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1. Introduction 

Many microelectromechanical systems (MEMS) applications utilize laser irradiation as an 
integral part of the system functionality, including projection displays, optical switches, 
adaptive optics (Andrews et al., 2011; Andrews et al., 2008), optical cross-connects 
(Knoernschild et al., 2009), and laser powered thermal actuators (Serrano & Phinney, 2008; 
Serrano et al., 2005). When laser irradiation is incident on small-scale systems, such as these 
MEMS applications, the propensity for exceeding the thermal handling capability of the 
devices dramatically increases, often leading to overheating, and subsequent deformation 
and permanent damage to the devices. In most instances, this damage is a direct 
consequence of the device geometry and the material thermal properties, which hinder the 
transport of heat out of any locally heated area. Such thermally-driven failures are common 
in electrically-powered systems (Baker et al., 2004; Plass et al., 2004). However, for laser-
irradiated MEMS, particularly those fabricated of surface-micromachined polycrystalline 
silicon (polysilicon), the optical properties can also affect the thermal response of the devices 
by altering how the laser energy is deposited within the material. Even more concerning in 
these types of devices is the fact that the thermal, optical, and mechanical response can be 
intimately coupled such that predicting device performance becomes difficult. In this 
chapter, we focus on understanding some of the basics of optical interactions in laser-
irradiated MEMS. We will first look at how the optical properties of the materials affect the 
laser energy deposition within a device. We will then expand upon this by looking at the 
coupling that exists between the optical and thermal properties, paying particular attention 
to the implications that transient temperature changes have in the optical response, 
ultimately leading to device failure. Finally, we will look at various cases of laser-induced 
damage in polysilicon MEMS where the device geometry and design and optical-thermal 
coupling have led to device failure. 

2. Optical interactions in MEMS 

Understanding the coupling that exists between the thermal and optical behavior in laser- 
irradiated MEMS must begin by looking at the optical properties of the irradiated materials 
and at how the laser light interacts with each material. The primary factor that affects the 

magnitude of this interaction is the material’s complex refractive index, n̂ n ik  . A wave 
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incident on the interface between two media of different refractive indices will undergo 
reflection and refraction, as shown in Fig. 1. The direction of the reflected and refracted 
beams follow the well-known laws of reflection and refraction: 

 r i   (law of reflection), (1) 

 2 t 1 iˆ ˆn sin n sin   (law of refraction; Snell’s law)  (2) 

where i , r  and t  are the angles of incidence, reflection, and refraction, respectively1. 

The following sections will discuss how the rules above are applied to laser-irradiated 

structures in order to obtain the magnitudes of the reflected, transmitted, and absorbed 

light, which ultimately dictate how the energy is deposited in an irradiated microsystem. 
 

 

Fig. 1. Reflection and refraction of a plane wave incident on the interface between two 
media.  

2.1 Optically thick systems 

For monochromatic laser light, incident from vacuum ( vacuumn̂ 1.0 ) at an angle i  upon a 

homogeneous, semi-infinite, non-magnetic medium of index n̂ , the reflectivity of the 

interface is dictated by the Fresnel coefficients (Born & Wolf, 1999): 

 
2 2

i is

2 2
i i

ˆcos n sin
r

ˆcos n sin

        , 
2 2 2

p i i

2 2 2
i i

ˆ ˆn cos n sin
r

ˆ ˆn cos n sin

        ’ (3) 

where the law of refraction was used to rewrite the expressions in terms of the incident 
angle and medium refractive index only, and the subscripts s and p above refer to the s-
polarized or transverse-electric (TE) and p-polarized or transverse-magnetic (TM) polarizations of 

                                                 
1 For instances where the indices are complex, the quantity θt is also complex-valued and no longer has 
the same meaning as an angle of refraction. 
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the incident light, respectively. The surface reflectivity, that is the magnitude of the fraction 
of reflected energy, is given for either polarization2, by: 

 
2s sR r  and 

2p pR r . (4) 

For normal incidence, i 0  , the polarization dependence disappears and Eq. 3 reduces to 

the well-known expression for bulk surface reflectivity (Born & Wolf, 1999): 

 
 
 

22 2

2 2

ˆ n 1 kn 1
R

n̂ 1 n 1 k

     . (5) 

In any absorbing material (i.e., with k 0 ) the light transmitted through the medium is 

attenuated in accordance with the Beer-Lambert law: 

   oI z I exp( z)   (6) 

where oI  is the intensity of light entering the surface, 4 k     is the linear attenuation 

coefficient of the medium at the wavelength  , and z is the spatial coordinate with its origin 

at the surface. The inverse of the attenuation coefficient is known as the optical penetration 

depth 

 1
optd 4 k

     ,  (7) 

and it is the distance over which the light intensity is attenuated by 1 / e .  

While the development above for the Fresnel coefficients assumes a semi-infinite medium (i.e., 

a single interface separating the two media), the significance of Eq. 6 is that any material 

whose of thickness d >> optd  can be considered optically thick, in the sense that it will behave 

the same as a semi-infinite medium. What constitutes an optically thick layer ultimately 

depends on the value of the complex part of the refractive index, k , as described in Eq. 7. For 

example, the penetration depth of silicon at   0.3 ┤m is optd  5.8 nm, very similar to that of 

aluminium at   0.4 ┤m or gold at   0.7 ┤m (Schulz, 1954); at longer wavelengths the 

penetration depth in silicon increases by over three orders of magnitude (on the order of 

several micrometers) due to the drastic decrease in the value of k. As we will show, the 

distinction between optically thick and optically thin films will have profound implications in 

the treatment of the optical thermal coupling that exists in laser heated MEMS.  

2.2 Optically thin and multilayered systems 

A different approach must be used in instances where the thickness of the irradiated film is 
comparable to the optical penetration depth. Such conditions are of significant relevance for 
surface micromachined polysilicon devices, which generally can have layers and gaps with 
thicknesses on the order of a few ┤m (Carter et al., 2005; MEMS Technologies Department, 

                                                 
2 As a consequence of the two polarization conditions, there will be two independent values for 
reflectivity.  For unpolarized irradiation, it is common practice to take the average of the two reflectivity 
values as the resultant reflectivity.
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2008)—comparable to optical penetration depths at visible-to-near infrared wavelengths 
(Phinney & Serrano, 2007; Serrano & Phinney, 2009; Serrano et al., 2009). In theses cases, 
depicted in Fig. 3, light transmitted across the first interface will encounter a second 
interface and undergo reflection and refraction. The process of reflection and refraction at 
both interfaces can repeat itself numerous times, as shown in Fig. 3, and with each reflection, 
the wave can undergo a phase change of 180°. If the incident light is monochromatic, with 
sufficiently large coherence length (i.e., laser light), then the multiple reflections will 
interfere with each other constructively and destructively. This thin film interference will 
yield deviations from the values obtained with Eqs. 3 and 4 for the optical response of the 
irradiated surface.  
 

 

Fig. 3. Reflection and refraction in a multilayered system showing the multiple reflections 
from the two interfaces. 

There are various ways to obtain a numerical description of the overall optical performance 
of such a multilayered system. The most common method is the transfer matrix method 
(Born & Wolf, 1999; Katsidis & Siapkas, 2002) whereby each individual layer is assigned a 
matrix of Fresnel coefficients, which capture the interaction of the incident wave with the 
layer. This method, while useful for obtaining the net response of the stratified structure, 
does not easily permit extracting information on how the energy is deposited within the 
layers, a detail of paramount importance when analyzing laser-irradiated MEMS. To obtain 
interlayer absorptance values, we turn to a similar analysis called the LTR method (Mazilu 
et al., 2001), which combines the layer responses in a modular form. This modularity then 
permits the extraction of the absorptances for the layers in the structure.  

2.2.1 LTR method 

The LTR method (Mazilu et al., 2001), which is stands for Left-side reflectance, 
Transmittance, and Right-side reflectance, considers a stack of material irradiated from 
the left and right sides, as shown in Fig. 4. The technique leverages the fact that for an 
irradiated layered system only three terms are needed to fully describe its optical 
response—the reflectances of either side and a transmittance term. While most typically 
utilized for obtaining the net response of a stratified system, the modular nature of the 
LTR method facilitates the extraction of absorptance values for each individual layer, 
making it particularly useful for laser-irradiated MEMS (Serrano & Phinney, 2009; Serrano 
et al., 2009). 

www.intechopen.com



 
Optical-Thermal Phenomena in Polycrystalline Silicon MEMS During Laser Irradiation 

 

335 

 

 
 

Fig. 5. Schematic representation of the LTR method. A multilayer stack is represented by an 
LTR element, where each layer is also made up of an LTR element. 

This technique is similar to the transfer matrix method in that each layer is assigned a 
mathematical entity made up of the reflection and transmission coefficients for the layer. 
However, unlike the matrix method where the layer matrix depends on the properties of the 
media surrounding the layer, the coefficients are referenced with respect to vacuum (i.e., a 
wave is considered to be travelling into or from vacuum), simplifying the calculations and 
giving the technique its modularity. Thus, a three-element LTR vector containing the left- 
and right-side reflection coefficients, as well as the transmission coefficient, is defined as: 

 

2

2 2

2

2 2

2

2 2

1 p
r

1 p r
L

1 r
T p

1 p r
R

1 p
r

1 p r

                     

X . (8) 

For a wave incident at an angle i  upon a layer of thickness d  and refractive index n̂ , the 

coefficient p  in Eq. 8 considers propagation in the medium and is defined as: 

  2 22
iˆp exp i d n sin   , (9) 

whereas the coefficient r  considers reflection from the interfaces and for the two possible 

polarization conditions3 is given by Eq. 3. The Fresnel coefficients above assume the wave 

                                                 
3 As discussed in footnote 2, this method will yield polarization-dependent results for reflectance, 
transmittance, and absorptances. For unpolarized irradiation, the accepted value is the average of the 
two polarization cases. 
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travels from vacuum through the layer and out into vacuum once again. If the amplitudes of 

the fields incident on the layer from the right and the left are given, as shown in Fig. 5, by 

1E  and 2E , respectively, the elements of X  can be used to describe the amplitudes of the 

fields, 1F  and 2F , exiting the layer as: 

 1 1 2F TE LE  , and  (10) 

 2 1 2F RE TE  . (11) 

The LTR method additionally defines a vector for a single interface: one for an interface with 

a wave travelling from vacuum into a medium of index n̂  ( 01S ) and another for a wave 

travelling from the medium into vacuum ( 10S ): 

  01 01

L r

n̂ T t

R r

                
S , and (12) 

  10 10

L r

n̂ T t

R r

                
S , (13) 

where the coefficient r  is given in Eq. 3 for the two polarization conditions, and  

 s i
01 2 2

i i

2cos
t

ˆcos n sin

     ,  p i
01 2 2 2

i i

ˆ2ncos
t

ˆ ˆn cos n sin

     , (14) 

 s i
10 2 2

i i

ˆ2ncos
t

ˆcos n sin

     , and 
2

p i
10 2 2

i i

ˆ2n cos
t

ˆ ˆncos n sin

     . (15) 

Combination of multiple layers is implemented by the use of a composition rule, as shown 

below for two layers. Under the LTR scheme, each layer is considered a separate entity, 

separated from adjacent layers by a zero- thickness vacuum layer, such that the wave exits 

one layer into vacuum and enters the next layer from vacuum. 

 

2
2 1

1
1 2

1 2
1 2

1 2 1 2
1 2

1 2 2
1 2

2
1 2

L T
L

1 R L
L L

T T
T T

1 R L
R R

R T
R

1 R L

                                         

LTR X X

L

T

R

. (16) 

This rule enables modeling of a multilayer structure by sequential application of the 

composition rule to all the layers in the stack including the media on the left and right side 

of the multilayer structure. 
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    10 L 1 2 N 1 N 01 Rˆ ˆn n
             

LTR S X X X X S
L

T

R

 (17) 

Since the result of the composition is another LTR vector, if the fields 1E  and 2E  incident on 

the stack are known, then the remaining fields, 1F  and 2F , can be easily found using Eqs. 10 

and 11.  

While the LTR construct is useful for capturing the response of a multilayered structure 

irradiated from the front and the back (left and right in Fig. 3), only front-side illumination 

is considered here, as that is the most common configuration encountered in MEMS 

applications. For single-sided illumination the structure is assumed to be illuminated only 

from the left (i.e., 1E 0   in Fig. 5), and  

 1 2F EL  (left side reflection); (18) 

 2 2F ET  (transmission);  (19) 

 0R  (right side reflection). (20) 

The total reflected, transmitted, and absorbed intensities are then:  

 
2

R  L ,  (21) 

 
  2 R R

L L

Re n cos
T

Re n cos

 T , and  (22) 

 A 1 R T   . (23) 

If the incident medium on the left is vacuum or air, Eq. 22 can be rewritten fully in terms of 

the angle of incidence and the substrate index, subn̂ , as 

 
 2 2

sub i2

i

ˆRe n sin
T

cos

  T .  (24) 

With the fields on the left- and right-most layers defined, the fields entering and exiting each 

layer can be obtained by recursively applying Eqs. 10 and 11 to each layer. Once these fields 

are defined, the individual layer absorptances can be easily obtained by noting that each 

layer is referenced to vacuum and the absorptance is simply the difference between the 

entering and exiting field magnitudes: 

 
2 2 2 2i i i i

i 1 2 1 2A E E F F    , (25) 

where the left-most fields of the first layer and the right-most fields for the last layer are 

obtained from Eqs. 18 and 19. 
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2.2.2 MEMS 

As discussed in the previous section, the optical response of laser-irradiated materials 

depends strongly on various parameters. For optically thick materials, the refractive index 

of the irradiated medium determines the reflectivity of the surface and thus the fraction of 

the energy that is deposited in the material. When the optical penetration depth is 

comparable to film thickness, the geometry and composition of the structure becomes as 

important as refractive index in dictating the optical response. This becomes evident when 

analyzing the response of sacrificial micromachined MEMS fabricated from polysilicon. 

In polysilicon-based MEMS the typical layer thickness is approximately 2 ┤m, with 

intermediate gaps of the same order (Carter et al., 2005; MEMS Technologies Department 

2008). Such thicknesses are comparable to the penetration depth for both silicon and 

polysilicon for wavelengths above 550 nm (Jellison Jr & Modine, 1982a, 1982b; Lubberts et 

al., 1981; Xu & Grigoropoulos, 1993) and therefore  the likelihood for thin film interference, 

as explained above, increases. Indeed, calculations carried out for air-spaced polysilicon 

structure fabricated from Sandia National Laboratories’ SUMMiT-V™ process 

(MEMS Technologies Department, 2008), as shown in Fig. 6, show that the absorptance of 

the top-most layer can vary significantly as a function of the layer thickness. The multiple 

reflections from the various layers in the structure lead to conditions of local maxima and 

minima for different layer thicknesses. These extrema correspond to thicknesses where the 

interference between the multiply reflected waves is fully constructive or destructive as will 

be shown later.  

 

 

Fig. 6. (a) Schematic of a SUMMiT V™ polysilicon MEMS structure and (b) its optical 
response at different wavelengths as a function of the thickness of the top-most layer. 

The variation in the amplitude and width of the absorptance peaks in this structure is 

related to the relative reflectivity of the two polysilicon surfaces at the particular wavelength 

much like a Fabry-Perot cavity (Born & Wolf, 1999) and will ultimately depend on the 

overall composition of the multilayered structure. For a coupled optical-thermal analysis, 

the existence of these periodic variations in the absorptance must be taken into account to 

predict the thermal behavior of laser-irradiated MEMS accurately.  
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3. Optical-thermal coupling in laser-irradiated MEMS 

The previous section detailed the response of MEMS optical systems in strictly athermal 

terms. However, in laser-irradiated MEMS or MEMS exposed to extreme thermal 

environments the consequences of a changing thermal environment could be significant, 

especially in regards to the optical response. For simplicity, we shall consider cases where 

the incident laser energy is responsible for any temperature fluctuation in the irradiated 

structure, although the same principles are valid for structures subject to bulk external 

heating and laser irradiation (Burns & Bright, 1998). 

Laser irradiation of an absorbing structure, such as micromachined polysilicon MEMS, will 

lead to a corresponding temperature increase. The magnitude of the induced temperature 

rise will depend on several factors, including the geometry, and thermal and optical 

properties of the irradiated materials. Because all of the parameters that play a role in 

determining the energy deposition exhibit some temperature dependence, the laser-induced 

heating of the structure will be dynamic in nature as the properties change during the 

heating event.  

3.1 Temperature-induced geometry changes 

We have already seen the potential effects of different layer thicknesses on the absorptance 

of an irradiated structure. However, while those fluctuations might arise out of 

manufacturing variability, the same effect can be observed during the heating of an as-built 

device. Geometrical and dimensional considerations during the heating result from any 

temperature-induced displacement and deformation of the MEMS when exposed to 

elevated temperatures (Knoernschild et al., 2010; Phinney et al., 2006). If the irradiating 

wavelength is in the optically thick regime for the irradiated material, the dimensional 

changes do not have a significant effect in the optical response of the structure since the 

incident energy is fully absorbed within the material. Nevertheless, depending on the 

structure, small deflections and deformations could have a significant effect on the heat 

transfer mechanisms on the heated device (Gallis et al., 2007; Wong & Graham, 2003). 

When the conditions are such that thin film interference becomes important in the optical 

response, particularly for multilayered systems, the deformation will have a more dramatic 

effect. Depending on the design and geometry of the irradiated structure, the heating can 

alter both the thickness of the individual layers (via thermal expansion) and the spacing 

between them (via thermal expansion, buckling, etc.). Such deformations will produce 

changes in the absorptance of the laser irradiation, as shown in Fig. 7 for a Poly4 SUMMiT 

V™ structure similar to the one described by Phinney et al, (Phinney et al., 2006) and shown 

in Fig. 6a. The cantilevered structure in that reference suffered deflections of over 10 ┤m 

during laser irradiation. In Fig. 7, just a variation in the air gap height of ±500 nm suffices to 

demonstrate the type of deflection-induced changes in absorptance encountered in these 

tests. Assuming the deflection is caused by the temperature excursion of the structure, then 

a small change in gap height can lead to as much as a six-fold change in absorptance.  

Additionally, due to the phase changes upon reflection, the trends in absorptance repeat for 

different values of thicknesses and gaps, as seen in Figs 6 and 7. The recurrence period can 

be estimated from Eq. 9 by finding the thickness increase d  for which the path length 

difference is equivalent to an integer multiple of  :  
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  2 2
i

m
d

ˆ2Re n sin

    , m = 1, 2, 3…  (26) 

which, for the 800 nm example discussed, yields a recurrence period of 400 nm. 
 

 

Fig. 7. Absorptance map for the geometry shown in Fig. 6a for ┣ = 808 nm as a function of 
layer and gap dimensions. The circle indicates the nominal dimensions for the geometry. 

The outcome of such a variation in energy deposition can be detrimental—an increase in 

absorptance will cause additional heating and possibly lead to damage—or beneficial—a 

decrease in absorptance will permit the structure to withstand higher incident powers and 

avoid damage (Serrano & Phinney, 2009). Which situation is encountered with a particular 

device will depend on the irradiating conditions (wavelength and incidence angle), the 

optical properties, as well as the initial condition and the geometry of the device and the 

thermomechanical response of the structure. Because MEMS are primarily mechanical 

devices, these thermomechanical effects can typically be accounted and corrected for to 

reduce their contribution, much like it is done for electrically heated devices (Sassen et al., 

2008).  

3.2 Temperature-induced optical changes 

In addition to purely mechanical effects caused by the heating, the temperature excursion 
will induce changes in the optical and thermal properties of the irradiated materials. While 
the variations in the thermal properties with temperature play a very important role in the 
thermal behavior of any laser-irradiated structure, their effects are generally noticeable for 
large temperature excursions. As we will show, the role of the temperature dependence of 
the material optical properties is, in some cases, more dominant and leads to marked 
changes in the thermal and optical performance of the irradiated structure over small 
temperature excursions. 
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For silicon-based materials, the complex index of refraction has been extensively studied as 
a function of temperature (Jellison Jr & Modine, 1982a, 1983; Sun et al., 1997; Xu & 
Grigoropoulos, 1993; Yavas et al., 1993). These works all show that the real part of the 
refractive index depends linearly with temperature: 

  o o

dn
n n T T

dT
    (27) 

where on  is the index at a reference temperature oT  and the slope dn
dT

 typically has values 

on the order of 10-4 K-1 (Jellison Jr & Modine, 1982a, 1983; Sun et al., 1997; Xu & 

Grigoropoulos, 1993). The complex portion of the index, on the other hand, follows an 

exponential trend of the form: 

 

o

R

T T

T
ok k e

     (28) 

where ok  is complex index at oT  and the temperature RT  is an empirically determined 

reference temperature, which ranges in value from 498 K for bulk silicon (Jellison Jr & 

Modine, 1982a, 1983) to 680 K  for different types of polysilicon (Sun et al., 1997; Xu & 

Grigoropoulos, 1993).  
In optically thick systems, the change in complex refractive index will manifest itself as a 
change in surface reflectivity as a function of temperature. For silicon and polysilicon, this 
change is on the order of 10–5 K–1 (Jellison Jr & Modine, 1983) such that its impact on the 
thermal and mechanical response of irradiated devices is small. The same cannot be said for 
multilayered structures that are optically thin. In this case, the linear increase in the real part 
of the refractive index increases the effective path length difference between multiply 
reflected waves, changing the conditions for constructive and destructive interference from 
those present at the initial temperature. The exponential increase in the complex portion of 
the index, however, leads to a decrease in the optical penetration depth, reducing the effect 
of interference from deeper layers in the material. More importantly, the interplay between 
the two trends, when applied to the thin film interference equations discussed in the 
previous section, leads to temperature-dependent variations in the absorptance, as shown in 
Fig. 8 for the structure in Fig. 6a irradiated with 800 nm light. The most noticeable 
characteristic of the curves is the presence of temperature-periodic peaks. These result from 
the increase in the path length difference as the real portion of the index increases with 
temperature as given by Eq. 27. When the condition for fully destructive interference of the 
surface reflected waves is met, the absorptance of the layer increases. This condition is 
satisfied for  

    2 2 2 22 2
i iˆ ˆ ˆd Re n n sin d Re n sin m              , (m = 1, 2, 3, …). (29) 

Solving the above relation for n̂ , and relating that to the temperature change through Eq. 

27, we get: 

 
1

2 2
i

ˆm n dn
T Re

dTˆˆ2z n sin

           
.  (30) 
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Fig. 8. Absorptance as a function of temperature and incidence angle for the geometry 
shown in Fig. 6a for ┣ = 800 nm. 

The consequences of the peaks and valleys are significant for the behavior of laser-irradiated 

polysilicon MEMS. An incident laser on the surface will induce heating, leading to a change 

in absorptance, and corresponding changes in the sample temperature. The non-linear 

absorptance response thus creates stable and unstable conditions depending on the 

temperature of the sample. For temperatures in the range where the slope of the absorptance 

curves is negative, the system can achieve equilibrium since a temperature rise leads to 

decreased absorptance, reducing the energy deposition. For temperatures lying in the 

opposite side of the absorptance peak, the increase in temperature induces an increase in 

absorptance, leading to a significant increase in energy deposition and consequently an even 

greater temperature rise.  

4. Laser-induced damage of polycrystalline silicon MEMS 

The combination of multilayered design, coupled with temperature-induced changes in the 

optical properties ultimately leads to failure of laser-irradiated MEMS. From a design 

perspective, in addition to considering the primary mechanical function of the device—such 

as an actuator (Baglio et al., 2002; Oliver et al., 2003; Phinney et al., 2005; Phinney & Serrano, 

2007; Serrano et al., 2005) or a shutter (Wong & Graham, 2003)—the design should also 

consider the optical and thermal behavior of the structure to reduce the likelihood of 

damage. To gain a better understanding of the design concerns associated with polysilicon 

optical MEMS, various experiments have been carried out that have provided insights into 

the importance of composition, optical energy deposition and thermal transport of heating 

(Baglio et al., 2002; Oliver et al., 2003; Phinney & Serrano, 2005; Serrano & Phinney, 2009; 
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Serrano et al., 2009). In this section, we will briefly look over some of the experimental 

results for laser-induced damage in the context of the optical and thermal analysis discussed 

in the previous sections. 

For optically-powered MEMS thermal actuators (Baglio et al, 2002; Phinney & Serrano, 2007; 
Serrano & Phinney, 2009) most of the studies have mainly focused on empirically 
establishing the threshold power for damage. Typically, damage is defined as visible 
damage at the surface—in the form of a crater-like feature as shown Fig. 9—after initial 
irradiation of the surface. However, these studies also showed that damage could be 
initiated after prolonged exposure (on the order of minutes) to the laser irradiation, 
indicating the presence of a slow heating process. This behavior agrees qualitatively with 
the concepts discussed in the previous section. Thermal equilibrium for the irradiated 
structure cannot be achieved for the temperature where the absorptance exhibits a peak. 
Therefore, the system reaches a metastable equilibrium in the valleys of the absorptance 
curve as shown in Figs. 6 and 8. These valleys, however, do not represent a flat absorptance, 
but rather a slowly varying one. Thus, as the devices slowly heats up, the material’s 
absorptance increases until the next absorptance peak is encountered and the deposited 
energy density is enough to cause damage of the device. The time-delayed damage 
observed is then evidence of the slow heating and approach of the temperature to the 
absorptance peak. 
 
 
 

 

Fig. 9. Typical laser-induced damage on polysilicon MEMS structures. The scale bar on both 
is equivalent to 50 ┤m. (Phinney & Serrano, 2007; Serrano & Phinney, 2009) 

The effect of the absorptance peaks can also explain the damage thresholds in laser-

irradiated microsystems (Serrano & Phinney, 2009) that do not correlate with the number of 

layers present in the structure. The results show that a single-layer structure exhibited 

greater power handling capability than various multilayered ones. In said structures, the 

thin film interference phenomena leads to a minimum in absorptance, like the one shown 

Fig. 8 for normal incidence near room temperature. This minimum, coupled to improved 
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heat dissipation to the underlying substrate, permits the single layer structure to exhibit 

increased robustness to the laser irradiation compared to the multilayered structures.  

The optical-thermal effects can also explain the temperature discontinuities observed in the 
temperature measurements of laser irradiated cantilevers and actuators (Serrano & Phinney, 
2007; Serrano et al., 2009), shown in Fig. 9. As predicted above, the discontinuity 
corresponds to the presence of the peak in the absorptance curve. The surface temperature 
increases rapidly by 200 K as the peak is encountered. The temperature-power relationship 
regains a linear relation after the temperature reaches the opposite side of the absorptance 
peak. Numerical simulations of this experiment, utilizing the non-linear absorptance and 
known material and geometrical parameters for the irradiated structure, are in good 
agreement with the measured values, reproducing temperature discontinuity. This type of 
sudden increase in the temperature makes predicting a threshold power for laser damage in 
polysilicon structures extremely challenging without accurate knowledge of optical and 
dimensional properties.  
 
 
 

 

Fig. 10. Measured and modeled temperatures of a polysilicon MEMS structure measured 
irradiated with an ┣ = 808 nm laser. The discontinuity in the temperature results from a 
peak in the absorptance of the irradiated layer due to thin film interference effects  
(Serrano et al., 2009). 
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5. Conclusion  

Understanding the thermal and optical response of laser-irradiated microsystems requires 

careful consideration of not only the individual thermal, optical, and mechanical 

parameters, but also the coupling that exists between them. Of particular importance is the 

impact that the change in the optical properties with temperature can have in the 

performance and reliability of these structures. To gain insight into the role that temperature 

and geometry play in the optical performance of these devices, one must utilize the basic 

optical relations in a way that is compatible with thermal analyses of a laser-heated 

structure. The LTR method has proven to be a very useful technique in these types of 

analyses since it can easily incorporate temperature dependant optical properties and 

readily provide the interlayer absorptances for the irradiated structures. 

Once the temperature and optical fields are coupled in the analysis, a more accurate 

picture emerges of the thermal and optical behavior of the irradiated device. These 

coupled optical-thermal effects give rise to non-linear absorptance that can, in some 

instances, lead to increased resistance to laser damage by dynamically reducing  

the absorptance as the incident laser power is increased, while in other cases, the non-

linear effects compound to enhance absorptance of the incident laser energy producing 

rapid temperature increases that eventually lead to device damage. A quantitative 

estimation of device robustness to determine in which regime of damage susceptibility a 

particular structure resides in therefore requires a complete description of the overall 

irradiating conditions as well as the device composition. For polysilicon-based devices, 

this type of analysis has shown reasonable agreement with the experimentally-observed 

thermal behavior, and can explain the observed damage trends of the laser-irradiated 

structures.  

6. Acknowledgment  

The authors would like to acknowledge the help and assistance of Allen Gorby, James 
Rogers, Wayne Trott, and Jaime Castaneda. Sandia National Laboratories is a multi-
program laboratory managed and operated by Sandia Corporation, a wholly owned 
subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National 
Nuclear Security Administration under contract DE-AC04-94AL85000. 

7. References 

Andrews, J. R., Martinez, T., Teare, S. W., Restaino, S. R., Wilcox, C. C., Santiago, F. & Payne, 

D. M. (2011). A multi-conjugate adaptive optics testbed using two MEMS 

deformable mirrors. Proceedings of MEMS Adaptive Optics V, San Francisco, CA, 

USA 

Andrews, J. R., Teare, S. W., Restaino, S. R., Martinez, T., Wilcox, C. C., Wick, D. V., Cowan, 

W. D., Spahn, O. B. & Bagwell, B. E. (2008). Performance of a MEMS reflective 

wavefront sensor. Proceedings of SPIE, Vol. 6888, pp. 68880C 

www.intechopen.com



 
Microelectromechanical Systems and Devices 

 

346 

Baglio, S., Castorina, S., Fortuna, L. & Savalli, N. (2002). Novel microactuators based on a 

photo-thermo-mechanical actuation strategy. Proceedings of IEEE Sensors, Orlando, 

FL, USA 

Baker, M. S., Plass, R. A., Headley, T. J. & Walraven, J. A., (2004), Final Report: Compliant 

Thermo-Mechanical MEMS Actuators LDRD #52553, SAND2004-6635, Sandia 

National Laboratories, Albuquerque, New Mexico 

Born, M. & Wolf, E. (1999). Principles of Optics: Electromagnetic Theory of Propagation, 

Interference and Diffraction of Light (7th edition), Cambridge University Press, 

Cambridge 

Burns, D. M. & Bright, V. M. (1998). Optical power induced damage to 

microelectromechanical mirrors. Sensors and Actuators A, Vol. 70, No. 1-2, pp.  

6-14 

Carter, J., Cowen, A., Hardy, B., Mahadevan, R., Stonefield, M. & Wilcenski, S., (2005), 

PolyMUMPs Design Handbook, Revision 11.0, MEMSCAP, Inc. 

Gallis, M. A., Torczynski, J. R. & Rader, D. J. (2007). A computational investigation of 

noncontinuum gas-phase heat transfer between a heated microbeam and the 

adjacent ambient substrate. Sensors and Actuators A: Physical, Vol. 134, No. 1, pp. 57-

68 

Jellison Jr, G. E. & Modine, F. A. (1982a). Optical absorption of silicon between 1.6 and 4.7 eV 

at elevated temperatures. Applied Physics Letters, Vol. 41, No. 2, pp. 180-182 

Jellison Jr, G. E. & Modine, F. A. (1982b). Optical constants for silicon at 300 and 10 K 

determined from 1.64 to 4.73 eV by ellipsometry. Journal of Applied Physics, Vol. 53, 

No. 5, pp. 3745-3753 

Jellison Jr, G. E. & Modine, F. A. (1983). Optical functions of silicon between 1.7 and 4.7 eV at 

elevated temperatures. Physical Review B, Vol. 27, No. 12, pp. 7466-7472 

Katsidis, C. C. & Siapkas, D. I. (2002). General Transfer-Matrix Method for Optical 

Multilayer Systems with Coherent, Partially Coherent, and Incoherent Interference. 

Applied Optics, Vol. 41, No. 19, pp. 3978-3987 

Knoernschild, C., Changsoon, K., Gregory, C. W., Lu, F. P. & Jungsang, K. (2010). 

Investigation of Optical Power Tolerance for MEMS Mirrors. Journal of 

Microelectromechanical Systems, Vol. 19, No. 3, pp. 640-646 

Knoernschild, C., Kim, C., Lu, F. P. & Kim, J. (2009). Multiplexed broadband beam steering 

system utilizing high speed MEMS mirrors. Optics Express, Vol. 17, No. 9, pp. 7233-

7244 

Lubberts, G., Burkey, B. C., Moser, F. & Trabka, E. A. (1981). Optical properties of 

phosphorus-doped polycrystalline silicon layers. Journal of Applied Physics, Vol. 52, 

No. 11, pp. 6870-6878 

Mazilu, M., Miller, A. & Donchev, V. T. (2001). Modular Method for Calculation of 

Transmission and Reflection in Multilayered Structures. Applied Optics, Vol. 40, No. 

36, pp. 6670-6676 

MEMS Technologies Department, (2008), SUMMiT V™ Five Level Surface Micromachining 

Technology Design Manual: Version 3.1a, Sandia Report No. SAND2008-0659P, 

Sandia National Laboratories, Albuquerque, NM 

www.intechopen.com



 
Optical-Thermal Phenomena in Polycrystalline Silicon MEMS During Laser Irradiation 

 

347 

Oliver, A. D., Vigil, S. R. & Gianchandani, Y. B. (2003). Photothermal surface-micromachined 

actuators. IEEE Transactions on Electron Devices, Vol. 50, No. 4, pp. 1156-1157 

Phinney, L. M., Klody, K. A., Sackos, J. T. & Walraven, J. A., (2005). Damage of MEMS 

thermal actuators heated by laser irradiation. Proceedings of SPIE, Vol. 5716, pp. 81-

88 

Phinney, L. M. & Serrano, J. R. (2007). Influence of target design on the damage threshold for 

optically powered MEMS thermal actuators. Sensors and Actuators A, Vol. 134, No. 

2, pp. 538-543 

Phinney, L. M., Spahn, O. B. & Wong, C. C. (2006). Experimental and computational study 

on laser heating of surface micromachined cantilevers. Proceedings of SPIE, Vol. 

6111, pp. 611108 

Plass, R. A., Baker, M. S. & Walraven, J. A. (2004). Electrothermal actuator reliability studies. 

Proceedings of SPIE, Vol. 5343, pp. 15-21 

Sassen, W. P., Henneken, V. A., Tichem, M. & Sarro, P. M. (2008). Contoured thermal V-

beam actuator with improved temperature uniformity. Sensors and Actuators A: 

Physical, Vol. 144, No. 2, pp. 341-347 

Schulz, L. G. (1954). The Optical Constants of Silver, Gold, Copper, and Aluminum. I. The 

Absorption Coefficient k. Journal of the Optical Society of America, Vol. 44, No. 5, pp. 

357-362 

Serrano, J. R. & Phinney, L. M. (2008). Displacement and Thermal Performance of Laser-

Heated Asymmetric MEMS Actuators. Journal of Microelectromechanical Systems, Vol. 

17, No. 1, pp. 166-174 

Serrano, J. R. & Phinney, L. M. (2009). Effects of layers and vias on continuous-wave laser 

heating and damage of surface-micromachined structures. Journal of 

Micro/Nanolithography, MEMS and MOEMS, Vol. 8, No. 4, pp. 043030 

Serrano, J. R. & Phinney, L. M. (2007). Micro-Raman thermometry of laser heated surfaces. 

Proceedings of ASME InterPACK 2007, Vancouver, BC, Canada 

Serrano, J. R., Phinney, L. M. & Brooks, C. F. (2005). Laser-Induced damage of 

polycrystalline silicon optically powered MEMS actuators. Proceedings of ASME 

InterPACK 2005, San Franscisco, CA, USA 

Serrano, J. R., Phinney, L. M. & Rogers, J. W. (2009). Temperature amplification during laser 

heating of polycrystalline silicon microcantilevers due to temperature-dependent 

optical properties. International Journal of Heat and Mass Transfer, Vol. 52, No. 9-10, 

pp. 2255-2264 

Sun, B. K., Zhang, X. & Grigoropoulos, C. P. (1997). Spectral optical functions of silicon in 

the range of 1.13-4.96 eV at elevated temperatures. International Journal of Heat and 

Mass Transfer, Vol. 40, No. 7, pp. 1591-1600 

Wong, C. N. C. & Graham, S. (2003). Investigating the thermal response of a micro-optical 

shutter. IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 2, 

pp. 324-331 

Xu, X. & Grigoropoulos, C. P. (1993). High temperature radiative properties of thin 

polysilicon films at the  = 0.6328 m wavelength. International Journal of Heat and 

Mass Transfer, Vol. 36, No. 17, pp. 4163-4172 

www.intechopen.com



 
Microelectromechanical Systems and Devices 

 

348 

Yavas, O., Do, N., Tam, A. C., Leung, P. T., Leung, W. P., Park, H. K., Grigoropoulos, C. P., 

Boneberg, J. & Leiderer, P. (1993). Temperature dependence of optical properties 

for amorphous silicon at wavelengths of 632.8 and 752 nm. Optics Letters, Vol. 18, 

No. 7, pp. 540-542 

www.intechopen.com



Microelectromechanical Systems and Devices
Edited by Dr Nazmul Islam

ISBN 978-953-51-0306-6
Hard cover, 480 pages
Publisher InTech
Published online 28, March, 2012
Published in print edition March, 2012

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

The advances of microelectromechanical systems (MEMS) and devices have been instrumental in the
demonstration of new devices and applications, and even in the creation of new fields of research and
development: bioMEMS, actuators, microfluidic devices, RF and optical MEMS. Experience indicates a need
for MEMS book covering these materials as well as the most important process steps in bulk micro-machining
and modeling. We are very pleased to present this book that contains 18 chapters, written by the experts in
the field of MEMS. These chapters are groups into four broad sections of BioMEMS Devices, MEMS
characterization and micromachining, RF and Optical MEMS, and MEMS based Actuators. The book starts
with the emerging field of bioMEMS, including MEMS coil for retinal prostheses, DNA extraction by micro/bio-
fluidics devices and acoustic biosensors. MEMS characterization, micromachining, macromodels, RF and
Optical MEMS switches are discussed in next sections. The book concludes with the emphasis on MEMS
based actuators.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Justin R. Serrano and Leslie M. Phinney (2012). Optical-Thermal Phenomena in Polycrystalline Silicon MEMS
During Laser Irradiation, Microelectromechanical Systems and Devices, Dr Nazmul Islam (Ed.), ISBN: 978-
953-51-0306-6, InTech, Available from: http://www.intechopen.com/books/microelectromechanical-systems-
and-devices/optical-thermal-phenomena-in-polycrystalline-silicon-mems-during-laser-irradiation



© 2012 The Author(s). Licensee IntechOpen. This is an open access article
distributed under the terms of the Creative Commons Attribution 3.0
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/3.0

