
14 

Conjugate Gradient Method Applied to  
Cortical Imaging in EEG/ERP 

X. Franceries1,2,4, N. Chauveau1,2,*, A. Sors3, M. Masquere4 and P. Celsis1,2 
1Inserm, Imagerie Cérébrale et Handicaps Neurologiques UMR 825, Toulouse 

2Université de Toulouse, UPS, Imagerie Cérébrale et Handicaps Neurologiques UMR 825, 
CHU Purpan, Place du Dr Baylac, Toulouse Cedex 9 

3LU 48 LERISM Laboratoire d’Etudes et de Recherche en Imagerie  
Spatiale et Médicale, UPS, Toulouse Cedex 4 

4Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et  
Conversion d'Energie), Toulouse Cedex 9 

France 

1. Introduction 

Electroencephalography (EEG) and/or Event Related Potentials (ERP) are powerful non-
invasive techniques which have broad clinical applications for epilepsy (Gloor et al., 1977; 
Hughes, 1989; Jaseja, 2009; Myatchin et al., 2009). It is also the case for psychiatric and 
developmental disorders (Pae et al., 2003; Ruchsow et al., 2003; Youn et al., 2003). There are 
developments in brain cognition research as for dyslexia (Horowitz-Kraus&Breznitz, 2008; 
Nuwer, 1998; Russeler et al., 2007), for visual treatment in face recognition (Chaby et al., 
2003; George et al., 1996). In all these situations, specific brain areas are activated, and 
inverse techniques based on ERP treatment can help to estimate them. Techniques based on 
EEG/ERP are known to be incontestably inoffensive and cheap. This explains why they are 
often used and are still of great interest in medicine. The optimization of such medical tools, 
in research on brain cognition and/or as clinical tools, often requires knowledge of the intra-
cerebral current sources. In EEG/ERP, this information can be obtained by solving of the so-
called “inverse” problem consisting in finding the localization of the spatio-temporal intra-
cerebral activity from scalp potential recordings. Various methods have been proposed in 
the EEG/ERP literature for computing this inverse problem. 

Although scalp potentials were first recorded by Hans Berger in 1929 (Berger, 1929), the 
first inverse problem approach was introduced by Cuffin et al. (Cuffin&Cohen, 1979) in 
both MEG and EEG, followed by Hämäläinen et al. in 1984 (Hämäläinen&Ilmoniemi, 
1984) in MEG. They later extended and increased the performance of the inverse approach 
applied to MEG (Hämäläinen&Ilmoniemi, 1994). The method was based on the Euclidean 
norm, which estimates the shortest vector solution in the source-current space 
(Hämäläinen&Ilmoniemi, 1994). This so-called Minimum Norm Estimate (MNE) is close 
to Tikhonov regularization (Tikhonov&Arsenin, 1977). However, the MNE solution is 
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known to misreport actual deep sources as being in the outermost cortex (Pascual-Marqui, 
1999; Pascual-Marqui et al., 2002). In order to compensate for the tendency of MNE to 
favour weak and surface sources, some authors have introduced a “weighting” matrix, 
calling this inverse method the Weighted Minimum Norm Estimate (WMNE) (Ding, 
2009). Then, derived from this reasoning, many inverse methods have been used and/or 
improved specifically for EEG/ERP, modifying and/or reducing the solution space. 
Baillet introduced a priori to the solution which can be seen as a weighting matrix using a 
Bayesian probability, based on anatomical or functional knowledge (Baillet&Garnero, 
1997). A Weighted Resolution Optimization (WROP), extending the Backus-Gilbert 
inverse method (Backus&Gilbert, 1968), has been developed (Grave de Peralta Menendez 
et al., 1997). The same technique has been modified, using biophysical and psychological a 
priori to the method called “Local Auto Regressive Average” (LAURA) (De Peralta-
Menendez&Gonzales-Andino, 1998). Other authors have considered that restricting the 
potential solution to the cortical surface is sufficient to make the brain localization, and 
that the potential maps on the cortex surface must be significantly smooth, which has 
given rise to the inverse methods called “LOw Resolution brain Electromagnetic 
Tomography” (LORETA) (Pascual-Marqui et al., 1994), sLORETA (Pascual-Marqui, 2002) 
which is close to the “Variable Resolution Electrical Tomography” (VARETA) method 
(Bosch-Bayard et al., 2001). The above list of inverse methods is not exhaustive; a wide 
range of techniques exist for deriving inverse methods for use in EEG/ERP and new 
developments continue to be relevant today. 

It should be noted that another type of inverse method has been developed at the same time. 
The main assumption is that the number of intra-cerebral current sources is limited (<10) and 
each source is punctual. Examples of such inverse methods are implemented in Brain Electric 
Source Analysis (BESA) (Scherg&Berg, 1991), using the so-called “simplex method” developed 
by Nelder and Mead (Nelder&Mead, 1965) and the Multiple Signal Classification (MUSIC) 
algorithm (Mosher et al., 1999). This type of method will not be discussed in our study, which 
only takes all cortex surfaces into account as possible locations of brain activity. 

Inverse methods are numerous and cover many domains, especially in physics and 
medicine. Recent research can be found that uses the CGM for problems such as the 
determination of local boiling heat fluxes (Egger et al., 2009), the spatial distribution of 
Young’s modulus (Fehrenbach et al., 2006), 3D elastic full-waveform seismic inversion 
(Epanomeritakis et al., 2008). Other applications can be found in other journals e.g., thermal 
diffusivity in plasma (Perez et al., 2008; Yang et al., 2008) and conductivity changes in 
impedance tomography (Zhao et al., 2007), proving, if it were necessary, the wide use of 
CGM in many different fields of application. Nevertheless, despite some attempts to use 
inverse methods such as the CGM in EEG/ERP, there is a lack of studies on the application 
of CGM to inverse problems in electroencephalography and/or event related potentials. 
Our contribution is to study the interest of applying CGM in EEG or ERP inverse problems. 

In this article, the dependence of the reconstruction quality on the number of electrodes and 
the noise level are studied using CGM in numerical simulation. The main goal of this work 
is to evaluate the quality of intra-cerebral source reconstruction using CGM and to compare 
these results to the Cortical Imaging Technique (CIT). The model parameters and the CGM 
are described in Sec. 2. Then, in Sec. 3, the theoretical reconstruction of cortical potentials, as 
if they had been solved from experimentally recorded scalp potentials, are presented and 
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discussed, considering various numbers of electrodes and noise levels. In Sec. 4, previous 
results are compared to those obtained by CIT, using the comparison tools MAG and RDM 
factors. The conclusions of this work are given in Sec. 5. 

2. Material and method  
2.1 Head model 

To localize brain activity from recorded scalp potentials in EEG/ERP, mathematical/ 
physical models that describe the geometrical and electrical properties of the head and the 
intra-cerebral current sources are needed. Generally, the head is described as a conductive 
volume with piecewise constant conductivity to represent the conductivity of each of its 
different parts. (Chauveau et al., 2004; He et al., 2002; Zhang et al., 2003). In our study 
(Figure 1), five compartments were used to construct the head model for the simulation, 
using the ICBM-152 (http://packages.bic.mni.mcgill.ca/tgz/) T1 template from Montreal 
Neurological Institute.  

Resolution was 2 mm. Conductivities were those used in our previous study on CIT 
(Chauveau et al., 2008). 

 
(Chauveau et al., 2005) 

Fig. 1. The five tissues (white and grey matter, cerebrospinal fluid, skull and scalp), after 
segmentation of a realistic head geometry (e.g. The T1 Montreal head template). 
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2.2 Method 

Determining scalp potentials from the simulation of intra-cerebral sources, called the 
forward problem, was an initial step towards the solution of the inverse problem, which 
aimed to find the sources at the origin of scalp potentials. Various numerical methods 
(Chauveau et al., 2005; 2005; Darvas et al., 2006; Franceries et al., 2003) have been proposed 
in the literature for computing the forward problem, including finite difference (FDM) 
((Mattout, 2002; Vanrumste, 2001), boundary element (BEM) (Crouzeix, 2001; Kybic et al., 
2005; Yvert et al., 1995) and finite element (FEM) (Darvas et al., 2006; Thevenet et al., 1991) 
methods, the last two being the most widely used. FEM with inclusion anisotropic 
conductivities have also been developed (Wolters et al., 2007). Although the simulations are 
usually time consuming, all give rise to numerical solutions and most of them are adequate 
to simulate brain activation. The Resistor Mesh Model (RMM) (Chauveau et al., 2005; 2005; 
Franceries et al., 2003), close to Finite Volume Method (FVM) first proposed by Patankar 
(Patankar, 1980), gives very stable results and is easy to set up. The RMM is made of 2 mm 
size voxel elements. A sparse square symmetric admittance matrix Y describes the model. 
Each element represents a resistor, completely determined by its geometry and its 
conductivity (Franceries et al., 2003). The elements are assembled at the nodes of the model. 
The forward solution for a vector of currents I is a vector of potentials V so that I = Y x V. 
The resolution is obtained by using a numerical technique as Newton Raphson algorithm. It 
should be noted that, in some very special and simple cases (e.g. spherical models), an 
analytical solution is available but this is not the case for realistic head geometry (de 
Munck&Peters, 1993; Yvert et al., 1997; Zhou&van Oosterom, 1992)  

2.3 Source configuration 

In EEG/ERP, brain activation was first simulated by one or several dipolar current sources. 
The brain activation of each source was modelled by a current dipole, as introduced in 1953 
by Plonsey (Plonsey&Barr, 1988). Other types of extended brain activity model have been 
proposed, e.g. ring extended sources to mimic the gamma frequency range EEG (Tallon-
Baudry et al., 1999) . 

In our study, we chose the current dipole model, which is widely used and well suited to 
the RMM. The intra-cerebral activation was simulated by four current dipoles, as used in a 
previous study on CIT (Chauveau et al., 2008), in order to make the comparison between 
CGM and CIT. A complex source configuration was used with 2 radial (RR = Radial Right, 
RL = Radial Left ) and 2 tangential ( TR = Tangential Right ant TL = Tangential Left) dipoles, 
placed on or close to the cortex surface. We chose these four dipoles because we wanted to 
test the inverse technique on two major points: radial or tangential dipoles (EEG being 
known to be most sensitive to radial), and symmetric dipoles (is the technique able to 
separate right and left activity?). 

2.4 Forward solution 

The RMM was applied to solve the forward problem with the previously described source 
configuration and a sample head model of five tissue compartments, using 2 mm voxels. 
The method computes potentials at all nodes (the RMN model contains 486,850 nodes and 
1,413,720 elements) inside the head model and at the head surface where the electrodes are 
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placed (i.e. on the patient’s scalp surface). The use of a large matrix made solving this 
complete forward problem time consuming. In EEG/ERP, in order to reduce time of 
resolution and to minimize hard disk space, a lead field (LF) matrix, linking the electrode 
potentials and the currents at the cortex surface is constructed, using the Helmholtz 
reciprocity principle (Helmholtz, 1853). This new matrix is smaller, reducing calculation 
time, but the potentials are computed only at the electrode nodes of the scalp surface. The 
forward problem of computing scalp potential at electrode position (Ve) from a source 
configuration (I) thus becomes a reduced linear system as follows:  

 
.Ve LF I

 (1) 

2.5 Inverse problem 

Generally, the inverse problem is solved by using the same matrix as the one for the 
numerical forward method (i.e. LF ), but using inversion. The LF  matrix is not square and 
so cannot be inverted directly. Many methods exist to solve this ill-posed inverse problem, 
detailed mathematically by Tikhonov (Tikhonov&Arsenin, 1977). Depending on the 
physical problem, the matrix conditioning and the optimal inverse method have to be 
adapted. Up to now, CGM have not been applied to EEG/ERP and the most widely used 
inverse method is the pseudo-inverse matrix, e.g. the Moore-Penrose technique:  

 1. ( . ) . .T TI LF Ve LF LF LF Ve    (2) 

where LF  and TLF  are respectively the pseudo-inverse matrix of LF  by Moore-Penrose 
and the transpose matrix of LF . 

In real measurements, data are corrupted by noise and a regularization technique has to be 
used in the inversion procedure. Zero-order Tikhonov regularization permits this problem 
to be solved: 

 

1( . . ) . .T TI LF LF I LF Ve  
 (3) 

  is a regularization factor depending on noise level, the optimal value of which is obtained 
at the angle of the associated L-curve (Carthy, 2003; Hansen, 2000; Tikhonov, 1963). 

In EEG/ERP, the Cortical Imaging Technique (CIT) is one of the possible inverse methods, 
which limits the space of solutions for current dipoles to the cortex surface. This method has 
been described and evaluated (Chauveau et al., 2008; He et al., 2002) and it provided the 
comparison technique used in our study.  

2.6 Conjugate gradient method (CGM) 

CGM is an iterative technique. Other iterative techniques have been proposed (Gorodnitsky 
et al., 1995; Hansen, 1994; Ioannides et al., 1990). Ioannides proposes continuous 
probabilistic solutions to the biomagnetic inverse problem, very efficient for deep sources. 
Gorodnitsky describes a recursive weighted minimum norm algorithm (FOCUSS). Hansen 
has developed regularization tools for Matlab: he describes the iterative regularization 
methods, and presents CGM as a process which has some inherent regularization effect 
where the number of iterations plays the role of regularization parameter. 
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CGM was first designed for solving linear equations thanks to a square symmetric matrix. 
The application of CGM can be extended to rectangular non symmetric matrix as lead fields 
are, for the inverse solution. That is this way we use CGM in this study. The following 
equations do not need specific hypothesis on the properties of the linear matrix. 

When using a gradient method (GM) in EEG/ERP, the inverse problem is replaced by an 
estimation problem in which the unknown source configuration kI is varied iteratively until 
the difference between the measured and calculated scalp potentials is as small as possible: 

 .k k kR Ve Ve Ve LF I     (4) 

kR  is the residual of the measured scalp potentials, Ve , minus the computed ones, kVe , at 

the kth iteration and LF the lead field matrix. 

 1 . .k k kR R LF P    (5) 

The simple gradient method (Amari, 1977) is based on a local derivative function, in order to 
minimize the error. At each step of a gradient method, a trial set of values for the variable is 
used to generate a new set corresponding to a lower value of the error function.This was 
improved in the steepest gradient method (Curry, 1944), where the descent method takes 
the direction of the maximum gradient of the error function, which reduces the number of 
iterations. A further improvement is CGM, in which the previous (k) and the next (k+1) 
search directions are defined to be orthogonal in the residual associated error space, so that 
CGM explores a maximum of kR  space. The CGM (Press et al., 1992) is an iterative method 
which computes: 

 1 .k k kI I P    (6) 

 
       . . . . .

TTT
k k k k k k k kF R R Ve Ve Ve Ve F Ve LF I Ve LF I         (7) 

where kP  is a vector of search direction at the kth iteration and   is a scalar of optimal step 
of descent obtained by finding the minimal argument of the objective function kF , defined 
by the norm of residual kR : 

1 1( ( ))k kArgMin F I  
 

This is equivalent to looking for the  value which cancels the derivative. 

 1 0kF 
    

 1 11 ( . )
0

T
k kk R RF

        (8) 

 
   1 1. . .

0

T
k kVe LF I Ve LF I


         (9) 
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Replacing 1kI   by its value in equation 6 and developing equation 9 gives: 

 
. .

. . .

T T
k k

T T
k k

P LF R

P LF LF P
   (10) 

The new iterative direction 1kP  is computed from the previous one kP  using: 

 1 1. .T
k k kP LF R P  

 (11) 

and by imposing that the previous kP  and the next 1kP   search direction are orthogonal 

 1 . . 0T T
k kP LF LF P   (12) 

Replacing the value of 1kP  of equation 11 in equation 12 gives the new conjugation factor  given by: 

 1. . . .

. . .

T T
k k

T T
k k

R LF LF LF P

P LF LF P
   (13) 

The solution kI  is obtained at the kth iteration when the value of the chosen stopping 
criterion C of CGM is reached: 

 
.

.

T
k k
T
e e

R R
C

V V
  (14) 

C corresponds to a value, chosen by the user: it must be higher or equal to 0.01, from our 
experience and with our model. The root mean square of the relative error is compared to 
that value to stop the iterations. 

In real conditions, data are corrupted by noise. In ERP/EEG protocols, noise vector No can 
be simply estimated on the pre-triggering time interval before events. Then the smaller 
criterion to reach becomes: 

 
.

.

T

noise
T
e e

No No
C

V V
  (15) 

Then we stop the iterations when  

 
.

.

T
k k

noiseT
e e

R R
C

V V
  (16)  

CGM does not need a priori conditions for solving the inverse problem in EEG/ERP, 
especially on the number of possible current sources in the cerebral volume. Moreover, 
CGM is faster than the classical Gradient Method because it needs less iteration to converge. 

The main particularity of CGM is that the variation of the vector current obtained at each 
program loop is made orthogonal to the previous one. This permits to explore more quickly 
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the space of solutions. In our application, CGM uses a lead field matrix, which is never 
inverted. The minimization is achieved on the square difference between measured and 
estimated electrode potentials. To stop the process, two methods are reported: 

- A precision criterion chosen by the user (equation 14) which can generate oscillations. 
- A precision criterion estimated from noise and signal (equation 15) avoiding 

oscillations, stopping the iterations when equation 16 is validated. 

3. Results 

3.1 CGM results without noise 

3.1.1 Single dipoles 

Figure 2 shows cortical potentials obtained by direct simulation in comparison with cortical 
potentials computed at all nodes in the RMM by CGM (with 107 electrodes). All the cortical 
potentials reconstructed show a good localization for each single dipole, even though 
individual dipoles are smoother at the cortex cerebral surface. In order to quantify the 
results, we used the accuracy measures described in the appendix: magnification factors 
(MAG) and relative difference measure (RDM). 

 
Fig. 2. Forward solution and CGM left part: forward solution of cortical potentials in 2 mm 
voxels for each dipole (RL, radial left ,RR, radial right, TL tangential left, TR tangential 
right), right part: CGM without noise for each dipole (right part) [-5e-5 +5e-5 volts] from 107 
electrode potentials. 

CGM performance is given for single and multiple dipoles in Table 1. It appears that the 
cortical potentials obtained by CGM underestimate the dipole amplitudes in comparison 
with potentials obtained by the forward solution. The worst result is observed for the 
dipole RR, which is correctly located on the cortex, but with a spread cortex area (Fig. 2) 
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and with a local maximum much lower than for the forward solution, which explains the 
low value of MAG. 

 Cortex Scalp Electrodes 

107 
electrodes 

MAG RDM MAG RDM MAG RDM 

1 dipole       
RR 0.31 1.21 1.23 0.28 1.08 0.06 
RL 1.57 0.98 1.06 0.16 1.05 0.03 
TR 0.92 0.47 1.09 0.14 1.04 0.03 
TL 0.72 0.77 1.03 0.06 1.01 0.01 

4 dipoles 0.48 1.15 1.05 0.20 1.02 0.07 

Table 1. MAG and RDM of cortical potentials, scalp potentials and electrode potentials 
obtained by CGM for simulation of single dipole and the 4 dipoles with 107 electrodes in 2 
mm voxel, without noise 

3.1.2 Effect of number of electrodes on CGM with the 4 dipoles 

As EEG is only recorded at a limited number of electrodes, it is important to estimate the 
role of this number on the quality of the inverse solution. 

Figure 3 shows the cortical potentials obtained by CGM for 60 and 107 electrodes without 
noise. CGM was used to compute cortical potentials from the electrode potentials of the 
forward solution. As we can see on the figure, the CGM solution with 107 electrodes is more 
accurate than the solution obtained with 60 electrodes (tangential dipoles are better defined: 
red and blue areas are closer). We also observe, taking the potentials of the forward solution 
as a reference, that CGM with 60 and 107 electrodes underestimates the potentials at the 
cortical surface, especially for tangential dipoles. MAG reported in Table 1, and Table 2 and 
3 (for noise 0%) confirms lower potential estimation at the cortex, whereas high RDM 
indicates mismatch on the shape or position.  

 
            Forward solution  CGM (60 electrodes)      CGM (107 electrodes) 

Fig. 3. Forward solution of cortical potentials in 2 mm voxels (left part) for 4 dipoles, CGM 
with 60 electrodes (central part) and CGM with 107 electrodes without noise for 4 dipoles  
[-5e-5 +5e-5 volts] 
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MAG  criterion  MAG  criterion  MAG  criterion  
60 elec. 0.02 0.05 0.10 scalp 0.02 0.05 0.10 cortex 0.02 0.05 0.10 

0% 0.99 0.98 0.98 0% 1.11 1.14 1.14 0% 0.42 0.40 0.36 
2% 1.00 1.00 0.99 2% 1.08 1.06 1.14 2% 0.45 0.43 0.39 
5% 1.08 1.08 1.07 5% 1.18 1.17 1.20 5% 0.67 0.60 0.50 
10% 1.13 1.10 1.07 10% 1.23 1.26 1.28 10% 0.98 0.92 0.79 

            
RDM  criterion  RDM  criterion  RDM  criterion  

60 elec 0.02 0.05 0.10 scalp 0.02 0.05 0.10 cortex 0.02 0.05 0.10 
0% 0.07 0.08 0.13 0% 0.31 0.37 0.39 0% 1.18 1.18 1.19 
2% 0.13 0.13 0.14 2% 0.29 0.28 0.39 2% 1.19 1.19 1.19 
5% 0.25 0.24 0.23 5% 0.40 0.37 0.39 5% 1.25 1.23 1.21 
10% 0.50 0.50 0.50 10% 0.68 0.62 0.61 10% 1.32 1.32 1.30 

Table 2. Results of MAG and RDM of electrode, scalp and cortical potentials, obtained by 
CGM for different values of stopping criterion for simulation of 4 dipoles with 60 electrodes 
in 2 mm voxel and noise level varying from 0% to 10%. Values in grey indicate cases where 
criterion is lower than noise, which is not valuable. 

MAG  criterion MAG criterion MAG criterion  
107 
elec 

0.02 0.05 0.10 scalp 0.02 0.05 0.10 cortex 0.02 0.05 0.10 

0% 1.02 1.04 1.04 0% 1.05 1.12 1.20 0% 0.48 0.43 0.38 
2% 1.03 1.02 1.02 2% 1.03 1.11 1.17 2% 0.62 0.49 0.40 
5% 1.06 1.05 1.01 5% 1.12 1.14 1.02 5% 1.14 0.97 0.72 
10% 1.06 1.05 1.05 10% 1.71 1.48 1.27 10% 3.03 2.86 2.49 

    
RDM  criterion RDM criterion RDM criterion  
107 
elec 

0.02 0.05 0.10 scalp 0.02 0.05 0.10 cortex 0.02 0.05 0.10 

0% 0.07 0.09 0.13 0% 0.20 0.26 0.38 0% 1.15 1.17 1.19 
2% 0.10 0.09 0.11 2% 0.25 0.27 0.36 2% 1.21 1.17 1.19 
5% 0.24 0.23 0.22 5% 0.54 0.45 0.36 5% 1.29 1.27 1.23 
10% 0.56 0.57 0.58 10% 0.92 0.90 0.92 10% 1.35 1.34 1.34 

Table 3. Results of MAG and RDM of electrode, scalp and cortical potentials, obtained by 
CGM for different values of stopping criterion C for simulation of 4 dipoles with 107 
electrodes in 2 mm voxel and noise level varying from 0% to 10%. 

3.2 CGM results with noise 

A recent review on solving the inverse problem in EEG (Grech et al., 2008) presents the 
techniques in non-parametric and parametric methods, depending on the fixed number of 
dipoles (assumed a priori or not). No specific technique appears to give much better results 
than the others, and research in this field is continuing. For simulation studies, EEG noise 
must be taken into account, and Gaussian White Noise (GWN) is often used (Chauveau et 
al., 2008; He et al., 2002). We tested the CGM with 3 different GWN levels: 2%, 5% and 10% 
of the maximum electrode potential. 
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Figure 4 shows the cortical potential distribution obtained by CGM with 60 and 107 
electrodes for noise levels varying from 0% to 10% (criterion defined in equation 14). 
Oscillations increase with the level of noise with 60 and 107 electrodes. So, the higher the 
noise level, the less correctly the cortical potential cartography is reconstructed. These 
results also show that oscillations in cortical potential distributions increase relatively 
faster when the noise level is higher than 5% with 107 electrodes, and 10% with 60 
electrodes. 

3.3 CGM versus CIT 

Figure 5 shows the cortical potential distributions obtained with CGM, for different 
values of relative noise level and with 107 electrodes (criterion defined in equation 14), in 
comparison with the results of CIT. A Tikhonov regularization was used in CIT, but there 
are anyway some oscillations for high noise level. CGM presents oscillations when the 
criterion is too small compared to noise, but for each noise level it a correct estimation can 
be obtained. 

In real conditions, the noise level can be easily estimated on the pre-stimuli interval before 
the triggers used for ERP. Taking into account the noise level, the criterion is then limited 
to Cnoise (equation 15). Iterations are stopped when Cnoise is reached. Results are reported 
in figure 6. 

Qualitative factors have been calculated by means of MAG and RDM (see appendix) at the 
electrodes, at the scalp surface and at the cortex surface for 60 electrodes (Table 2) and for 
107 electrodes (Table 3). 

 
Fig. 4. CGM for 60 and 107 electrodes (criterion set to 0.01) 
Cortical potentials in 2 mm voxels for 4 dipoles and different noise levels for CGM with 60 
electrodes (top) and CGM with 107 electrodes (bottom) [-5e-5 +5e-5 volts] 
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Fig. 5. CIT and CGM 107 electrodes (equation 14) 
Cortical potentials in 2mm voxels for 4 dipoles with noise varying from 0% to 10% and 107 
electrodes, CIT solutions (first line) and CGM (all other lines) for different criterion value c 
(equation 14), from 2% to 40%. For each CGM solution, the number of iterations is reported. 
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Fig. 6. CIT and CGM 107 electrodes (criterion depending on noise level) 
Cortical potentials estimated from 107 electrodes in 2mm voxels for 4 dipoles with noise 
varying from 0% to 10% (criterion of equation 15): CIT solutions (first line) and CGM (last 
line). For each CGM solution, the number of iterations is reported. 

4. Conclusion 

This study by simulation has shown that CGM gives coherent results in the detection of 
simultaneous multiple dipoles (4 in our case). CGM solutions give satisfactory localization 
and estimation of cortical potentials even though the area of each dipole is increased. 
Symmetrical dipoles are well detected while tangential dipoles are more difficult to observe, 
as for any inverse technique in EEG/ERP.  

We have shown that, without noise, CGM correctly localizes individual and simultaneous 
dipoles, with an underestimation of the cortical potentials. Moreover, the number of 
electrodes strongly conditions the quality of the solution obtained by CGM. So, without 
noise in the data, the higher the number of electrodes, the more accurate the dipole 
localization and the more correctly reconstructed the corresponding cortex potentials. So 
increasing the number of electrodes reduces the number of unknowns in the inverse 
problem in EEG/ERP. In consequence, cortical potentials are better evaluated.  

With the addition of white Gaussian noise (WGN), this observation becomes partially true, 
because solutions obtained with high numbers of electrodes are less stable than those 
obtained with a smaller number when noise level increases. There is then an optimal 
number of electrodes for each simulated noise level. Solutions obtained by CIT and by CGM 
present oscillations which increase with the noise level. Cortical potential solutions of CGM 
are quite similar to the ones of CIT for a low noise level. When this level increases, CIT 
presents oscillation, still gives quite correct position for the sources but added potentials 
corrupt the result, while CGM presents solutions with less oscillation, but may be with less 
precision. The combination of CIT and CGM results permits to validate the source positions: 
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CGM permit to clearly identify there are 4 sources in our case (2 radial dipoles and 2 
tangential dipoles), and CIT permits to point out where they are.  

It is then possible to use CGM as a complementary tool to solve inverse problems in 
EEG/ERP. The advantage of CGM is that there is no need for matrix inversion and there 
is not a prior in the number of current sources or in their propagation direction in the 
cerebral volume. This iterative method avoids having to invert huge rectangular matrices 
which are time and memory consuming when the spatial resolution of the model is 
ambitious. The estimation of noise permits to calculate a realistic stopping criterion to use, 
avoiding oscillations. 

5. Appendix: Comparison tools MAG and RDM 

MAG is an index for potential magnitude comparison between two series of equivalent data, 
and RDM estimates the variation of spatial distribution between the two series. 

MAG and RDM are given by: 
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where CiV  is a series of computed potential data points obtained with a specific technique 
from electrode potentials ( CIT or CGM), FiV  is the forward solution for the same points and 
n is the number of chosen points. 
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