it can be concluded that the control 

strategy is very important for semi-active control, the neuro-fuzzy control strategy can 
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determine voltage of the MR damper quickly and accurately, and the control effect of the 

neuro-fuzzy control strategy is better than that of the other control strategies. First have 

brief reviewed on modelling of a full car model and third section clearly reveals more 

detailed information about neuro-fuzzy strategy for the full-car model. Finally in sections 4 

and 5 the results will be presented and discussed. 

2. Full car model 

 In the full-car model, 11-DOFs is assumed, all wheels and passengers are dependent on 
each other and on the car’s body. It is assumed that each wheel has an effect on the spring 
and damper of other wheels, and two axles of vehicle are dependent. MR actuator is utilized 
to damp the effect of road profile on the passengers. Note that MR shock absorber is added 
between the axel and car’s body. In the full-car model, the effects of the rotations of the body 
around the roll and pitch axes are simulated. The suspension system using a full-car model 
has 11-DOFs, four of them for the four wheels, three for body displacement and its rotations 
and the last four for the passengers. Schematic of the full-car model with 11-DOFs and 
addition of the MR damper is shown in Fig. 1. 

 

Fig. 1. Full-car model with 11-DOFs 

where Mb, m1,  m2, m3, m4, m5, m6, m7 and m8 stand for the mass of the car’s body, mass of 
four wheels and mass of passengers, respectively. I1 and I2 are the moments of inertia of the 
car’s body around two axes. The terms k1, k2, k3, k4, k5, k6, k7 and k8 are stiffness of the 
springs of the suspension system and stiffness of the springs of passengers seat, 
respectively. The terms kt1, kt2, kt3 and kt4 are stiffness of the tires. The terms b1, b2, b3, b4, b5, 
b6, b7 and b8 are coefficients of car and passenger’s seat dampers. Then, br1, br2, br3 and br4 
are passive coefficients of the MR dampers, respectively. x1, x2, x3, x4, x5, x6, x7, x8, x9, φ and θ 
indicate the DOFs of the suspension system model. The terms xi1, xi2, xi3 and xi4 indicate load 
profile disturbance, respectively. These parameters are used to clipped optimal strategy 
which is considered as a desire to train neural network and tuning fuzzy memberships. 
Here optimal force is depending on all state variables (Zareh et al); therefore model with 
detail information is necessary. 
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2.1 Clipped optimal algorithm 

The clipped optimal control strategy for an MR damper usually involves two steps. The first 
step is to assume an ideal actively–controlled device and construct an optimal controller for 
this active device. In the second step, a secondary controller finally determines the input 
voltage of the MR damper.  

That is, the secondary controller clips the optimal force in a manner consistent with the 
dissipative nature of the device. The block diagram of the clipped optimal algorithm is 
shown in Fig. 2. 

The clipped optimal control approach is to append a force feedback loop to induce the MR 
damper to produce approximately a desired control force fc. The Linear Quadratic Regulator 
(LQR) algorithm has been employed both for active control and for semi-active control. 
Using this algorithm, the optimal control force fc for f, which is force generated by an MR 
damper. (Zareh et al) utilized clipped optimal algorithm for semi-active full car model. 

 

Fig. 2. Clipped optimal algorithm block diagram 

3. Neuro-fuzzy strategy using in semi-active vibration control 

Unfortunately, due to the inherent nonlinear nature of the MR damper to generate a force, a 
similar model for its inverse dynamics is difficult to obtain mathematically and also due to 
the nonlinearity of suspension system, its equations are complicated. Because of these 
reasons, a neural network with fuzzy logic controller is constructed to copy the inverse 
dynamics of the MR damper and suspension system.  

Neuro-fuzzy controller is an artificial neural network, which is used to aggregate rules and 
to provide control result for the designed fuzzy logic controller. Application of fuzzy 
inference systems as a Fuzzy Logic Controller (FLC) has gradually been recognized as the 
most significant and fruitful application for fuzzy logic and fuzzy set theory. In the past few 
years, advances in microprocessors and hardware technologies have created an even more 
diversified application domain for fuzzy logic controllers, which range from consumer 
electronics to the automobile industry.  
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Indeed, for complex and/or ill-defined systems that are not easily subjected to conventional 
automatic control methods, FLCs provide a feasible alternative since they can capture the 
approximate, qualitative aspects of human reasoning and decision-making processes. 
However, without adaptive capability, the performance of FLCs relies exclusively on two 
factors: the availability of human experts, and the knowledge acquisition techniques to 
convert human expertise into appropriate fuzzy if-then rules and membership functions. 
These two factors substantially restrict the application domain of FLCs. 

Consequently, a neural control design approach can usually be carried over directly to the 

design of fuzzy controllers, unless the design method depends directly on the specific 

architecture of the neural networks used. This portability endows us with a number of 

design methods for fuzzy controllers which can easily take advantage of a priori human 

information and expertise in the form of fuzzy if-then rules. The result of the above 

methodology is called Neuro-Fuzzy Control method. Neural and fuzzy logic controllers 

have been successfully implemented in the control of linear and nonlinear systems. 

Unlike conventional controllers, such controllers do not require mathematical model and 

they can easily deal with the nonlinearities and uncertainties of the controlled systems. Also, 

a Levenberg-Marquardt (LM) neural controller has been designed for variable geometry 

suspension systems with MR actuators.  

In the present research, an optimal controller Linear Quadratic Regulator (LQR) is designed 
for control of a semi-active suspension system for a full-model vehicle, using a neuro-fuzzy 
along with Levenberg-Marquardt learning and the results compared with Linear Quadratic 
Gaussian (LQG) (Zareh et al). The purpose in a vehicle suspension system is reduction of 
transmittance of vibrational effects from the road to the vehicle’s passengers, hence providing 
ride comfort. To accomplish this, one can first design a LQR controller for the suspension 
system, using an optimal control method and use it to train a neuro-fuzzy controller. This 
controller can be trained using the LQR controller output error on an online manner. 

Once trained, the LQR controller is automatically removed from the control loop and the 

neuro-fuzzy controller takes on. In case of a change in the parameters of the system under 

control or excitations, the LQR controller enters the control loop again and the neural 

network gets trained again for the new condition therefore it can ensure the robustness of 

strategy due to changes in excitations (Sadati et al). An important characteristic of the 

proposed controller is that no mathematical model is needed for the system components, 

such as the non-linear actuator, spring, or shock absorbers. 

The basic idea of the proposed neuro-fuzzy control strategy is that the forces of the MR 

dampers are determined by a fuzzy controller, whose inputs are the measured velocity 

response predicted by a neural network (Zh et al). The architecture of this strategy is shown 

in Fig. 3, which consists of two parts to perform different tasks. The first part is for the 

neural network to be trained on-line. The numbers of the sample data pairs are 3500, the 

training data pairs increase step by step during the entrance disturbance from road profile. 

To select the network architecture, it is required to determine the numbers of inputs, 
outputs, hidden layers, and nodes in the hidden layers; this is usually done by trial and 
error. Therefore, one hidden layer, with six nodes, was adopted as one of the best suitable 
topologies for neural network.  
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Fig. 3. Architecture of the neuro-fuzzy control strategy 

The neural network is trained to generate the one step ahead prediction of the displacement 

1
ˆ

k
x   and the velocity

1
ˆ

k
x  . Inputs to this network are the delayed outputs (xk+3, xk+2, xk+1, xk, 

ẋk+3, ẋk+2, ẋk+1, ẋk),  the delayed force which is predicted by fuzzy controller (fk+1), and the 
disturbance input (dk). At the initial time, the inputs of the network will be assigned the 
value of zero in accordance with the actual initial circumstance. Before online training, the 
network is trained off-line so as to obtain the weights that are as near to the desired value as 
possible (Yildirim et al). 

The second part is the fuzzy controller, whose input is the measured relative velocity across 

MR dampers. The disturbance can be calculated by road profile model. The output of the 

fuzzy controller is the control force of the MR dampers. The main aim of this part is to 

determine the control force of the MR dampers quickly in accordance with the input 

excitation. How to design the fuzzy controller will be explained in the following subsection. 

In order to reach this aim, it is required to predict the responses of passengers in accordance 

with the optimal responses.  

The third part is the feedforward neural network to be trained on-line to generate the required 
voltage of MR damper v. In fact, this part is the inverse dynamics model of MR damper. 

This block diagram is designed by authors using of combination of advanced works. In this 

strategy there are three neural networks. First is to mapping of suspension system. Second is 

inverse model of MR damper and third is forward model of MR damper. The difference 

between inverse and forward model is their inputs and outputs where the inputs of inverse 

model is outputs of forward model and vice-versa. All data that are used to training, testing 

and validating are LQR results because, they are optimal and our desired. 

As mentioned, due to the inherent non-linear nature of the MR damper, a model for inverse 

dynamics of MR damper is difficult to obtain mathematically. Because of this reason, a 

feedforward back propagation neural network is constructed to copy the inverse dynamics 

of the MR damper. This neural network model is trained using input-output data generated 

analytically using the simulated MR model based on clipped algorithm. Using this inverse 
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dynamics of MR damper, the required voltage signal v is calculated based on the desired 

control force fc, the velocity of MR dampers 
1

ˆ
k

x  , and the displacement of MR damper xk+1. 

The fourth part is the feedforward back propagation neural network to be trained on-line in 

order to generate the MR damper forces fMR. The inputs of this neural network are voltage 

signal v, the velocity of MR damper
1

ˆ
k

x  , and the displacement of MR damper
 
xk+1. The 

difference between inverse and forward model is in inputs and outputs. The outputs of 

inverse model are the inputs of forward model.  

The third and fourth part of the proposed neuro-fuzzy control strategy which is a three-
layer feedforward neural network consists of an input layer with 3 nodes, a hidden layer 
with 6 nodes, and output layer with one node. Determining the numbers of inputs, outputs, 
hidden layers, and nodes in hidden layers of these three neural networks is done by trial 
and error. For all neural parts some of the corresponded results that are obtained by LQR 
are used as a desire data and some others are used as a testing data. 

At the same time, the actual responses will feed back to the neural network and the weights 
and bias will be revised in real time. In this research, results from the optimal control history 
analysis method are used to simulate the actual measured responses. The errors between the 
predicted responses and the actual responses are used to update the weights of the neural 
network on-line. 

3.1 The neural network based on Levenberg-Marquardt (LM) algorithm 

The MR damper model discussed earlier in this research estimates the damper forces based 

on the inputs of the reactive velocity. In such case, it is essential to develop an inverse 

dynamic model that predicts the corresponding control force which is to be generated by 

dampers. 

Neural network is a simplified model of the biological structure which is found in human 

brains. This model consists of elementary processing units (also called neurons). It is the 

large amount of interconnections between these neurons and their capability to learn from 

data which makes neural network as a strong predicting and classification tool. In this 

study, a three-layer feed forward neural network, which consists of an input layer, one 

hidden layer, and an output layer ,as shown in Fig. 4, is selected to predict the responses 

with MR dampers. 

Here the networks are trained by LQR results (as a sample data). For example 

displacements, velocity and forces that are obtained by LQR are selected as a sample data 

for training and testing. Also target of networks are LQR results. For example in the second 

network (Inverse model of MR damper) the targets are voltages that obtained by LQR part 

of clipped method. 

The net input value netk of the neuron k in some layer and the output value Ok of the same 
neuron can be calculated by the following equations: 

 netk=∑ wjk Oj (1) 

 Ok=f(netk+θk) (2) 
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Fig. 4. The neural network architecture 

where wjk is the weight between the jth neuron in the previous layer and the kth neuron in 

the current layer, Oj is the output of the jth neuron in the previous layer, f(.) is the neuron’s 

activation function which can be a linear function, a radial basis function, and a sigmoid 

function, and yk is the bias of the kth neuron. Feed forward neural network often has one or 

more hidden layers of sigmoid neurons followed by an output layer of linear neurons. 

Multiple layers of neurons with nonlinear transfer functions allow the network to learn 

nonlinear and linear relationships between input and output vectors. In the neural network 

architecture as shown in Fig. 4, the logarithmic sigmoid transfer function is chosen as the 

activation function of the hidden layer. 

  Ok= f(netk+θk)=1/(1+e-( netk+θk)) (3) 

The linear transfer function is chosen as the activation function of the output layer. 

 Ok=f(netk+θk)= netk+θk (4) 

We note that neural network needs to be trained before it can predict any responses. As the 

inputs are applied to the neural network, the network outputs (.̂ ) are compared with the 

targets (.). The difference or error between both is processed back through the network to 

update the weights and biases of the neural network so that the network outputs match 

closer with the targets.  

The input and output data are usually represented by vectors called training pairs. The 

process as mentioned above is repeated for all the training pairs in the data set, until the 

network error converges to a threshold minimum defined by a corresponding performance 

function. In this research, the Mean Square Error (MSE) function is adopted (desired MSE is 

1e-5). LM algorithm is adapted to train the neural network (Zh et al), which can be written 

as a following equation: 
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 wi+1=wi-[(δ2E/δwi^2)+μI]-1(δE/δwi) (5) 

where i is the iteration index, δE/δwi is the gradient descent of the performance function E 

with respect to the parameter matrix wi, μ≥0 is the learning factor, and I is the unity matrix. 

During the vibration process, the neural network updates the weights and bias of neurons in 

real time in accordance with sampling pairs till the objective error is satisfied, i.e. the 

property of the system is acquired.  

As we know, the main aim of the neural network is to predict the dynamic responses of the 

system, and to provide inputs to the fuzzy controller and also data for calculating the 

control force of MR dampers. Thus outputs of the neural network are predictions of 

displacement 
1

ˆ
k

x   and velocity
1

ˆ
k

x  . In order to predict the dynamic responses of the system 

accurately, the most direct and important factors which affect the predicted dynamic 

responses are considered, i.e. the delayed outputs (xk+3, xk+2, xk+1, xk, ẋk+3, ẋk+2, ẋk+1, ẋk), the 

predicted force (fk+1), and the disturbance input (dk). LM algorithm is encoded in Neural 

Networks Toolbox in MATLAB software. 

3.2 Design of fuzzy controller 

The first step of designing a fuzzy controller is determining the basic domains of inputs and 
outputs. The desired displacement and velocity responses are chosen as inputs of the fuzzy 
controller. The output of fuzzy controller is the control force of the MR damper, whose basic 
domain is -700N – 300N same as the working force of the MR damper calculated using LQR 
(Zareh et al). 

The membership functions are usually chosen in accordance with their characters and 

design experience.  

For simplifying the calculation, triangular or trapezoidal functions are usually adopted as 

the membership functions. The triangular membership function is more sensitive to inputs 

than the trapezoidal form (Zh et al), in expectation that the control forces of the MR dampers 

are sensitive to excitations and responses, but in this case Gaussian and triangular forms are 

used because they have demonstrated better responses through trial and error. In this 

research, gaussian and triangular functions are adopted as the membership functions of 

velocity. The membership function curves of the velocity are shown in Figs. 5-8. (Relative 

velocity across dampers) 

 

Fig. 5. Membership function of front-left damper velocity 

www.intechopen.com



 
Intelligent Neuro-Fuzzy Application in Semi-Active Suspension System 

 

245 

 

Fig. 6. Membership function of front-right damper velocity 

 

Fig. 7. Membership function of back-left damper velocity 

 

Fig. 8. Membership function of back-right damper velocity 

Here, Sugeno inference engine with linear output is used, the main difference between 
Mamdani and Sugeno is that the Sugeno output membership functions are either linear or 
constant. It has led to reduction of computational cost because it does not need any 
defuzzification procedure. A Sugeno fuzzy model is computationally efficient platform that is 
well suited for implementation of non-linear associations through the construction of many 
piecewise linear relationships (Yen et al) .A typical rule in a Sugeno fuzzy model has the form: 

If X is A1 and Y is B1 then Z = p1*x + q1*y + r1, 

If X is A2 and Y is B2 then Z = p2*x + q2*y + r2, 
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where q1 and q2 are constant. One of the main advantages of Sugeno method is well suited 
to mathematical analysis and is also computationally efficient, but Mamdani method is well 
suited to human input and it is intuitive. The basic idea of the fuzzy rules is that the control 
force increases with the increasing velocity responses. In this research, OR function is MAX, 
AND function is MIN and the defuzzification method is chosen as the Weighted Average 
(wtaver) method. The structure of considered fuzzy controller is shown in Fig. 9.  

 

Fig. 9. The structure of fuzzy controller 

For defuzzification we apply centre of gravity for singletons (COGS). Since we are 

implementing a Sugeno type controller, the combined activation, accumulation, and 

defuzzification operation simplifies to weighted average, with the activation strengths 

weighting the singleton positions (Jantzen 2007). Weighted Average defuzzifier is illustrated 

in Fig. 10. 

 

Fig. 10. Sugeno-style rule evaluation  

 z1 =p1*x+q1*y+r1 (6) 
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 z2 =p2*x+q2*y+r2 (7) 

 Z=[w1*z1+w2*z2]/[ w1+w2] (8) 

The membership function curves of the force for front-left damper as a fuzzy output (force 
vs. velocity) is shown in Fig. 11. 

 

Fig. 11. Membership function of back-right damper velocity (force on vertical axis vs. 
velocity on horizontal axis) 

The rule base used in the semi-active suspension system shown in Table 1 with fuzzy terms 
derived by the designer’s knowledge and experience (because of shortage of space some of 
them are presented). 

Front-left Front-right Back-left Back-right Force 

1 mf3 1 2 1 

1 mf3 1 3 1 

1 mf4 2 3 6 

1 mf2 2 5 4 

2 mf6 1 5 6 

2 mf5 3 6 6 

3 mf6 2 1 8 

3 mf2 1 1 10 

4 mf5 3 1 1 

Table 1. Rule base 

4. Results 

The full-car model with MR damper and disturbance is modeled by the dynamic equations 
and state space matrices. One of the desired points of this study is to decrease the amplitude 
of passenger’s displacement, when the suspension system excited from the road profile. 
Therefore the effect of LQR and LQG controllers and neuro-fuzzy strategy are simulated for 
road excitation with calculated their amplitude, and then compared with each other. The 

www.intechopen.com



 
Fuzzy Logic – Controls, Concepts, Theories and Applications 

 

248 

displacement trajectories for front-right passenger’s seat that is excited by bumper under 
front left wheel are shown in Fig. 12. Notice that, in all graphs, time duration is selected for 
the best resolution and critical responses are happened when car strikes with bumper. 

The trajectories of neuro-fuzzy strategy show that this strategy reduces the amplitude of 
vibration lower than the passive system and also to some extent as well as optimal 
controllers; because displacement is predicted by feed forward neural networks.  

 

Fig. 12. Displacement of front right seat from front left wheel excite 

The primary oscillations are due to the less number of network input to train, on the other 

hand, there are not strong history in transient, therefore the transient part of response not as 

well as steady state part. The trajectory for the optimal force which produces the desired 

displacement is shown in Fig. 13. 

 

Fig. 13. Generated force by front right MR damper from front left wheel excited 
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One of the main advantages of using neuro-fuzzy, the control effort of dampers is less than 

LQR and LQG responses. Forces of neuro-fuzzy cannot follow optimal controller; because, 

optimal forces depend on twenty two state variables and the forces obtained by fuzzy part 

of neuro-fuzzy strategy depend on four state variables (relative velocity across MR 

dampers). The requirement voltage to receive optimal forces is shown in Fig. 14. 

The voltages are calculated using of neuro-fuzzy has a less oscillations, therefore it cause of 
save energy and cost. Performance of the network is shown in Fig. 15. 

 

Fig. 14. Requirement voltages to front right MR damper from front left wheel excited 

 

Fig. 15. Performance of the network 

5. Conclusion 

Usual suspension systems are utilized in the vehicle, and damped the vibration from road 

profile.Unfortunately, due to the inherent nonlinear nature of the MR damper to generate 
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force and suspension system, a model like that for its inverse dynamics is difficult to obtain 

mathematically. Because of this reason, a neural network with fuzzy logic controller is 

constructed to copy the inverse dynamics of the MR damper.  

In the proposed control system, a dynamic-feedback neural network has been employed to 

model non-linear dynamic system and the fuzzy logic controller has been used to determine 

the control forces of MR dampers. Required voltages and actual forces of MR dampers have 

been obtained by use of two feedforward neural networks, in which the first neural network 

and second one have acted as the inverse and forward dynamics models of the MR 

dampers, respectively. 

The most important characteristic of the proposed intelligent control strategy is its inherent 
robustness and its ability to handle the non-linear behavior of the system. Besides, no 
mathematical model is needed for calculating forces produced by MR dampers. 

The performance of the proposed neuro-fuzzy control system has been compared with that 
of a traditional semi-active control strategy, i.e., clipped optimal control system with LQR 
and LQR, through computer simulations, while the uncontrolled system response has been 
used as the baseline. 

According to the graphs that show above, the trajectories of neuro-fuzzy strategy can reduce 
the amplitude of vibration to some extent as well as optimal controllers with less control 
effort and oscillation. In addition, the neuro-fuzzy control system is more robust to 
process/sensing noises. 
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