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1. Introduction 

The Boreal region is indicated as the green areas in Figure 1, covering northern, central and 

southern boreal zones according to the definition of Hämet-Ahti (1981). 

 

 

Fig. 1. The green areas indicate the Boreal region as defined in this study. 

Nearly the entire agricultural area in the Boreal regions shown in Figure 1 lies in Canada 

(total of 68 million hectares; STATCAN, 2009). Sweden has about 2.6 million hectares 

(Jordbruksverket, 2011) and Finland 2.3 million hectares (TIKE, 2010). Most of Sweden’s 

agricultural area is, however, located in the southern part of the country, outside the Boreal 

region. 

2. Specific climate features of the Boreal region 

The length of the growing season is limited by late spring frosts, early autumn frosts and 

solar availability in the Boreal region (Mela, 1996; Olesen & Bindi, 2002). The length of the 

growing season is typically 180 days in the southern areas whereas in the northernmost 
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areas, where agricultural production occurs in the Boreal region, it is only 120 days (Mukula 

& Rantanen, 1987; ATLAS, 2009). 

A part of the annual precipitation falls as snow in the Boreal region, a significant part of 

which can be lost from agricultural fields as surface runoff when the snow melts.  Moreover, 

a part of the precipitation may be lost as evaporation or sublimation directly from snow 

(Perlman, 2011). Evaporation losses are considered to be small, however, at least according 

to a study conducted in Finland in the early 1970s (ref. Kuusisto 2010). 

When estimating how much water is available for crop growth in the Boreal region, it is 

reasonable to divide annual precipitation into two components, as shown in the schematic 

water balance figure (Figure 2). 

 

 

Fig. 2. A schematic representation of water balance in agricultural fields in the Boreal region. 

The total volume of water available for crop growth is determined by the water-holding 

capacity of the soil, contributed by precipitation, minus evaporation, runoff and drainage 

losses during the growing season. Depending on the soil type and structure, a small volume 

of water can be lost by deep percolation and some can be gained by capillary rise of water 

from deeper soil layers. Groundwater can be a significant water resource in soils with a 

shallow water table (Muellera et al., 2005). 

2.1 Precipitation and evapotranspiration 

Annual precipitation exceeds potential evapotranspiration (measured often with Class A 

evaporation pan) in Scandinavia and eastern and northern parts of continental Canada 

(Figure 3). Thus, annual water deficit is negative in large areas within the Boreal region 

(ATLAS, 2007; Wallen, 1966; Ilmatieteenlaitos, 2011; Järvinen, 2007).  
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It has to be noted that data from Canada did not include an estimate of evaporation during 
the period outside the growing season. This value can be about 10 % of the annual potential 
evapotranspiration (Wallen, 1966). Thus, adding it into our data would result in only minor 
changes in Figure 3. 
 

 

Fig. 3. Annual water deficit (potential evapotranspiration - precipitation) in the Boreal 
region. 

Despite the annual deficit being negative in the Boreal region, it can be positive during the first 
half of the growing season, for example, in the period from May to July (Pajula & Triipponen, 
2003): the average deficit is 100 – 250 mm in Finland during this period (Figure 4). 
 

 

Fig. 4. Average water deficit (potential evapotranspiration - precipitation) in Finland during 
May - July. 

www.intechopen.com



 
Water Quality, Soil and Managing Irrigation of Crops 

 

198 

The Atlas of Canada indicates that British Columbia and southern Alberta contain areas of 
severe moisture deficit at some times during most summers (ATLAS, 2007). Such seasonal 
drought affects agricultural production. For example, Hooli (1971) and Peltonen-Sainio et al. 
(2011) reported that early summer drought decreases yields of field crops in Finland. Spring 
sown crops in particular may suffer from drought during this period if soil water-holding 
capacity is low when root systems are not fully developed. 

2.2 Spring and autumn frosts 

Spring and autumn frosts represent a climatic risk for field crops grown in the Boreal region. 
Spring crops are sown in May and harvested in August – September, and frost during this 
period can damage crops. 
Solantie (1980) reported detailed data for frosts in Finland. It is common to have 3 night 
frosts in June in southern Finland, in areas away from lakes and the Baltic Sea. Frosts are 
even more common in northern Finland where there can be 4 night frosts in June. It is not 
common to have frost in July, but in August the risk of frost increases again. The average 
number of night frosts is 1.5 in southern Finland and 2.5 in northern Finland. 

3. Irrigation methods and possibilities 

Canada has most of the irrigated field area in the Boreal region, about one million hectares, 
which represents about 1.5 % of the entire agricultural area in Canada (ATLAS, 2007). The 
irrigated area in Sweden is about 55 000 hectares (about 2 % of all agricultural land, Brundell 
et al., 2008) and in Finland it is 88 000 hectares (4.4 % of all agricultural land, Pajula & 
Triipponen, 2003). 
It is not common practice to irrigate field crops (cereals, oilseed crops, potatoes, sugar beet, 
forage) in the Boreal region. For example, for field crops other than potato (Solanum 
tuberosum L.) and sugar beet (Beta vulgaris L. var. altissima), irrigated crops represented only 
1% of the total crop area in Sweden in 2006. In contrast, the entire area of potato for 
processing was irrigated in 2006. Also table potatoes (59 %) and sugar beet (16 %) were 
irrigated fairly often in Sweden (Brundell et al., 2008). Finnish reports indicate the irrigated 
area to be divided between crops such as cereals and sugar beet in a similar way as in 
Sweden, but exact data are difficult to locate (Pajula & Triipponen, 2003). Nevertheless, the 
irrigated area of potato is markedly larger in Sweden than in Finland.  
The situation in the Nordic region is opposite to that in Canada, where field crops comprise 
53 % of the irrigated area. Feed crops are the second most common crop to be irrigated (33 % 
of the irrigated area). It is less common to irrigate vegetables and fruits in Canada 
(STATCAN, 2009). 
Regardless of the application, a key set of resources determines the maximum return on 

investment (Holzapfel et al., 2009). At farm level, this means using available data on climate, 

water availability, soil, crop, economic and social circumstances, and evaluating the 

potential distribution system (Pláyan & Mateos 2006). Irrigation types include surface or 

flood irrigation, overhead, drip and sub-irrigation. 

3.1 Surface irrigation 

In surface irrigation, water moves over and across the land by simple gravity flow. The most 

widely techniques on surface irrigation are furrow irrigation and flood irrigation. These 

systems, however, are not common on field crops in Boreal region. 
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3.2 Overhead irrigation 

Overhead irrigation includes different types of sprinkler and centre-pivot irrigation systems 
that are used to supply water in a similar way to natural rainfall (Brouwer et al., 1988) and 
can be used for most crops. This does not set strict constraints on the slope or soil type of the 
field as long as the application rate is adjusted to avoid ponding and runoff. 
Sprinkler systems are used for 60 % of the irrigated area in Finland (Pajula & Triipponen, 
2003) and sprinklers and pivots are used for virtually all of the irrigated field and feed crops 
in Canada, whereas micro-irrigation is the method most commonly used for fruits and 
vegetables (STATCAN, 2009). 

3.3 Drip irrigation 

Drip or trickle irrigation uses slow flow of low pressure, well filtered water in a (permanent) 
network of small diameter polythene tubes that open near the root zone (Shock, 2006). 
According to the location of tubes in the soil, drip irrigation can further be divided as a 
surface drip and subsurface drip (Sammis, 1980). According to Shock (2006) drip irrigation 
can be used whether the water demand is high or low. 
Drip irrigation is considered to use water more efficiently than overhead systems (Shock, 

2006). In an experiment on potatoes in Sweden, there was no significant difference in water 

use between these methods, but water use efficiency was better in the drip system, 

producing 11 % higher total yield and 28 % more marketable ware potato yield (Wiklund & 

Ekelöf,2006). 

Drip irrigation is adaptable to irregularly shaped fields, it is not affected by wind, it can be 

designed so that the wheel traffic rows are dry to allow tractor operations at any time, and it 

can easily be automated (Shock, 2006). Precise application of nutrient is also possible using 

drip irrigation. Its disadvantages include high establishment, labour and consumables costs, 

as the fine tubes require inspection, maintenance and generally annual replacement 

(Forsman, 2006). 

3.4 Subirrigation 

Subirrigation is a method in which water is added below the soil surface into a controlled 

drainage system (Broughton, 1995), but is not as common as sprinkler irrigation. 

Subirrigation requires a flat field with a slope of less than 1-2% (Pajula & Triipponen, 2003) 

and sandy soil in which the capillary rise is high and soil permeability is sufficiently fast and 

uniform within a field (Geohring et al., 1995; Muellera et al., 2005). Optimum water table 

depth is related to soil type and crop grown on the field (Muellera et al., 2005). 

Gilliam & Skaggs (1986) listed five environmental benefits that derive from using 

subirrigation: 1) more complete use of fertilizers, 2) reduced nutrient losses, 3) reduced 

leaching of pesticides and herbicides, 4) stabilized crop production and 5) more food grown 

on flat land, thereby removing erosion-prone land from cultivation and increasing land area 

for forests, grasslands, wildlife habitats and recreational uses. Moreover, farmers may 

benefit from increased yields due to subirrigation. Among others, the studies of Drury et al. 

(1996) and Madramootoo et al. (2001) support the environmental issues listed by Gilliam & 

Skaggs (1986). Efficient control of nutrient losses requires a dual-level subirrigation system 

where there are separate pipes for drainage and irrigation water. Otherwise, there may be 

significant loss of water and nutrients when the system is switched from irrigation to 

drainage mode (Melvin & Kanvar, 1995). 
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Subirrigation may promote substantial yield increases if the field is suited to this irrigation 
method. Yield increases of 20 to 40 % have been reported for maize (Zea mays L.) and 
soybean [Glycine max (L.) Merr.] in humid areas (Broughton, 1995). 
Subirrigation and controlled drainage could be used more in the Boreal region (Pajula & 

Triipponen, 2003). For example, it was estimated by Puustinen et al. (1994) that 770 000 

hectares in Finland could be equipped with controlled drainage systems instead of the 

current 34 300 (Pajula & Triipponen, 2003). This last figure overestimates the current value 

of subirrigation, because although the drainage systems installed under most Finnish arable 

fields can fairly easily be used for water supply, this seldom happens in practice. The main 

barriers to using subirrigation are steepness of slope, soil types that do not transport water 

fast enough, and high construction costs (Pajula & Triipponen, 2003). 

3.5 Availability of irrigation water 

The Boreal region is characterized by areas in which there is no risk of water scarcity. 

Alcamo et al. (2000) determined this based on calculating the ratio of water withdrawals and 

water availability in different river basins. Water withdrawal includes all water that is taken 

from rivers/lakes, evaporation and deep percolation. Water availability is determined as a 

sum of annual runoff plus shallow groundwater recharge. The Boreal region has low ratio 

values, in the 0 – 0.1 range, which means there is enough water for domestic, industrial and 

agricultural use according to Alcamo et al. (2000). 

Annual precipitation usually exceeds potential evapotranspiration in the Boreal region 

(Figure 3), which means that surface water is usually available for irrigation. This 

assumption is supported by a survey made in Sweden that reported surface water being the 

most common source (53 %) for irrigation (Brundell et al., 2008). Groundwater was used by 

31 % of the farms that irrigated, and stored water was used by 16 % of the farms. However, 

another Swedish study reported the percentage of farms using surface water to be much 

higher, 80 % (Anonymous, 2007). Surface water was the most common source (37 % of the 

farms that irrigated) of irrigation water also in Canada (STATCAN, 2009). However, it was 

almost as common to use off-farm water (34 %). Underground water or well water was a 

fairly common source for irrigation (21 %). 

Local conditions markedly affect the availability of irrigation water in a specific field. 

Irrigation costs increase rapidly when the distance of the field from the irrigation water 

source increases. The difference in altitude between field and water source has even more 

effect on the costs (e.g., Dumler et al., 2007). Therefore, the availability of irrigation water 

that is accessible at reasonable cost has to be estimated separately for each field. 

4. Effect of short drought periods on crop development, growth and yield 

The drought periods are usually short in the Boreal region, lasting for two to four weeks. 

However, in rainfed areas, even such a short period without rain can result in yield losses 

related to water deficit. The southern areas in Finland, especially the south and west coasts, 

are prone to spring droughts. The drought periods can sometimes occur after mid-summer, 

during the grain filling period. Boyer (1982) stated that drought is one of the most yield-

limiting factors worldwide. Peltonen-Sainio et al. (2011) estimated that on average short 

drought periods have caused yield losses of 7-17 % in Finland within the past 30 years. 

www.intechopen.com



 
Irrigation of Field Crops in the Boreal Region 

 

201 

4.1 Early season drought and irrigation 

Water deficit early during the season, in the spring, affects the emergence of spring-sown 
crops. Seeds either do not germinate or the germination processes are interrupted if there is 
not enough water in the surrounding soil. This results in formation of uneven plant stands 
(Figure 5) and causes both reduction in yield and quality. In sparse plant stands weeds have 
more space for growth, and for example in the case of cereals, if additional tillers are formed 
the grain size is reduced in them in comparison with in the main culm, and the tillers reach 
maturity later than those of the main culm. At later stages, during vegetative growth of 
cereals, water deficit affects the solar energy capture capacity of cereals, mainly decreasing 
the fraction of photosynthetically active radiation intercepted, but also radiation use 
efficiency (Olesen et al., 2000). In general, the amount of vegetative biomass at the time of 
anthesis is related closely to the final number of grains (reviewed in Passioura & Angus, 
2010). For spring cereals, long coleoptiles and vigorous seedling emergence are important 
traits in Boreal conditions, where there is uneven precipitation and a short growing season 
(reviewed in Mäkelä et al., 2008).   
  

 

Fig. 5. Seeds germinate unevenly or germination processes are interrupted in dry soil, 
resulting in uneven and sparse plant stands (A). Uniform and vigorous plant stands develop 
when soil moisture, among other factors, is optimal for germination (B).  

In spring barley (Hordeum vulgare L.), early season water deficit reduced both the sink and 
source capacity of plants through decrease in photosynthesis and thereby dry weight 
accumulation and number of grains (Rajala et al., 2011). According to Jamieson et al. (1995), 
a water deficit related decrease in dry weight accumulation of barley during the early 
phases of growth is mainly due to reduced radiation use efficiency, which does not recover 
completely after stress relief. In oat (Avena sativa L.), vegetative growth was limited most 
due to early occurrence of a water deficit, which was related to decrease in gas exchange 
and increase in osmolyte synthesis, e.g. proline (Peltonen-Sainio & Mäkelä, 1995).  
Water deficit occurring at an early stage can, however, have more wide-ranging effects. In 
wheat (Triticum aestivum L.), pre-anthesis water deficit significantly increased floret abortion 
and formation of sterile florets (Rajala et al., 2009). Also, depending on cultivar, pollen 
fertility can decrease by over 50 % when wheat is exposed to a water deficit (Briggs et al., 
1999). Saini & Aspinall (1981) reported that water deficit induced formation of shrivelled 
anthers and non-viable pollen. Even a short duration of water deficit at the young 
microspore stage induces sterility in wheat, whereas ovaries are not affected (Ji et al., 2010). 
Supply of assimilates seemed to be closely connected to floret abortion and formation of 
sterile florets (Rajala et al., 2009). In drought-stressed wheat, the sugar delivery to the 
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reproductive organs, for example pollen grains, is limited, resulting in absence of starch 
(Saini & Westgate, 2000). However, Lalonde et al. (1997) stated that this was merely a 
consequence of earlier changes such as suppression of invertase activity, triggering sterility 
and delayed or premature degeneration of male cells. In small-grain cereals, determination 
of grain size begins already before anthesis, during sporophyte development, whereas grain 
number is controlled throughout spike development, at the earliest stage of male 
gametophyte formation (Ji et al., 2010).  
Spring oilseed rape [Brassica napus L. ssp. oleifera (DC.) Metzg.] responded to early season 
water deficit with decreased leaf area, which was later also observed as halved dry matter 
by the time of flowering (Mogensen et al., 1996). The early season stress affected also the 
seed quality of oilseed rape, seed protein content and glucosinolate concentration increasing 
markedly in stressed plants (Jensen et al., 1996). The increase in glucosinolate concentration, 
from approximately 12 to 20 µmol g-1, was in relation to plant water status, whereas the 
protein content probably increased after active uptake of nitrogen followed by transport into 
seed after growth retardation (Jensen et al., 1996). Winter turnip rape [Brassica rapa L. ssp. 
oleifera (DC.) Metzg.] is most sensitive to water deficit during flowering. Water deficit at the 
flowering stage caused over 100 growing degree days later maturity, 15 % lower seed oil 
content, and 64 % lower yield than in a well-watered control (Tesfamariam et al., 2010).  
Cool-season grain legumes grown in the Boreal region are rather drought sensitive; faba 
bean (Vicia faba L.) being the most sensitive (F.L. Stoddard, personal communication). 
Furthermore, the European faba bean genotypes are more drought sensitive than genotypes 
from North Africa and Latin America (reviewed in Stoddard et al., 2006). The differences 
between genotypes in drought tolerance are marked. Some have high water use efficiency, 
indicating good capacity for photosynthetic maintenance and transpiration efficiency, some 
are able to adjust the leaf temperature, and thus stomatal conductance, more efficiently 
according to prevailing conditions (reviewed in Khan et al., 2010). Unlike cereals and oilseed 
crops, legumes have Rhizobium in their root nodules, which fix nitrogen. Drought limits the 
number of nodules in faba bean roots (reviewed in Serraj et al., 1999) and thus decreases 
further the nitrogen availability for the crop. All the steps of establishment of Rhizobium-
legume symbiosis are sensitive to water deficit. This can be related to limited growth and 
movement of Rhizobium in soil during drought, thus restricting the infection process needed 
for nodule formation. The root hair infection and formation of infection threads is also 
sensitive to water deficit (reviewed in Serraj et al., 1999). Moreover, the supply of 
carbohydrates from the plant to the Rhizobium decreases due to decreased photosynthetic 
activity of the legume (Gálvez et al., 2005). 
White clover (Trifolium album L.) is one of the most drought sensitive components of 
pastures (Skinner et al., 2004). In pastures, irrigation increases the number of tillers of 
grasses and the longevity of clover and its dry mass yield, the increment being higher the 
older the clover pasture. The main reason for the success of clover is increased stolon 
formation induced by irrigation (García et al., 2010). 
Potato is sensitive to water deficit and soil water availability is considered as a major limiting 
factor in its production and quality (Phene & Sanders, 1976). Water deficit easily leads to 
significant yield and quality losses. In trials at Potato Research Institute in Finland in 1989-1995 
and 1999-2002, irrigation increased tuber yield, starch yield and marketable ware potato yields 
by 9.1 %, 9.2 % and 22.2 %, respectively (Potato Research Institute, unpublished data). On the 
other hand, over-irrigation promotes diseases as well as leaching of nutrients and pesticide 
residues towards groundwater (Pereira & Shock, 2006). In particular, late irrigation at the 
senescence may increase risks of tuber diseases (Wikman et al., 1996). 
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Water has a definitive influence on tuber bulking (Wikman et al., 1996). Especially during 
mid-bulking, three to six weeks after tuber initiation, potato needs an even supply of water 
(Scherer et al., 1999). Water deficit during tuber bulking usually affects total tuber yield 
more than quality (King & Stark, 1997). 
On average, stored soil and spring moisture supplies are adequate from planting to tuber 
initiation. Lack of water before tuber initiation reduces tuber set per stem (MacKerron & 
Jeffries, 1986). Dryness at the tuber initiation phase decreases tuber number (King & Stark, 
1997; Scherer et al., 1999). In Finnish conditions, the most decisive phase on tuber formation 
is about 40 days after planting. Effects on the final tuber yield, however, are seldom clear in 
these phases (Wikman et al., 1996). 
Early season drought is also known to shorten the developmental phases of cereals (Figure 
6). In triticale (Triticosecale), the phase from emergence to anthesis and to maturity was 
reduced both in calendar days and in thermal time. The acceleration of development was 
probably related to a water-deficit induced increase in canopy temperature of 1.3 °C 
(Estrada-Campuzano et al., 2008). Water deficit results in stomatal closure, and thus 
decreased gas exchange and transpiration, which decreases the cooling inside leaf cells and 
leads to increased temperature in leaf tissues. Water deficit affects not only the growth and 
development of aerial plant parts but also the roots. The seminal roots are shorter and the 
root volume is lower in cereals, such as barley (Sahnoune et al., 2004), wheat (Guedira et al., 
1997), and oat (Larsson & Górny, 1988) when grown under water deficit. In barley, root 
growth was restricted mostly in deeper (> 30 cm) soil layers (Sahnoune et al., 2004).  
 

 

Fig. 6. Water deficit hastens the development of cereals. Non-irrigated wheat reached 
anthesis stage (A, B), whereas irrigated wheat (C, D) was not yet at heading stage on 2 July, 
2011.  

A common problem in the Boreal region, connected to early season drought, is inhibition of 
early tillering, which can result in formation of late tillers after rainfall at anthesis (Mäkelä & 
Muurinen, 2011). These tillers produce spikes which, however, reach maturity several weeks 
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later than the majority of the spikes (Figure 6), causing delays in harvesting, increases in 
drying costs, and quality losses due to sprouting or immature grains (Kivisaari & Elonen, 
1974). According to Kivisaari & Elonen (1974), irrigation of spring barley at an early growth 
stage (twice 30 mm) significantly decreased moisture content at harvest, number of 
immature grains and late tiller formation. Even though the number of spikes per plant 
decreased, single grain weight, number of grains per spike and thus, grain yield, increased 
significantly. The final increase in grain yield was nearly 70 %. 
 

 

Fig. 7. Non-irrigated winter wheat cv. Olivin (A) stand includes late-formed tillers, which 
are still green, whereas the main crop has already reached maturity. Irrigated crop (B) has 
reached maturity evenly. 

Irrigation of spring wheat (35 mm) at the vegetative stage increased the number of spike-
bearing tillers and grain yield (Table 1) and decreased the formation of tillers at later growth 
stages (Figure 7). However, single grain weight, harvest index and number of grains per 
spike were not significantly different between irrigated and non-irrigated wheat. In the 
spring, the duration from seeding to anthesis can be lengthened with irrigation by five to 
seven days (Cutforth et al., 1990), allowing more time for accumulation of vegetative mass 
and formation of floret structures.  
 

Location 
Cultivar 

Grain yield
g m-2 

Single grain weight
mg 

Grains 
per spike 

Spikes 
per m2 

Harvest 
index 

Location 1, Amaretto      

Irrigated 809 38.4 29 729 0.45 

Non-irrigated 406 33.9 27 445 0.42 

SEM (df 5) 64.7 2.1 0.7 49.6 0.035 

Location 2, Amaretto      

Irrigated 603 41.5 20 738 0.53 

Non-irrigated 359 39.5 15 622 0.52 

SEM (df 5) 33.5 0.62 1.5 48.5 0.009 

Table 1. Grain yield, number of grains per spike, single grain weight, number of spikes per 
m2 and harvest index for irrigated and non-irrigated spring wheat cv. Amaretto in 2011 at 
two different locations (Location 1, Laukka 60 15’ 00’’ N, 23 05’ 00’’ E, alt. 14.0 m and 
Location 2 Tamminiemi, 60 24’ 00’’ N, 25 40’ 00’’ E, alt. 23.5 m). Plant stands were irrigated 
(30-35 mm) once at tillering stage.  
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It also should be pointed out that in coastal areas of Finland, irrigation is sometimes needed 
to enhance the germination of autumn-sown winter cereals. 

4.2 Late season drought and irrigation 

Late season drought affects the grain-filling period of both spring and winter cereals. After 
anthesis, water deficit mainly caused decreases in grain yield and fewer grains in barley 
(Rajala et al., 2011). At that stage, the limited availability of water and assimilates affects the 
translocation processes, from sources to sinks, filling grains. In oat, however, water deficit at 
post-anthesis mainly decreased the number of grains (Peltonen-Sainio & Mäkelä, 1995), 
similarly to wheat (Rajala et al., 2011), probably due to limited source capacity. Fábián et al. 
(2011) showed that water deficit occurring after pollination, during early grain development 
stage, decreases the embryo size and increases the degradation of cell layers surrounding 
the ovule. It also affects the distribution of starch granules A and B, favouring the A-type. 
Similarly as for drought occurring early in the season, late season drought also shortens the 
grain-filling period (Fábián et al. 2011), thus decreasing the grain yield by limiting the length 
of assimilate transport to grains. 
A wet winter may increase the drought vulnerability of winter cereals. As a response to 

waterlogging, aerenchyma-forming nodal roots located in the top 20 cm develop at the cost 

of deeper seminal roots. During water deficit in the summer, the nodal roots cannot extract 

water from the deep soil layers, which multiplies the drought effect and grain yield losses 

(Dickin & Wright, 2008). In general, root growth is reduced under water deficit, but the 

reduction is more severe and permanent after anthesis than before terminal spikelet 

formation. This effect is cumulative at the grain-filling stage, since water uptake rates of 

roots decrease in relation to crop life (Asseng et al., 1998). 

Stem reserves stored prior to anthesis have been considered as an important source of 

assimilates to maintain grain-filling processes, especially in environments with terminal 

stress, where the contribution of stem reserves can be as high as 90 % of the final yield 

(Asseng & Herwaarden, 2003). Foulkes et al. (2007) reported that stem reserves correlated 

positively with grain yield also in Britain, where rainfall is unpredictable, as it is in the 

Boreal region.  

In spring oilseed rape, water deficit occurring during the seed filling stage had no effect on 

total dry matter but decreased the number and size of seeds. Stressed plants also had fewer 

siliquee in comparison with well-watered plants (Jensen et al., 1996). The explanation was 

offered by Richards & Thurling (1978), who found that in oilseed rape dry weight 

accumulation before flowering was the major factor affecting seed yield when water deficit 

occurred after flowering, whereas in turnip rape dry weight accumulation after flowering 

was more important. However, Tesfamariam et al. (2010) found that water deficit during the 

seed-filling period hastened maturity over 100 growing degree days. Flower dropping 

caused by water deficit limits the grain yield in grain legumes. It decreases the number of 

sinks and may cause feedback inhibition of photosynthesis. On the other hand, poor 

carbohydrate translocation to the reproductive sinks may limit both seed size and number 

(Tesfaye et al., 2006).  
Water deficit limits sugar beet root and sugar yield and quality throughout Europe (Hoffman 
et al., 2009), even though it has been commonly considered to be a drought tolerant crop 
(Vamerali et al., 2009). Water deficit decreases the processing quality of roots since the 
potassium and -amino nitrogen concentrations increase due to osmotic adjustment and 
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nitrogen metabolism (Bloch & Hoffmann, 2005). It also affects the decay of sugar beet fibrous 
roots, which form a dense and deep system, even though their fraction of biomass is 3 - 10 % of 
the total biomass (Brown et al., 1987). Under water deficit the longevity of fibrous roots 
increases. Life span of roots is longest at a depth where there is least water available. This 
decreases the cost of carbon for renewal of roots (Vamerali et al., 2009).  
In sugar beet, water deficit decreased the leaf lifespan by 20 days and net photosynthesis of 

leaves. Moreover, the photosynthesis of mature leaves could not fully recover from water 

deficit (Monti et al., 2007), decreasing the ability of the crop to capture solar energy, and 

thus leading to decreased root and sugar yield. According to Ober et al. (2005) the sugar beet 

ideotype for environments with limited water availability should be able to maintain a 

green and succulent canopy late into the season and thus have low leaf senescence and 

specific leaf weight as well as high transpiration rate and ability to use water from deep soil 

layers. That will ensure good resource capture ability of the crop and good yield. For sugar 

beet, late season irrigation induces formation of deep roots (>1 m) and reduction of 

penetration resistance in deep soil due to irrigation may further induce root growth 

(Vamerali et al, 2009). Camposeo & Rubino (2003) stated that low interval drip irrigation of 

sugar beet can increase the root:shoot ratio by 35 % and thus result in yield increases. In 

Sweden, irrigation throughout the growing season increased the root yield almost 14 t/ha 

and sugar yield by 2.6 t/ha. Late season irrigation increased root yield by 9.6 t/ha and sugar 

yield by 1.8 t/ha. Irrigation did not affect markedly the root quality (Persson, 1993). In 

Finland, late season irrigation increased root yield by 18 t/ha and sugar yield over 2.5 t/ha 

(Erjala, 2002). 

5. Effect of frost on crop development, growth and yield 

Spring and autumn frost can occur every now and then in the Boreal region, causing yield 

losses. To avoid this, farmers have to delay sowing spring crops and use early maturing 

cultivars. Thus, the growing season is limited and leads to indirect yield losses. Frosts can 

damage spring crops in particular. Frost damage occurs in the spring most typically, but 

sometimes also in the autumn. This can be explained by the farmers’ experience and 

knowledge-based selection of cultivars with adequate growing time. 

5.1 Spring frosts 

The early vegetative stage of spring crops is vulnerable to frosts (Andrews, 1987). Most 

severe damage caused by spring frosts occurs usually in sugar beet and oilseed brassica 

crops, when the entire canopy can be killed (Figure 9). In these species the apical bud is 

located over the insulating soil surface and is thus sensitive to damage. In cereals such as 

oat, wheat, barley and maize, the apical bud is located below the insulating soil surface and 

is not easily damaged. Frost damage mainly slows down biomass accumulation of cereals 

due to decreased photosynthesis following membrane leakage and reduced mesophyll 

conductance, decreased photosynthetic leaf area, and thus causes yield decrease (Andrews, 

1987). According to Gusta & O’Connor (1987), frost also slows down the development rate 

of oilseed rape and mustard (Sinapis alba L.) by approximately nine days and spring cereals 

by up to ten days. On the other hand, McKenzie et al. (1982) reported a reduction in number 

of days to heading in barley after frost damage and concluded that it was due to response to 

prevailing photoperiod, temperature and soil moisture.  
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Fig. 9. Spring frost damage in A) sugar beet and B) barley. Some of the sugar beet plantlets 
have been completely destroyed by frost. The apical bud of sugar beet is the uppermost part 
of the plant and thus sensitive to damage. Barley survives the frost even though the leaves 
are damaged because the apical bud is sheltered below the soil surface during the vegetative 
stage. 

Gusta & O’Connor (1987) found that there were no cultivar differences in frost tolerance for 
mustard and oilseed rape, but the developmental stage did affect the tolerance. Plantlets 
having 4 – 6 leaves were 1 – 2 °C more frost tolerant than plantlets at the cotyledon stage. 
Frost tolerance of turnip rape is significantly improved already after a two-day hardening in 
the field, in terms of death of unhardened plantlets after a night frost and survival without 
damage of hardened plantlets (K. Pahkala, personal communication). However, hardening 
resulted in reduced plant height and leaf area. The cultivar differences in growth response 
to hardening as well as in frost (-5 °C) tolerance were significant. During hardening the 
hexadecatrienoic acid (16:3) concentration of leaves increased, whereas there was no change 
in -linolenic acid (18:3) concentration (Pahkala et al., 1991). 
Among spring cereal species at the two-leaf stage, oat is most frost sensitive and wheat most 
frost tolerant (Gusta & O’Connor, 1987). However, at anthesis, barley is most frost tolerant, 
probably as it is pollinated in the boot (Passioura & Angus, 2010). McKenzie et al. (1982) 
found significant differences among spring barley cultivars in frost tolerance when plants 
were subjected to -5.6 °C at the two-leaf stage. In wheat, spring frost at the two-leaf stage 
increased the number of spikes and delayed maturity for one to ten days. The delay in 
maturity was less obvious in barley and wheat. Frost treatment increased wheat yield but 
tended to decrease the barley and oat yield (Gusta & O’Connor, 1987). In Finland, barley has 
been considered to be more frost tolerant than wheat and usually frost has induced 
formation of spike-bearing tillers in barley. According to McKenzie et al. (1982), it seems 
that early maturing cultivars are more sensitive to frost than late maturing cultivars. Cool-
season grain legumes are tolerant to frost at the vegetative stage, but pollen and flower 
structures are sensitive to low temperatures (Stoddard et al., 2006; Link et al., 2010; F. L. 
Stoddard, personal communication). 
In the Boreal region, winter rye can sometimes be damaged by spring frost at the time of 
pollination, causing incomplete fertilization of florets and leading to reduced grain yield. A 
low temperature of -4 °C caused disruption of membrane structures in wheat spikes at the 
heading stage (Marcellos & Single, 1984). That resulted in destruction of entire spikes on 
some occasions when temperature decreased 1 °C below a cultivar-dependent threshold 
temperature. On the other occasions, the spike consisted of both fertile and sterile spikelets. 
The occurrence of sterile spikelets did not depend on their position within the spike, 
whereas the higher order florets within the spikelet remained fertile in many cases 
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(Marcellos & Single, 1984). Marcellos & Single (1984) explained this phenomenon by 
discontinuous extension of ice nucleation within the spike. An ice front can move from a 
single nucleating point on a leaf at approximately 120 cm/min, but it is delayed by nodes in 
the stem, rachis and spikelets (Andrews, 1987). However, in wheat, cold stress similarly to 
drought, induces irreversible damage in pollen development at the young microspore stage 
and thus formation of infertile pollen grains (Ji et al., 2011). This damage is probably similar 
to that in pollen development in rye.  

5.2 Autumn frosts 

Autumn frosts can occur during the grain filling stage of cereals. The risk increases with the 
late maturing cultivars. Frost affects the biological processes of grain filling and thus the 
grain weight remains low, the grain is of poor quality and in some cases only empty hulls 
remain. Occurrence of frost has resulted in formation of shrivelled and shrunken wheat 
grains and in less severe cases blistering of the grain surface and thus, low grain weight 
during the grain filling stage (Cromey et al., 1998). Cromey et al. (1998) suggested that the 
damage was due to death of outer tissues of grains, most damage occurring in the testa and 
pericarp and to some extent in the endosperm. The pericarp and testa were crushed and the 
dead cells were in a loose arrangement in frosted grains. Starch accumulation was reduced 
severely, probably since the number of living endosperm cells able to take up carbohydrates 
was decreased. However, the surviving tissues could compensate to some degree for the 
damage. Cromey et al. (1998) concluded that the original aleurone layer could have been 
reformed from the outermost endosperm cells, and therefore the germination ability of the 
grains was maintained. When frost occurred at the early dough stage, the germination of 
wheat decreased from 98 % to 62 % and barley from 82 % to 40 %, and oat completely failed 
to germinate, but at late dough stage the germination was not affected in any of the species 
studied (Gusta & O’Connor, 1987). However, at the grain filling stage wheat seems to be the 
most frost tolerant cereal species in general (Gusta & O’Connor, 1987). In brassicas, the seed 
yield, and especially the oil quality, is most affected by frost (Gusta & O’Connor, 1987). 
Pahkala et al. (1991) reported a decrease in -linolenic acid and an increase in oleic acid 
concentration in ripening seeds of turnip rape after frost. Cool-season grain legumes are 
tolerant to frost at later stages of pod filling (Stoddard et al., 2006; Link et al., 2010; F. L. 
Stoddard, personal communication). 
Frost also severely affects the baking quality of the grains and in many cases results in 
rejection of the yield by the milling industry. Dexter et al. (1985) reported decreased visual 
quality, grain weight and flour yield and increased ash content and grain hardness of 
frosted wheat grains. Falling number was only slightly lower in frosted grain in comparison 
with unfrosted grains. Flour was darker the more severe the frost damage and protein 
content of the grains was similar to that of unfrosted grains. The increased hardness and 
maltose content of grains, as well as loss of gluten functionality, resulted in increased flour 
starch damage. However, no sprout damage was observed, even though the falling number 
decreased and maltose content increased (Dexter et al., 1985). The estimate of yield loss in 
small-grain cereals caused by autumn frost varied from 13 to 33 %, although it could have 
been even more due to loss of shrivelled grain during harvest (Cromey et al., 1998). 

5.3 Frost protection 

Irrigation is successfully used to prevent damage due to night frost. In direct protection, the 

temperature of the plant is kept above the freezing point by using latent heat fusion of 
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water. The crop is irrigated for the whole time that temperature is at or below zero, forming 

a film of ice on the plant which releases energy, preventing the tissue from freezing. 

Irrigation is started when temperature decreases to +1–0 °C, and it is stopped when the ice 

on the plant starts to melt (van der Gulik & Williams, 1988; Ingvarsson, 1992; Svensson, 

2003). In this way, irrigation can protect the crop until -7 – -8 °C (Ingvarsson, 1992). 

In the indirect method, the soil is irrigated on the morning of the day when frost is anticipated. 
Wet soil traps plenty of warmth during a day and releases it during the night, preventing frost 
damage up to -2 – - 3 °C. The shelter effect is highest about 30 cm above the soil surface, so 
indirect frost protection is suitable only for low growing crops (Ingvarsson, 1992). 
Irrigation as a direct protection against freezing temperature is mostly used in the 
production of berries and fruits where inputs are high (van der Gulik & Williams, 1988). In 
Boreal region, especially in Nordic countries, first-early potatoes are so valuable that 
irrigation generally is used to prevent frost damage (Wikman et al., 1996). 

6. Future challenges  

Alcamo et al. (2000) suggested that industrial and economic growth in regions under severe 
water stress (high water withdrawal compared with water availability) may be limited in 
the near future. Climate change may decrease water availability and thus increase water 
stress in those areas in the longer term. This means that agriculture will have to compete 
harder with domestic and industrial water use. The Boreal region will, however, remain a 
region without water stress in the longer term (Alcamo et al., 2000). 
Climate change will probably increase the frequency of drought spells also in the European 
Boreal region (Olesen et al., 2011). The changes are expected to be, however, smaller than in 
the southern parts of Europe. The increase in drought frequency would increase the need for 
irrigation also in northern areas. The risk of late spring frosts and early autumn frosts is 
likely to decrease due to climate change (Olesen et al., 2011). There is still an avenue for 
plant breeding in improving frost tolerance at the grain filling stage in cereals since genetic 
variation for the trait is known to exist (Marcellos & Single, 1984), as well as at early growth 
stages. In dry areas, especially in a Mediterranean climate, selection of drought tolerant crop 
species and cultivars has been considered to be one of the most important means of 
alleviating agricultural problems (Ashraf et al., 1992). Drought has not commonly been 
considered a serious problem in the Boreal region. However, in the future, more attention 
should be paid to methods and technologies for alleviating short-term drought problems.  
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