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1. Introduction 

Micro-electro-mechanical Systems (MEMS) are components with micron-scale moving parts 

based on materials and processes of microelectronics fabrication. This is a good example of 

on-chip integration of electronics, microstructures, microsensors and microactuators. 

Accurate simulation of MEMS requires precise modeling of all effects of mechanical and 

damping forces, electrostatic forces and inner stresses, heat transfer, thermal expansion, 

piezoelectric stresses etc. 

Modern methodology of MEMS design implies that the entire MEMS can be investigated only 

at higher abstraction levels such as schematic and system ones, where accurate macromodels 

can be used [1]. On the other hand, at component or device levels the physical behavior of 

three-dimensional continuums is described by partial differential equations (PDE) easily 

solvable by Finite Element or Finite Difference Element Methods (FEM or FDM) [2,3], available 

in ANSYS –like software. Component level simulations are classified in single - domain and 

coupled - domain simulations, both being very computer time- consuming. 

The goal of this chapter is to consider methods of automatically obtaining macromodels of 

MEMS and their mechanical or non-electric components from ANSYS models as equivalent 

electric circuits or low order differential ordinary equations for further use in circuit design 

software. This can be done by using different model order reduction techniques developed 

in recent years. 

When dealing with the modern MEMS, the possibility for using a single environment to 

simulate objects, where different physical processes such as electrical, mechanical, optical, 

thermal etc. take place, plays an important role. Here we have to represent different 

subsystems of the initial MEMS as equivalent models of the same physical nature permitting 

to combine them for solution in a single computational process. After that, the complete 

behavioral model of the entire MEMS and its subsystems can be compiled either in VHDL-

AMS language (as sets of ODE) or in SPICE-like language (as equivalent electric circuits). 

The Microsystems design exploits various analytical and numerical methods for virtual 

prototyping of MEMS. It also demands for libraries of electromechanical, optical models and 

microfluid components, including springs, bulks, buffers, capacitors, inductances, 

operational amplifiers, transistors etc. Three basic possible approaches of MEMS design 

procedure are illustrated below: FEM/FDM Model, Reduced Order Model (ROM), Coupled 

system-level model. 
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2. FEM/FDM model  

MEMS typically involve multiple energy domains such as kinetic energy, elastic 
deformation, electrostatic or magneto static stored energy and fluidic interactions. The 
difficulty in the modeling of MEMS devices is mainly caused by the tight coupling 
between the multiple energy domains. Individual physical effects are governed by 
partial differential equations (PDE), typically nonlinear. When these equations become 
coupled, the computational challenges of highly meshed numerical simulation become 
formidable. 
FEM relies on highly localized interpolation functions (or mesh element functions) for 
approximation of the solution of PDE. These mesh element functions are generated by 
meshing the domain of interest and parameterize the desired solution locally on each mesh 
element. This parameterized solution converts a continuous (PDE) problem to a coupled 
system of ordinary differential equations (ODE) that can be integrated in time. The resulting 
ODE system usually has many degrees of freedom (perhaps several variables per mesh 

element). If a fine mesh is required, the problem size grows rapidly, with a corresponding 
rapid growth in computational cost for explicit dynamic simulation. Consequently, it is very 
expensive to use FEM model in system-level simulations during MEMS iterative design. As 
a result, FEM models are mostly used to analyze the performance of MEMS components and 
to couple their multiphysics effects.  
By reading ANSYS binary FULL file it is possible to assemble a MEMS component state-
space model in the form of first order systems or second order ordinary differential 
equations (ODE) 

 Erz’ + Arz = Brf  ,        Y=Crz  (1) 

 Mx’’ + Dx’ + Kx =Bf  ,  Y=QTx +RTx’ ,  (2) 

where Ar, Er ,Cr, Br, M ,D, K, B, C- are the system matrices, Br, B are the input and the Cr, C -
output matrices, f is input force. In mechanics matrices M, D and K are known as the mass, 
damping and stiffness matrices correspondingly. Usually damping is included in the model as 
Rayleigh damping. The damping matrix D is computed as a linear combination of the 
stiffness K and the mass M matrices: 

D=ǂ M +ǃ K, 

where ǂ, ǃ are constant coefficients. 
In (1) the state space vector z is defined through the unknowns deflections u(x,t) and 
pressures p(x,y,t) into the node points being automatically generated in MEMS structure:    
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second equations (2) can be transfer to the first (1). 
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The FULL file contains all the information about the system: the system element matrices, 
Dirichlet boundary conditions, equation constrain and the load vector. It is generated using 
ANSYS partial solver, which enables to assemble system element matrices for the desired 
analysis without solving them and it therefore computationally fast. The speed of the 
reading operation has been optimized taking into account that the element matrices are 
sparse. The load vector directly gives the matrix-vector product Bf and thus describes the 
distribution of all loads being applied. In order to obtain the B matrix, and thus being able to 
modify the inputs singularly, it is necessary to repeat the partial solution for each input of 
interest. 

3. ROM (Reduced Order Model) 

It would be easier and more intuitive for the designer to explore the design space if the 
MEMS model had only a few variables with a clear relationship between them and the 
overall device performance. Reduced-order models (ROM), also called macromodels, lend 
themselves very well to these purposes. The main idea behind the reduced order model is 
that the number of ordinary differential equations (ODE) needed to simulate the system has 
been reduced from perhaps many thousands in the case of the full FEM simulation, to just a 
few basis function coordinates (fig.1). 
 

 

Fig. 1. Reduced order model illustration 

Such the macromodel simulation can be very efficient computationally compared to the 
FEM model. A designer can use the FEM model for different component geometry and 
materials trying and the ROM model for investigation of different input forces effect (fig.2). 
 

 

Fig. 2. Compact reduced order model in MEMS design [33] 
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3.1 Modal decomposition ROM 
Modes (or resonances) are inherent properties of a structure. Resonances are determined by 
the material properties (mass, stiffness, and damping properties) and boundary conditions 
of the structure. Each mode is defined by a natural (modal or resonant) frequency, modal 
damping, and a mode shape. 
 

 

Fig. 3. Simple Plate Frequency Response Function 

If either the material properties or the boundary conditions of a structure change, its modes 
will change as well. The overall response of a structure at any frequency is a summation of 
responses due to each of its modes. It is also evident that close to the frequency of one of the 
resonance peaks, the response of one mode will dominate the frequency response [6], fig.3. 
 

 

Fig. 4. Overlay of Frequency and Time Response Functions 

Now if we overlay the time trace with the frequency trace it is possible to notice that 
maximum oscillations at the time are corresponding to the frequencies of maximum 
frequency response function (fig.4). 
 

 

Fig. 5. Flexible Body Modes [6]. 
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Let’s see what happens to the deformation pattern on the structure at each one of these 
natural frequencies. Modes are further characterized as either rigid body or flexible body 
modes. All structures can have up to six rigid body modes, three translational modes and 
three rotational modes. Many deformation problems are caused, or at least amplified by the 
excitation of one or more flexible body modes. Fig.5 shows some of the common 
fundamental (low frequency) modes of a plate. The fundamental modes are given names 
like those shown in Fig.5. The higher frequency mode shapes are usually more complex in 
appearance, and therefore don’t have common names. 
Modal decomposition method uses a weighted sum of n mode shapes (modal amplitudes or 
eigenvalues) qi, basis function (an eigenvector) φi (x, y, z)) of the mechanical structure to 
represent its deflection u: 

 
1

( , , , ) ( ) ( , , )
n

eq i i
i

u x y z t u q t x y z


   , (5) 

where ueq is the initial displacement produced by the initial load. For MEMS it is usually 
sufficient that few modes accurately describe dynamical response of the system. This 
approach is equivalent to the projection of the original PDE, describing the MEMS behavior, 
on the subspace defined by the basis functions. 
By inserting (5) into the equation of motion (2), taking x = φ eǌt and multiplying by φTi from 
the left, and using the orthogonality of eigenvectors, the equation (2) can be reduced to 

 2 22 ( ) T
i i i i i iq q f       ,   i=1,2,…n  (6) 

The eigenvectors satisfy the orthogonality conditions φTk Mφi= φTk Dφi = φTk Kφi = 0 
for ǌk _≠ ǌi. With the normalization of the eigenvectors φTk Mφk ≡ 1, it can be shown that 

φTk Dφk = −2ǔk and φTk Kφk = ω2k+ ǔ2k if ǌk = ǔk +jωk.  

Note that the orthogonality condition does not apply in the case of multiple eigenvalues. In 
such case, special modal analysis techniques are needed for decoupling of modes [7]. 
The decoupling of modes yields that transfer functions can be written as a sum of modal 
transfer functions. Using Fourier transforming expansion and equations (6), the transfer 
matrix can be derived as 

  
1 1

( ) ( )
( )( )

Tn n
i i

k
i i i ii i

H H
j j j j

         
         (7) 

This relation is the basis of modal analysis. It relates the measurable transfer functions to the 

modal properties ωi, ǔi, and φi. Each i- th mode contributes with a modal transfer matrix Hi 

to the complete transfer matrix. Fig.6 shows an example of a theoretical transfer function (7) 

with three modal peaks corresponding to modes at 1, 2, and 4 Hz which are all damped with a 

logarithmic decrement of 1% (−ǔi/fi = 0.01). Also the individual modal transfer functions (7) 

are plotted from which the complete transfer function is computed. 

By the way the eigenvalues qk and the corresponding eigenvectors φk for k = 1, 2, . . ., n can 
be found as an solution of the modified eigenvalue problem 

 (Mǌ2 + Dǌ + K)φ =0 .  (8) 
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The relationships between natural frequencies fk, logarithmic decrements ǅk and the 
eigenvalues are fk = 2πǚk and ǅk = −ǔk/fk . 
 

 

Fig. 6. Example of the modal decoupling in a transfer function [7]. 

3.1.1 Modal ROM based on proper orthogonal decomposition methods 

Reduced order modeling using modal basis functions was originally developed by [11-13] 
and has been continuously improved by several authors. The basis functions ( , , )i x y z  in (5) 

may be chosen in two ways by: 

 Using the undamped linear mode shapes of the undeflected microstructure as basis 
functions. For simple structures with simple boundary conditions, the mode shapes can 
be found analytically. For complex structures or complex boundary conditions, the 
linear mode shapes are obtained numerically using the finite element method. 
However, it is usually difficult to determine, a priori, an optimum set of eigenvectors φk, 
particularly when irregular geometries are involved. 

 Using snapshots obtained from experiments under a training signal or full FEM model 
runs. Then the proper orthogonal decomposition method (Singular Value 
Decomposition –SVD , Karhunen -Loève decomposition -KL and neural networks-based 
generalized Hebbian algorithm -GHA) is applied to the time series for extracting the 
mode shapes of the device structural elements.  

The choice of orthogonal basis functions φk can be done by the following way [8]. First the 
MEMS dynamics are simulated using a slow but accurate technique such as FEM or FDM. 

Sets of runs may be used to suitably characterize the operating range of the device. The 
spatial distributions of each state variable u(x, y, z, t) are then sampled at a series of Ns 

different times during these simulations, and the sampled distributions are stored as a series 

of vectors, {ui}, where each of them corresponds to a particular “snapshot” in time. Now 
suppose we would like to pick orthogonal basic n functions {φ1, φ2,…, φn} in order to 
represent the observed state distributions as closely as possible. One way to do this is to 
attempt to minimize a least squares measure of the “error” distances between the observed 

states and the basis function representation of those states: 

www.intechopen.com



 
Macromodels of Micro-Electro-Mechanical Systems (MEMS) 

 

161 

 2
1

1 1 1

[ ( , { ,..., })]
n n n

T
i i n i j i

i i j

u proj u span u   
  

   ,  (9) 

where ( , )proj v S  is the projection of the vector v into subspace S. In other words, we 

minimize a least squares measure of the “error” distances between the observed states and 
the basis function representation of those states.  
Singular value decomposition (SVD) takes a rectangular matrix of modal experimental data 
(defined as U, where U is a N x n matrix) in which N is a number spatial points of each 
snapshot, n is a number of snapshots. The SVD theorem states: 

UNxn= WNxN SNxn VTnxn , 

where the columns of W are the left singular vectors (spatial points vectors); S (the same 
dimensions as U) has singular values and is diagonal (mode amplitudes); and VT has rows that 
are the right singular vectors (snapshots numbers vectors).  
The SVD represents an expansion of the original data in a coordinate system where the 
covariance matrix is diagonal. Calculating the SVD consists of finding the eigenvalues and 
eigenvectors of matrices UUT [NxN] and UTU [n x n]. The eigenvectors of UTU make up the 
columns of V, the eigenvectors of UUT make up the columns of W. Also, the singular values 
in S are square roots of eigenvalues from UUT or UTU. The singular values are the diagonal 
entries of the S matrix and are arranged in descending order: 1 2 ... 0n      .The 

singular values are always real numbers. If the matrix U is a real matrix, then W and V are 
also real.  
It was shown [11] that the proper orthogonal basis functions {φ1, φ2,…, φn} minimizing (9) 
can be chosen by setting  

, {1,2,..., }i iv i n    

where vi is the columns of V.   
After finding basis functions φk the linear equations for modal amplitudes qk estimation are 
formed for each temporal snapshot on the base of selected before “snapshot” spatial points 
and equation (5). 
Karhunen-Loève decomposition (KL) can be viewed as a statistical procedure [9] .One initially 

supposes that the observed system dynamics can be modeled as a second-order ergodic 

stochastic process. The method consists then in constructing a spatial autocorrelation tensor 

from data obtained through numerical or physical experiments and performing its spectral 

decomposition.  

KL differs from SVD in way of finding basis functions φi through the temporal snapshot 

correlation matrix entries                
1
1

1
[ ( , ) ( , )]

n

ij i m j k
k
m

a u x t u x t
n 

     

as ,
1

( ) ( )
n

i k i k
k

x b u x


 ,  

where n is number of temporal snapshots and bk,i are eigenvectors of the matrix A, or the 
solutions of the equation Ab=ǌb. 
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Generalized Hebbian algorithm (GHA) is an Artificial Neural Network (ANN) approach of 
performing Principal Component Analysis (PCA) on a set of data and can be also used as a 
learning procedure for the approximation of PDE solutions by the expression (5) [10] .  
The modal approach to MEMS macromodeling is illustrated by sensor device (fig.7), which 
is described by coupling a 1-D elastic beam equation with electrostatic force and 2-D 
compressible isothermal squeeze-film Reynold’s equation [11]. This device consists of a 
deformable elastic beam microstructure that is electrostatically pulled in by an applied 
voltage waveform. The dynamics of the beam are first simulated using a finite-difference 
analysis. A quarter of the beam is initially meshed using a 20 x10 node 2-D grid. 
 

 

Fig. 7. Fixed-fixed beam pull-in time pressure sensor device [11] 

The state at each node consists of three quantities: z, dz/dt and p. Since z and dz/dt are 

simulated in 1-D, this results in coupled nonlinear ODE which must be integrated in time. 

Basis functions are generated for pressure p and displacement z based on runs of the finite-

difference code for an ensemble of four different step voltages: 9V, 10V, 12V, 16V. One 

hundred samples of pressure and displacement are taken during these four runs at fixed 

time intervals. These samples are used to generate the basic functions. The resulting basis 

functions for displacement and pressure are shown in Fig.8 [11]. 

3.1.2 Nonlinear modal ROM  

The device governing equations are generally derived from Lagrange equations, after 
expressing the internal (elastic and kinetic) and external (electrostatic) energy of the system 
in terms of modal amplitudes and symbolical calculation of the gradients. Assuming that 
the device undergoes small displacement, the basis chosen results in diagonal mass and 
stiffness matrices, which can be pre-computed. Linear elastic undamped normal modes of 
the undeflected device have been often chosen as basic functions to approximate the 
solution of an electromechanical problem discretized using finite element methods. Modal 
representation is very efficient since it requires only one equation per mode and involved 
conductor to describe the entire system. 
The nonlinear energy terms, instead, are generally expressed as analytical functions of the 
modal coordinate. In [13] a single static full finite element simulation is used to determine 
the number of modal functions needed to capture the device behavior and their expected 
amplitude. Then this information is used to construct the electrostatic energy term. A 3D full 
model electrostatic simulation is run for values of the modal amplitude that span the 
operating range of the device, in order to compute the capacitance/deformation curve by 
using ANSYS’ transducer element TRANS126. The results are fitted with a rational fraction 
of multivariate polynomials using a nonlinear function fitting scheme. In order to model 
large-displacement behavior of the device, the strain energy is derived by fitting data from a 
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set of full finite element simulations [13]. A similar procedure is proposed in [17]. In this 
case, the force-displacement function and the modal strain energy are still derived from a 
series of FEM simulations, but a polynomial multi-variable fit is used. In order to reduce the 
complexity of the fitting step, dominant and relevant modes are first characterized. Both the 
procedures in [13] and [17] can be partially automated and extended to include other 
conservative energy domains. Other algorithms have also been proposed for the 
approximation of dissipative energy terms [18, 19]. Dedicated methods have been 
demonstrated for actuated microbeams, still using the linear undamped mode shapes of the 
device as basic functions in the Galerkin procedure [20], where two expressions of the 
nonlinear electrostatic term were proposed as a function of modal coordinates, each 
including all nonlinearities up to the fifth order, obtained via mathematical manipulation 
[21]. A new fuzzy-logic model (FLM) for MEMS is presented in [22] in which for reducing 
the number of data needed for macromodel identification, cluster estimation of a model 
structure and back propagation method of structure parameters adaptation are chosen to fit 
the data. As a result the dynamic coupled simulation of a magnetic microactuator takes only 
several minutes and the force macromodel yielded errors is less than 1.5% for a 5-Ǎm 
displacement. These FLMs combine fuzzy sets with fuzzy rules that have the capability to 
model the complex nonlinear behavior. 
 

 
(a) 

 
(b) 

Fig. 8. Basis functions for (a) displacement z(x, t) and (b) pressure p(x, y, t) [11] 

www.intechopen.com



 
Microelectromechanical Systems and Devices 

 

164 

Macromodels obtained via modal basis functions methods have been demonstrated to 
reproduce results obtained with full physical level simulation with an accuracy of some 
percentage points and a reduction of the computational complexity simulation. It was 
shown that even when the problem is mechanically nonlinear, the linear normal modes can 
serve as basic functions. The approach can be outlined as follows [13]: 
1. Compute the linear modes φi of the elastic problem. 
2. Substitute u (x ,y, z ,t) in the governing equation for the deflection (e.g., the Euler–

Bernoulli or Timoshenko equations for beams). 
3. Obtain a system of n-coupled second-order ordinary differential equations for the qi(t). 
4. Solve the equations to compute the dynamic response either numerically or 

analytically. 

3.1.3 VHDL-AMS export of modal ROM 

In general, the equation (5) describes a coordinate transformation of finite element 
displacement coordinates (mesh element coordinate) to modal coordinates of the 
macromodel (basic functions or a degree of freedom-d.o.f.): 

1

( , , , ) ( ) ( , , )
n

eq i i
i

u x y z t u q t x y z


  . 

The deformation state of the structure given by N nodal displacements ui (i=1,2,…,N ) is 
now represented by a linear combination of n modes weighted by their amplitudes qj 
(j=1,2,…,n ) where n << N.  
The governing equation of motion describing the ROM of electrostatic actuated MEMS 
structures in modal coordinates: 

 2
1 1

1

1
2 ( ,..., ) ( ,.., ) ( )

2

n

j j j j j j st n ks n k s i i
j jr i

m q m q W q q C q q V V f
q q

  


          ,  (10) 

where mj is the modal mass, ωj is the eigenfrequency, ξj the linear modal damping ratio, Wst 
is the modal strain energy function, Cks is the modal capacity-stroke function, r is the num-
ber of capacities involved for microsystems with multiple electrodes, V is the electrode 
voltage applied and fi is a local force acting at the i-th node. The current Ik at each electrode k 
is defined by: 

 ( ( ) ( ))k k s ks
k ks k s

r

Q V V C
I C V V

t t t t

               (11) 

An essential prerequisite to establish (10) and (11) are proper modal strain energy and 
capacity-stroke functions. Both are derived from a series of FEM runs at various deflection 
states in the operating range. The received data are used for polynomial functions fitting in 
order to compute the local derivatives, which describe force and stiffness terms. As a matter 
of fact, shape function methods can be applied to nonlinear systems, too [13]. Geometric 
nonlinearities, as, for instance, stress stiffening, can be regarded if the modal stiffness is 
computed from the first derivative of the strain energy function with respect to the modal 
amplitudes. Capacitance-stroke functions provide non-linear coupling between each 
eigenmode and the electrical quantities (i.e. electrostatic modal forces, electrical current) if 
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stroke is understood as modal amplitude. Damping parameters are assigned to each 
eigenmode.  
The first step of the ROM generation is to determine which modes are really significant, and 
to estimate a proper amplitude range for each mode. Several criteria can be applied, for 
instance, the lowest eigenmodes of a modal analysis, modes in operating direction, or 
modes, which contribute to the deflection state at a typical test load. Next the dependencies 
of the strain energy Wst and capacities are described by polynomial functions being fitted. 
The necessary data points are obtained by imposing each eigenmode with varying 
amplitude on the mechanical mode1l for the non-linear strain energy and on an electrostatic 
space model for capacitance. This process is computationally expensive but has to be done 
just once. The result is a black-box model that can be applied to any load situation. In the 
concept of the modal superposition method, each eigenmode represents a single 
independent resonator with modal mass mi and modal damping ξi. 
The export of the ROM to VHDL-AMS is performed in two steps [16]. At first, an 
initialization file containing all necessary information of the macromodel, such as the fitted 
polynomial coefficients and orders, is generated. Then, the source code in VHDL-AMS is 
automatically generated. The main problem of exporting the ROM in VHDL-AMS is to 
express the fitted functions of the non-linear strain energy and of the capacities which are 
part of coefficients of the differential algebraic equations (DAE), which can be mapped to 
the simultaneous statements of VHDL-AMS. If simulators support description in matrix 
notation properly (as MATLAB), the exported VHDL-Models will become more compact 
and clear. 
The Modal ROM approach was implemented as the available ROM-Tool in 
ANSYS/Multiphysics since Release 7 (ROM144). It contains some terminals (fig. 9) and 
provides necessary functions:  
- the master node terminals which describe the displacement ui and the inserted forces 

FN,i at these nodes; 
- the modal terminals with the modal amplitude qi and modal force FM,i for the chosen 

modes; 
- the electrical terminals which provide the voltages Vi and currents Ii for the electrodes 

of the system. 
 

 

Fig. 9. ROM144 functional block 
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The ROM144 takes input equations (5),(10),(11) with characteristic constants ( modal masses, 

modal damping ratios and eigenvectors of the master nodes) and provides the special 

functions of calculating the strain energy Wmech (qi, qj , qk) and capacitances Cop(qi, qj , qk )as 

well as their first derivatives with respect to the modal amplitudes qi, qj and qk using the 

information of the polynomials degrees defined in other packages. 

Modal ROM144 approach speeds up computations in 40 times in comparison with the FEM 

model while pull-in time errors is less than 2%. 

Modal ROM approach was implemented also in INTEGRATOR system of CoventorWare 

(http:// www.coventor.com), MEMS Pro (http://www.memspo.com) and MEMSCAP 

(http:// www.memsscap.com). 

3.1.4 Galerkin’s approximated ROM 

As in (5) the desired PDE solution u(x,y,z,t) can be approximated by spatially varying 

arbitral basis functions ( , , )i x y z  with time varying coefficients  : 

 
1

( , , , ) ( ) ( , , )
n

i i
i

u x y z t t x y z 


   (12) 

For the Galerkin’s method the PDE residual ( ( ) )L u f  is orthogonal to each ǂi of the basic 

functions in the operating range H:  

 ( , ( ) ) ( ( ) ) 0, 1, .T
i iL u f L u f dt i n        (13) 

where L is a differential operator (possibly nonlinear), and f is an input vector.  
The basic functions ( , , )i x y z  can be chosen arbitrarily, as long as their elements satisfy all 

of the boundary conditions and are sufficiently differentiable. It means that they can be not 
only eigenmodes as it was shown before, but they may be Tchebychev, Legendre, Hermit 
polynomials or even wavelets functions, which were introduced in the past two decades 
and are gaining increasing popularity. Indeed wavelets have many excellent properties: 
such as orthogonality, compact support, exact representation of polynomials to a certain 
degree, and flexibility to represent functions at different resolution levels. The wavelet- 
Galerkin method is a Galerkin scheme using wavelet functions as the basic functions. 
However, wavelet functions do not satisfy the boundary conditions. Thus the treatment of 
general boundary conditions is a major difficulty for the application of the wavelet- Galerkin 
method. The wavelet interpolation Galerkin method is a Galerkin scheme where basic 
functions are a class of interpolating functions generated by autocorrelation of the usual 
compactly supported Daubechies scaling functions [23]. Daubechies’ functions are easy to 
construct. For an even integer L, we have the Daubechies’ scaling function φ(x) and wavelet 
Ǚ(x) satisfying 

  

1

1

1

1
2

( ) (2 )

( ) ( 1) (2 )

L

i
i

i
i

i L

x p x i

x p x i

 
 




 

 
  

  (14) 

( )i t
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The scaling function φ(x) is supported in the interval [0, L − 1] while the corresponding 
wavelet Ǚ(x) is supported in the interval [1 − L/2, L/2]. The parameter L will be referred to as 
the degree of the scaling function φ(x). The coefficients pi are called the wavelet filter 
coefficients and they satisfy the same conditions. The constructed scaling function φ(x) and 
wavelet Ǚ(x) have also the prescribed properties. 
The autocorrelation functions θ(x), which are used for generating basic functions, can be 
defined as follows: 

 ( ) ( ) ( )x x d     
   (15) 

and act as the scaling function 

 , ( ) (2 )J
J k x x k   . (16) 

Wavelets have proven to be an efficient tool of analysis in many fields including the solution 
of PDE. In [23] a new wavelet interpolation Galerkin method is used for the numerical 
simulation of MEMS devices under the effect of squeeze film damping. The air film pressure 
is expressed as a linear combination of a class of basic functions generated by 
autocorrelation of the usual compactly supported Daubechies scaling functions, which are 
the first- generation wavelets. The wavelet interpolation Galerkin method was used to 
predict the frequency response of the accelerometer with a spring mass-damper model with 
a parallel-plate electrostatic force. Various numerical tests have been conducted by changing 
the degree of the Daubechies wavelet L and the number J of the scale. Better accuracy can be 
achieved by increasing L and J. The higher L is, the smoother the scaling function becomes. 
The price for the high smoothness is that its supporting domain gets larger. The higher J is, 
the more accurate the solution becomes. The number of differential equations and the CPU 
time increase significantly as J increases. The solutions for L = 6 and J = 4 have results higher 
than the finite difference method. 
The present wavelet interpolation Galerkin method is not suitable to solve problems defined 
on nonrectangular domains, since higher-dimensional wavelets are constructed by 
employing the tensor product of the one-dimensional wavelets, so their application is 
restricted to rectangular domains. But usage of the second-generation wavelets which are 
constructed in the spatial domain can expend in future PDE solutions to complex domains.  

3.2 Moment matching based ROM 

Moment matching model order reduction is based on the approximation of the original n-
dimensional system transfer function F(s) of the original n-dimensional system with a 
rational function with a lower degree q<<n [24]. This is done by matching some terms of the 
Taylor expansion of F(s) around a certain expansion point. 
For a state space equation 

 
( ) ( ) ( )

( ) ( )T

X t AX t Bv t

Y t C X t

 



 (17) 

let’s perform a Laplace transform to obtain its frequency domain transfer function  

 1( ) ( )TF s C sI A B   (18) 
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and expand it into Taylor series as 

 
0

( ) k
k

k

F s m s



   (19) 

where 1( )T k
km C A A B  . 

Moment matching is directly connected to the Krylov subspace formed by the pair of 

matrices (A-1, A-1B) [24]. The Krylov subspace is spanned by the column vectors in the 

following collection of matrices: 

 {A-1B, (A)-1A-1B, . . . , (A)-i A-1B, . . .} (20) 

where the column vectors are called the Krylov vectors. The q-th order Krylov subspace is 

denoted by 

 Kq(A-1, A-1B) (21) 

which is spanned by the leading q linearly independent Krylov vectors in (20). Let V є Rn×q  

be any matrix which columns span the Krylov subspace Kq(A-1, A-1B) 

Spancolumn{V} =span{A-1B;A-2B; . . . ;A-qB}. 

Here V is the orthogonal projection matrix that maps the n-dimensional state-space into a q 

dimensional state-space and satisfies VTV = I. If the columns of V are orthogonal and B is a 

column vector, it can be shown that the following identities hold [24]: 

 (A)iA-1B= V(Aq)iAq-1Bq    (22) 

for i = 0, 1, . . . , q − 1. These identities can be used to verify that at least the q leading 

moments of the full-order and reduced-order transfer functions are matched. Finally, we get 

the reduced order system of much smaller order (or state-space dimension) by performing 

variable change ( ) ( )x t V x t   and multiplying on VT both sides of the equations (17): 

 
( ) ( ) ( )

( ) ( )

q q

T
q

x t A x t B v t

y t C x t

  


 


  (23) 

where                           Aq = (VTAV ),   Bq = VTB,  Cq = CTV.            

As a common practice, the block vectors forming the Krylov subspace are orthogonalized by 

using the Arnoldi algorithm for a numerical stability. Lets describe the block Arnoldi 

algorithm for a single column input matrix, i.e., B = b, where b є Rn, so that the algebraic 

operations involved can be seen. 

3.2.1 Arnoldi Algorithm 

i. LU factorize matrix A: A = LU. 

ii. Solve 1v from: A 1v = b. 

iii. Compute 11 1h v   and 1 1 11/v v h  . 
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iv. For j = 2, . . . , q: 

Solve jv  from: 1j jAv Av  . 

For i = 1, . . . , j − 1: T
ij i jh v v  . 

1

1

j

j j i ij
i

w v v h



   

, /jj j j j jjh w v w h  . 

Note that the Arnoldi algorithm terminates when hjj = 0, which means that the subsequent 
vectors belong to the subspace already generated. The Arnoldi algorithm is basically a 
Gram–Schmidt procedure for orthogonalizing the Krylov vectors. The variant of the Arnoldi 
algorithm (also known as PRIMA) with some extra computational effort preserves the 
passivity of the original system [27]. 
The Moment matching method of model order reduction can be extended on nonlinear 
systems. In these cases the original nonlinear systems has to be changed previously 
(linearized or piecewise-linearized, approximated by a quadratic systems, divided into 
several linear systems, etc.) [28]. 

3.2.2 Second order systems 

A size of a second order equations system (2) can be also reduced by transforming it to the 
first order system (1), and then applying the methods described before. However, the 
reduction of second order systems by such transformation ignores the physical meaning of 
the original matrices and gives a reduced order model in a first order form. It is desirable for 
the reduced system to preserve the form of the original system (2). Approaches, that deal 
directly with the system (2) reduction have been proposed in the framework of Krylov 
subspaces methods [29, 30]. 
The transfer function for the system (2), with zero initial conditions, is given by: 

  2 1( ) ( )TH s C s M sD K B     (24) 

 If the system is undamped, i.e. D = 0, the Arnoldi process can be applied for the 
computation of a basis for the Krylov subspace Kq (K−1M,K−1B)  which is used for the 
projection matrix V building. The transfer function can be expanded into Taylor series as        

2

0

( ) k
k

k

H s m s



  , 

where     1 1( ) ( )T k
km C K M A B   .                                                

Then the reduced system matrices with variable change ( ) ( )x t V x t   are obtained by the 

orthogonal projection: 

  Mq = VTMV,  Kq = VTKV,  Bq = VTB,  Cq = CTV  (25) 

and the matching properties of the method are conserved [31]. 
It is worth noting that, starting from a second order system in the form (2), Krylov subspace 
methods require the knowledge of K−1. For high dimensional systems, the explicit 
calculation of the inverse of K is computationally not affordable. Its computation is therefore 
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replaced by the solution of linear systems of equations through a LU- decomposition and 
defying K−1= U−1 L−1. 
If the system is damped, i.e. D ≠ 0, in case of Rayleigh damping, it demonstrates that the 
damping matrix can be neglected during the reduction process and it can be computed 
afterwards, as a linear combination of the reduced stiffness and mass matrices [29]. That is 
why it is possible to recalculate the matrix D also similar to matrices M and K as in (25): 

Dq = VTDV.    

The reduction of a nonlinear system (2) can be done by using linear model order reduction 

techniques and considering nonlinearities as inputs. In the general case, the stiffness matrix 

is nonlinear since its entries dependent on the nodal displacements x. So damping matrix 

entries also are nonlinear functions of the nodal displacements x and the applied voltages V. 

If the nonlinearities are confined in the input function f, the system can be reduced using 

linear model order reduction technique. The only complication is that, after the reduction, 

the argument of x has to be recovered by the projection x = Vxq [31,32]. 

As a typical example Fig. 10 displays the transient simulation and frequency response of the 

original and reduced models of the microgyroscope being received via usage of the Arnoldi 

process [33]. 
 

 

(a) 

 

(b) 

Fig. 10. Comparison of transient behavior (a) and transfer functions (b) for the full and 
reduced microgyroscope models [33]. 

We see that the solution obtained by reduced model of order 10 is already very close to the 

true ANSYS excitation (fig.10,a) while the reduced models of order 15 up to 20 show 
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considerable deviations at the high frequency range (fig.10,b). The model with order of 40 

shows a perfect match for the lower eigenfrequencies and it is quite closer for higher 

frequencies, though this is not so important for the gyroscope.  

Using Krylov/Arnoldi approach, only a postprocessor to ANSYS is necessary to generate a 

macromodel in one of the well established model description languages: pure C code, HDL-

A, MAST, Modelica and the new standardized VHDL-AMS which are supported by 

powerful system simulators. Such approach was implemented in mor4ansys (pronounced 

"more for ANSYS") that was developed by IMTEK [33] and which provides the reduced 

model of order 20 - 30 with an accuracy of a few percents when the dimension of an original 

FEM is up to 100 000. 

3.3 Equivalent-circuit ROM 

Taking in to account relations between displacements x, velocities v and accelerations a:  

, it is possible to present the equation (2) in the form [34,35]: 

   or      , (26) 

where  are equivalent matrices of capacitances, conductance and 

inductances.   

, ,C G L    

The elements of matrices , ,C G L    are formed from the elements of the mass, damping and 

stiffness matrices in the following ways: 

  

   (27) 

where N is a number of equations or nodes of the MEMS structure. 

In this approach a capacitive-inductive-resistive model of the circuit is built which correctly 

reflects mass, damping and stiffness matrices. Nodal potentials in this model correspond to 

the displacement velocities v. 

Connected inductors, capacitors and conductors are placed in parallel between each two nodes 

and each node and ground (for the case i = j), fig.11. Values of these elements are defined by 

equations (27). Similar approach was used for solving thermo-structural analysis [35]. 

Displacements x are defined by the current of inductances Lii, which are connected between 

a node and ground. Such approach suggests significant advantage if the coefficients of the 

mass and stiffness matrices become time-dependant. 

The task of reduction of MEMS model order turns now into reduction of the equivalent RLC 

circuit size. There are two ways of performing such circuit size decreasing with the minimal 

accuracy loss: 

/ ,a dv dt x vdt  
( ) ( )

d
Mv Dv Kvdt F t

dt
   ( )Cv Gv Lv F t    

, ,C M G D L K    

1

, , 1(1) , ; , 1(1) ; 1/ , , 1(1) , ;
N

ij ij ii ij ij ij

j

C m i j N i j C m i N L k i j N i j


         
1 1

1/ , 1(1) ; , , 1(1) , ; , 1(1) .
N N

ii ij ij ij ii ij

j j

L k i N G d i j N i j G d i N
 

        
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- sequential excluding of the internal circuit nodes by application of Y-∆ (star-triangle) 
transformation [36, 39 ]; 

- building a macromodel as a four- terminal [40]. 

 

 

Fig. 11. Circuit element for composing the equivalent-circuit model 

3.3.1 Y-∆ transformation based circuit size reduction methods  

The essence of the methods based on the Y-Δ transformation consists in the following. Let’s 

i-th node and k its neighbors are located as shown on fig.11. Then the component equation 

of i-th row will look like 

  , (28) 

where
  

Let’s define Vi as 

                                (29) 

and replace Vi in other k equations , that is equivalent to excluding i- th node from a circuit. 
Then, for example, the equation of the first node transfers to:  

 
1

2
1 1 1 1 1

2 1

( / ) / 0
k k

i j j i r r
j r

r i

Y y y Y V y y V Y y V
 

               (30) 

where  
1

1
1

k

r
r
r i

Y y



 

is a sum of all node conductance

 

excluding i- th node, k1 is a number of 

nodes being connected to

 

node 1.

 

1 1 2 2 ... 0i i n nYV yV y V y V    

1

.
k

i j

j

Y y




1

k

i j j i

j

V y V Y


    
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Fig. 12. A working node of the RLC-circuit: conductance are added between node 1 and all 
neighbors nodes 

The equation (30) can be simplified: 

 
1

1 1 1 1
2 2 1

( / ) / 0
k k k

j i j j i r r
j j r

r i

Y y y Y V y y V Y y V
  

                      (31) 

Note that it is equivalent to adding k-1 new elements between first node and k-1 former 
neighbors of i-th node on Fig. 12. 
For any two a-th and b-th nodes, which are neighbors to i- th node, elimination of i- th node 
will add a new element between these two nodes, which is equal to: 

 ( ) /ab a b iy y y Y    (32) 

or in the p-polynomial form, taking into account existence of R, L and C elements, as shown 
on fig. 11: 

 
  (33)

 

where 
1 1 1

, ,
k k k

i j i j i j
j j j

C C B B G G
  

     are sums of all the capacitances, reciprocal  

inductances and conductance connected to i-th node.  

In order to simplify (33) two constant time values /RCi i iC G   and /LCi i iC B  are 

introduced for any node in the circuit. The time constant of i-th node is defined as 

max( , )i RC LC   and it is considered to be fast if 
1.                                             min max2 / ,i      

where min - a time constant which depends on maximal circuit frequency max being  

defined by user. So, a fast node will satisfy the following conditions: 

max max, /i i i iC G G B    і max max/i iC B  . 

In order to eliminate a fast node from RLC circuit, let us consider the following two cases. 

1

k

2

i

y1

yk

y2

1

2

k

y1 y2

yk

a b i
ab a a b b i i

b b B
y g pc g pc G pC

p p p

                  
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2.  If RCi LCi  , the equation (33) can be transformed into: 

 ( )( )/( )ab a a b b I iy g pc g pc G pC     (34) 

and its decomposition into Taylor series will look like:  

 . (35) 

For typical R,L,C values (R=0,1÷1000 ohm, L=0,01÷10 nH, C=0,001÷10 pF, ω=0,1÷10 GHz) the 
contribution of the last term in (35) will be significantly smaller that previous ones. The 
constant term in (35) gives the value of the conductance, which appears between a- th and b- 
th nodes during the elimination of i- th node, and the second term in (35) defines the value 
of capacitance. 
3. If LCi RCi  , the equation (33) is transformed into: 

  
.  (36)

 

The first term with  in (36) defines the value of the reactive conductance (the 

inductances’ reciprocal value), which appears between a- th and b- th nodes during the 
elimination of i- th node, and the second term in (36) gives the value of the capacitance. 
Final formulas for additional elements between a-th and b-th nodes during the elimination 
of i- th node for all possible cases are given in tables 1 and 2. All these formulas can be 
deducted from (35) and (36). The only exception is the case when a- th and b- th nodes are 

connected to i- th node through a capacitor when /ab a b iC C C C .  

In order to eliminate a node from equivalent MEMS circuit with the smallest inaccuracy, the 
following two criteria should be taken into account: 
- a node should be fast; 

- time constants ,LCi RCi   should not be compared (have almost the same values). 

In practice, usually lower eigenfrequencies for mechanical systems are most interesting. 

Therefore, a compromise between accuracy and size of the received circuit models can be 

reached by proper selection of Ǖ min value. So the algorithm of equivalent-circuit ROM can be 

described as following:  

1. Time constants should be calculated for all the nodes of the circuit. 

2. All the nodes should be put into a priority queue, sorted by time constants, apart from 

input, output and ground nodes. 

3. Take the first i- th node in the queue (the one with the smallest time constant mini  ). 

4. Find the neighbors k of i- th node. 

5. Eliminated i- th node according to the rules described in tables 1, 2 (depending on 

,LCi RCi   values). 

6. Time constants in the set k (which consists of the neighbor of i-th node) should be 

recalculated  

7. Take i- th node from the head of the priority queue and jump to step 3. 

2 4a b a b b a a b
ab

i i i

g g c g c g c c
y p p

G G G

  

1 a b a b a b
ab

i i

b b c b c b
y p

p B B

 
1 p
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Original branch Substitution Formula 

 

bab=babb/Bi 

Cab=(baCb++bbCa)/Bi 

bab = babb/Bi 

Cab = baCb/Bi 
 

bab=babb/Bi 

Cab = baCb/Bi 

 

Cab=ba*Cb /Bi 

Cab=CaCb/C 

 

Cab=Cagb/Gi 

gab=gagb/Gi 

 

gab=bagb/Gi 

 
 

 

gab=bagb/Gi 

Table 1. Transformations for LCi RCi  case 
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Original branch Substitution Formula 

 

gab=gagb/Gi 

Cab=(gaCb+bCa)/Gi 

 

gab=gagb/Gi 

Cab=gaCb/Gi 
 

 

Cab=gbCa/Gi 

 

Cab=gbCa/Gi 

 

 

Cab=CaCb/C 

gab=gagb/Gi 

 

 

gab=bagb /Bi 

gab=bagb /Bi 
 

gab=baCb /Bi 
 

 
 

 

gab=babb /Bi 
 

Table 2. Transformations for RCi LCi  case 

3.3.2 Building MEMS macromodel as a four- terminal   

The main idea of this method is to develop a MEMS macromodel as a four-terminal circuit 

(n-terminal in a general case) as:  
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    (37) 

where Ia, Ua are current and voltage at the macromodel input, Ib, Ub are current and voltage 
at the output. It is suggested to obtain equation (37) directly from the general matrix of the 
circuit (e.g. admittance matrix Y) according to the expression [40]: 

     
,

1 bb ba

tp
aa bb ab aa

Y

         
           (38) 

where Δij – an algebraic complement to aij element of the initial circuit admittance matrix Y, 
which is equal to a determinant of the matrix being obtained from the matrix Y after 
eliminating i – th row and j- th column on the crossing of which the given element aij is 
situated. In addition the sign of Δij is defined by the factor ( - 1 ) i + j;  

Δaa,bb – redoubled algebraic complement which equals to the determinant of the matrix 
obtained by eliminating a-th,b-th rows and a-th ,b-th columns and its sign is defined by the 
factor (-1) a + a + b +b. 
The necessary algebraic complements can be calculated by the initial matrix inversion 

procedure, if matrix elements are defined for the selected frequency ω0, which is fixed by an 

user: 

     Y-1  =  
1

  

11 21 1

12 22 2

1 2

....

...

...

n

n

n n nn

             
, 

where ∆ - is the determinant of the initial matrix Y and ,
bb aa ba ab

aa bb

       .                 

So if numerical values of the inverted Y-1 matrix elements are computed: 

   

11 21 1

12 22 21

1 2

....

...

...

n

n

n n nn

g g g

g g g
Y

g g g


        

  (39) 

it is possible to find parameters of the equivalent four- terminal (38). By choosing elements 

, , ,aa bb ab bag g g g  of the inverted matrix (39) and computing ,aa bb aa bb ab bag g g g g   it is 

possible to find parameters of the reduced model (37) from the relations: 

    

,

,

,

/ ;

/ ;

/ .

aa bb aa bb

ab ba ba aa bb

bb aa aa bb

Y g g

Y Y g g

Y g g


  


 (40) 

Since macromodel parameters are determined by sum of the real and imaginary parts: 

,









b

a

bbba

abaa

b

a

U

U

YY

YY

I

I
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 Yij= a0+i a1 , (41) 

it is convenient to represent the circuit macromodel also as a sum of real and imaginary 
terms: 

           0 0

0 0

aa ab aai abi
tp

ba bb bai bbi

Y Y Y Y
Y i

Y Y Y Y

           . (42) 

Investigation the expression (42) for different frequencies confirms that for linear circuits at 
least for frequency range 0  , where ω0 – frequency at which elements of the inverted 

matrix (40) are initially defined, real terms of the computed parameters (42) preserve their 
values and imaginary terms change proportionally to the selected frequency. This confirms 
the possibility to use macromodel parameters being computed at once frequency in a broad 
frequency range. 
As it was noted earlier, the macromodel form (42) is inconvenient for direct implementation 
in the circuit simulation software. A real part of Yij parameters for the stable passive 
macromodels (a0>0) has to be positive while an imaginary part could be negative. If in (41) 

0,oa  1 0a   the Yij component of the four- terminal may be presented by parallel 

connection of conductance, capacitance and inductance [41]: 

 Gij = Re (Yi,j), Cij = k Im (Yij)/ ω0, Lij = 1/[(k-1)Im (Yij) ω0].  (43) 

If 0,oa  1 0a   the respective component Yij may be presented in the same way as parallel 

connection of conductance, capacitance and inductance but: 

 Gij = Re (Yi,j) , Cij = (k-1) Im (Yij)/ ω0  and   Lij = 1/(k Im (Yij) ω0),  (44) 

where k is defined by reactive components values ratio. 
So it is possible to select priori the equivalent-circuit macromodel, for example, shown on 
Fig.13, and to define parameters of its components using expressions (43) and (44).  
 

 

Fig. 13. Equivalent-circuit macromodel of a four-terminal 

The important feature of the equivalent circuits MEMS macromodel is a possibility to use 

optimization procedures for accurate adjustment of the macromodel components values to 

meet the device characteristics being obtained by FEM model. If a whole MEMS equivalent 

circuit is rather large it is possible to divide it into some subcircuits and apply 

transformation (37) to each subcircuit. 
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Then to combine individual four-terminal circuits into one equivalent MEMS four-terminal 
circuit taking in account ways of connectivity of different subcircuits ( parallel, sequence or 
mixed) and proper recalculating four-terminal circuits parameters systems ( y, z, h, a) [40]. 

3.3.3 NetALLTED equivalent-circuit ROM subsystem 

Equivalent-circuit ROM for MEMS was implemented in the circuit simulation package 
NetALLTED (ALL TEchnologies Desinger) which was developed not only for simulation 
and analysis, but for processing project procedures such as parametric optimization tasks; 
optimal tolerance assignments; centering availability regions; yield maximization [42]. 
NetALLTED is widely used for design of Nonlinear Dynamic Systems composed of 
either/and electronic, hydraulic, pneumatic, mechanical, electromagnetic, and other 
elements and it is available through the Internet (http://allted.kpi.ua/). ROM developing 
approach in hand provides more than 99% reduction of elements and node numbers of 
equivalent- circuit ROM. For example, for the accelerometer only 3 nodes and 6 elements are 
left from initial 1,883 nodes and 62,826 elements. 
Let’s consider the example of the equivalent- circuit ROM for the beam working on bending 
and find its eigenfrequencies [34]. The left end of the beam is fixed motionlessly, right one is 
free. Force f is applied to the right end perpendicularly to the beam axe. 
The initial FEM model was constructed using ANSYS Multiphysics v.10.0 and the beam 

ANSYS library’s BEAM3 finite element with the length of 0.5 um for following beam 

parameters: L = 25 um; beam cross-section is a square one with height of 3 um and width of 

2 um. Beam material properties: coefficient of elasticity E=2·1011, Pa = 0.2 N/mkm2; Poisson 

coefficient Ǎ = 0.3; material density ρ = 6·103 kg/m3 = 6·10-9 mg/mkm3. The initial 

equivalent beam circuit contains 101 nodes and 314 elements. 

The developed equivalent-circuit ROM with 5 nodes and 14 elements is presented on fig.14. 
 

Object 
Circuit Beam; 
J1(100,0)=-100; 
C_1(82,100) = -
0.116667; 
L_10(100,0) = -34161.8; 
L_11(23,50) = 1.35e-10; 
L_12(23,0) = 1.15e-10; 
L_13(50,0) = -16435.9; 
L_14(50,82) = 1.6e-10; 
C_2(100,0) = 6.3; 
C_3(23,50) = -0.116667;
C_4(23,0) = 17.3833; 
C_5(50,82) = -0.116667;
C_6(0,50) = 20.65; 
C_7(0,82) = 17.5; 
L_8(82,100) = 9e-11; 
L_9(82,0) = -580750; 
&& 

 

Fig. 14. Equivalent beam circuit 
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The two lower eigenfrequencies of the beam are defined by computation. The results of 

ANSYS Multiphysics frequency analysis as well as the results of the equivalent- circuit ROM 

simulation for different Ǖmin by NetALLTED [36,43] are given in table 3. 

It is obvious that the accuracy of a macromodel obtained with Ǖ min =3*10-5 is rather high and 

there are only 5 nodes and 14 elements in the reduced circuit. For more accurate simulation 

it is possible either to use a reduced circuit obtained with smaller values of Ǖ min (when a size 

of equivalent circuit ROM increases), or to adapt the received ROM with help of the 

optimization methods. 

 

 
ANSYS
results 

ALLTED results 

Source 
circuit 

Reduced circuit 
Optim. 
circuit 

min , s - - 5*10-6 10-5 3*10-5 3*10-5 

Node number - 101 24 12 5 5 

Element number - 314 76 38 14 14 

Reduction by nodes, % - - 76,2376 88,1188 95,0495 95,0495 

Reduction by elements, % - - 75,7962 87,8981 95,5414 95,5414 

1st peak, Hz 1336,2 1336,3 1336,1 1334,9 1327 1336,2 

2nd peak, Hz 4009,3 4009,3 4009,4 3993,3 3612,1 4009,4 

Maximal error, % - - 0,01 0,3 9,9 0,003 

Table 3. Frequency beam analysis results 

The macromodel of the four-terminal for the same beam is being developed in according 
with (38)-(44) with only 3 nodes and 6 elements that presented on fig.15. 
 

Object 

Circuit Beam; 

J1(1,0)=-100; 

L2(1,2) = 2.997781327698e-011; 

C2(1,2) = 3.155049077722e+002; 

L1(1,0) = 1.125969906329e-009; 

C1(1,0) = 1.890000000000e+001; 

L3(2,0) = 7.750537495099e-010; 

C3(2,0) = 1.220321457595e+001; 

&& 

 

Fig. 15. Equivalent beam circuit being considered as a four- terminal 

The results of simulations of the four- terminal equivalent circuit by NetALLTED [36,43] are 

given in table 4. 
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Source 
circuit 

Reduced circuit 
(as n-ports) 

Node number 101 3 

Element number 314 6 

1st  peak, Hz 1336.3 1337.0(0.05%) 

2nd peak, Hz 4009.3 4008.9(0.01%) 

Table 4. Results of frequency analysis of the four- terminal equivalent circuit for a beam 

The advantage of the equivalent circuit approach is obtaining small size of the equivalent 
reduced circuit as well as the possibility to get required frequencies with a high accuracy, 
using NetALLTED optimization possibilities (fig.16). The disadvantage is a necessity to 
make the additional analysis of reduced circuit in order to find the most sensitive elements 
and take them as variable parameters during optimization procedure. 
 

 

Fig. 16. ROM transfer function before (1) and after (2) optimization. 

For example, for reduced circuit, shown at fig.14, four variable elements have been chosen 
(L8, L11, L12, L14) and the objective function OF ERROR1= F8(1336.3,4009.3/T1,T2) was 
constructed which contains the requirement to obtain resonance peaks at frequencies 
T1=1336.3 Hz and T2=4009.3 Hz in according to the ANSYS analysis results (table 3). The 
objective function contains also current values of frequency response extremes 
T1=MAXA(db.K1,100,1600) and T2=MAXA(db.K1,1700,4100), which are calculated with help 
of MAXA directive for defining time or frequency when the output (db.K1 in our case) 
reaches its maximum value in the specified time or frequency range (100-1600 Hz). Among 
available 12 optimization methods being incorporated in NetALLED the Random Search 
Method (METHOD=40) with search interval reducing has been used to optimize the beam 
macromodel parameters.  

4. MEMS coupled system-level model 

The modeling of MEMS provides a very challenging task in modern engineering. This field 

of research is inherently multiphysics of nature, since different physical phenomena are 
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tightly intertwined at microscale. Typically, up to four different physical domains are 

usually considered in the analysis of microsystems: mechanical, electrical, thermal and fluidic. 

For each of these separate domains, well-established reduced order modeling and analysis 

techniques are available. However, one of the main challenges in the field of microsystems 

engineering is to connect models for the behavior of the device in each of these domains to 

equivalent lumped or reduced-order models without making unacceptably inaccurate 

assumptions and simplifications and to couple these domains correctly and efficiently.  

Micromechanical membrane devices (capacitive pressure transducers, ultrasonic 

transducers), surface micro machined devices (RF switches, micro optical devices) as well as 

bulk micro machined devices (accelerometers, inclinometers, laser scanning mirrors) are 

driven or sensed by nearly parallel electrode pairs in many cases. The motion of these 

electrodes is strictly normal to the surfaces. 

It means that MEMS electrical parts of these MEMS had to be combined with mechanical 

ones (fig.16). Typically, block-diagram descriptions and lumped-element circuit models for 

components are connected into a full system. Mostly, this description is used for functional 

analysis of a design concept. 

The coefficients and electrostatic nodal force are obtained from the capacitance- 

displacement function C(w) of the associated electrode portions and gap space. The function 

can be input by one of three means [44]: 

 as analytical function if the electrode portions make up a plate capacitor geometry with 

homogeneous intermediate field; 

 as polynomial approximation of a function given by data points; 

 as data table wherein the element subroutine interpolates values during solution. 

The electrostatic forces acting on the movable conductor of the device are included in the 

model as nonlinear input forces, which are applied on nodes distributed over the conductor 

surface. Nodes divide the surface into N smaller portions. A lumped force is applied to k- th  

node at the center of each portion, in its preferential direction of movement xi. The 

capacitance Ck between the k-th portion and the fixed electrode of the device is computed, 

for its undeformed configuration, using an electrostatic analysis 

The entity of each force fk is then approximated as: 

 2
2

0

1
( )

2 ( )
k

k p nk
i

A
f V V

d w

   (45) 

where d0 is the initial distance between the conductor and the electrode, ǆ is the relative 

dielectric permittivity, k
iw  is the displacement of the k- th node along the direction xi and 

(Vp-Vn) is the voltage difference between the structure and the fixed electrode.  
The capacitance Ck can be calculated from  

  Ck=ǆAk/(d- k
iw ) . (46) 

If Ck varies considerably with the deformation of the structure, then a series of electrostatic 

computations for different device deflections in its operation range can be performed. The 

results can be used for extracting the dependency Ck (
k
iw ) and calculating the electrostatic 

force. 
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Fig. 16. MEMS system-level simulation approach [33] 

According to the assumption that conductors are equipotential, all the nodes connected to a 
certain conductor are subjected to the same voltage boundary conditions. The total current 
flowing in the conductor is simply given by the sum of the currents at those nodes: 

[ ( )]k k k n

d
i C V V

dt
  .  

The nodes used for electrostatic force application can be also used for monitoring the 
distance between the movable structure and the electrode. When this is equal to the 
transduction gap, the contact condition is reached and contact forces with the stiffness of the 
contact Kn , given by equation  

 Fcont = Kn(d − gapmin), (47) 

can be applied to nodes. 
Computation of the electrostatic forces adds some complexity to the development of the 
MEMS system-level model, but this is largely compensated by the speed-up simulation of 
the full model. 
There is the special ANSYS’ transducer element TRANS126 which has the possibility to 
calculate the capacitance of a parallel plate capacitor model ( at particular nodes or as a 
whole) as [47] 
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2 3 4

0 0 0
2 3 4

0 0 0 0 0 0

( ) (1 ...)
C d C w w w w

C w
d w d d d d d

         (48) 

where do and w are the initial distance and the displacement between the plate.  

The element has two nodes; the gap distance is calculated as the sum of the initial 
displacement and the difference of the nodal displacements in the direction of the 
element. The force is calculated by equation being similar to (44) so that in the constant 
voltage case 

 
2 2 3

2 0
2 3 4

0 0 0 0

1 ( ) 1
( 2 3 4 ...)

2 2

C VC w w w w
F V

d d d d d

      . (49) 

The element has also contact capabilities (47). It is possible to specify a minimal gap and a 
spring stiffness Kn for the repelling force. 
The drawback of this kind of element is that it is limited to the case where the electrodes are 

(almost) parallel plates, so that the stroke/capacitance function can be evaluated from a 

single degree of freedom. But the extensions for rotation plates and for 2D cases were 

developed. The last one with a triangular shape (element TRANS109) is useful for 

simulating structures such as comb drivers and optical MEMS, in which capacitance 

between the device parts is generally a function of a two-directional displacement. 

TRANS126 and TRANS109 elements enable a huge reduction of the complexity of the 

system-level simulation.  

Let’s consider for example the system-level macromodel of an ultrasonic transducer which 

has two plates with the bottom electrode area Ac and the plate dimension L and which can 

be presented by nonlinear capacitance: 

 
  (50)  

where C0 is the smallest capacitance in the absent of voltage V: 0
0

c

e

A
C

d

  

CL/2 is the largest capacitance when a plate center displacement is calculated from 

the ROM macromodel equations (26):  

0
/2

,
2

c
L

e

A
C

L
d w t

     
,  

where ed  is an equivalent gap ( 1
0

1

ins
e

ins

dd
d d     ); 0  is the absolute dielectric permittivity 

of the vacuum, 1  is the relative dielectric permittivity of the poly silicon , ins  is the relative 

dielectric permittivity of the insulator; w is a plate deflection . 

The largest value of this capacitance corresponds to the value . The electrostatic 

force acting on the capacitor surfaces is the Coulomb force:  

/ 2 0( )(1 ),t

eq o LC C C C e    

( , )
2

L
w t

max 0w d
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Fig. 17. Capacitive –voltage characteristic an ultrasonic transducer 

.  

As the displacement  reaches the value , the hard stop will restrict its 

further increase, but input voltage Vn and can be further increased. Assume that the 

input voltage Vn is a superposition of a constant voltage DCV  and a time dependent signal 

 V t  and that  DCV V t . The elastic-plastic properties of the points of contact are simulated 

by a spring with rigidity Kn and a damper of damping factor b0. When the beam center moves 
past wmax, it starts interacting with the spring that represents the contact. The damper is 
introduced to take into account the energy dissipation at the contact. The following equations 
are used to represent this model: 

 

max

max max

0

( )n o

for w w
R

K w w b w for w w

       ,  

where R  is the interaction force. 

The process of interaction simulated by the force R  sometimes can be highly sensitive to the 

values of the model parameters (rigidity and damping factor), especially if . The 

interaction can induce high-frequency motions and slow down the rate of convergence 

considerably. Therefore, a good deal of attention must be paid to accurately modeling and 

representing this process using experimental data. 
If the input voltage is increased more, there will be no equilibrium and the plate collapse 

takes place. In this case, a hard stop or some other arrangement must be introduced to limit 

the plate motion. During the plate collapse, the difference between the electrostatic force 

and the elastic force of the spring will continue to increase. Therefore, when the plate drops 

down into the hard stop, it is not enough to reduce the input voltage below to release the 

plate. The input voltage should be reduced more to make the electrostatic force at least 

equal to the elastic force. Hence, the plate capacitance exhibits the hysteretic behavior with 

respect to voltage change. 

2 2

0

2
2

2 ( , )
2

eqin C in
elec

e

CV A VE
F

w d L
d w t

        


( , )
2

L
w t

max 0w d
elecF

max ew d

www.intechopen.com



 
Microelectromechanical Systems and Devices 

 

186 

But if the insulation layer is rather thick its restrictive effect should be taken into account. If 

the maximal center displacement  is equal to initial thickness air gap the moving plate 

touches the insulator top surface of the electrode when the input Vn voltage reaches the 

value of  ( maxV  may be calculated from simulation). But as soon as the input voltage 

will be decreased under this value the plate will leave the hard stop. So, its capacitance does 

not demonstrate the hysteretic behavior (fig.17). 
Parameter Ǖ in (50) defines an ultrasonic transducer frequency band and can be calculated 

through the plate displacement  and its velocity , which are defied 

from ROM equations in the following way: 

   (51) 

The coefficient 3 appears in (51) due to the fact that a capacitance recharge to 98% for a time 
value which is equal approximately 3Ǖ.   
It is possible to see two included procedures in according to fig.18: one for development of 

ROM for an ultrasonic transducer plate, where a deflection and speed of central point`s 

deflection of transducer plate is calculated for the value Vn, and second - for determine of 

MEMS system- equivalent capacity value (SLM), using values of plate central point co-

ordinates .Then the cycle of calculations recurs whereupon.  

 

 

Fig. 18. ROM- system-level model coupled simulations 

Instead of using two sequence procedures mentioned above it is possible using   
functional possibilities of the circuit simulator NetALLTED to built a single system-level 
equivalent circuit model for an ultrasonic transducer by introducing directly into the 
equivalent- circuit ROM of mechanical MEMS part the additional arbitrarily connected 
element (a Depended Source) with an informative function which is determined by 
equation (50) [42]. Optimization procedures of NetALLTED allow getting the desirable 
values of this transducer capacity and through it to get a desirable value of output signal 
of an ultrasonic transducer system-level model by the changing ROM parameters, which, 
in turn, are depended upon an ultrasonic transducer construction sizes and used material 
properties. 
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Providing a single representation of a MEMS operating in multiple physical domains, the 
electrical circuit approach is very convenient. Moreover, powerful mathematical techniques 
and circuit simulation programs are available for solving design tasks. It is possible to 
develop a library of schematic model for different MEMS elements and then use their 
combinations to build a system-level macromodels for entire rather complicated MEMS 
constructions. 

5. Conclusion 

In this chapter, the methods and issues encountered in the development of MEMS 
macromodels at the system level have been presented. System level modeling is the highest 
and most abstract level of modeling. This level requires various devices` linking of MEMS 
component level models – both electronic and micromechanical – into a micro-electro-
mechanical system. System-level models of MEMS components are needed to allow a fast and 
sufficiently exact investigation of their behavior to simulate entire MEMS. 
 Starting point for the extraction of a reduced order model (ROM or a macromodel) is 
already its description with a large ODE system, which is typically derived using physical 
modeling techniques based on Finite Element Method (FEM) which is rather time 
consuming. Macromodels application allows the extraction of lower order ODE system that 
reproduces the input/output behavior with good accuracy. Particular attention has been 
posed in the chapter on the possibility to get a macromodel circuit presentation.  
There are special methods for generating ROM for MEMS components and entire MEMS 
based on FEM descriptions. To derive macromodels of smaller sizes different approaches 
(Modal decomposition, Moment matching, Equivalent circuit presentation) were developed. Usage 
of the reduced MEMS components models allows applying successfully modern circuit 
simulators in workflow for MEMS design on system level. 
Three automatic procedures to generate device reduced order macromodels, being based on 
full FEM/FDM models, were demonstrated in this chapter. Two of them are suitable for 
simulators with possibilities to get input information in the equation forms (ODE or OAE). 
The third one in opposite produces macromodels in circuit presentation and so it is more 
suitable for circuit simulators. The Modal ROM approach is based on using natural (modal 
or resonant) frequencies of MEMS structure and it is spread mostly in the USA and Asia. 
The Moment matching ROM approach is based on using the Krylov subspace for transfer 
functions and it is popular in Western Europe and Asia. The Equivalent circuit ROM 
approach is based on using a capacitive-inductive-resistive circuit model for mass, damping 
and stiffness matrices and it is used mostly in Eastern Europe. It is worth to notice that the 
Modal ROM approach requires some full ANSYS runs to perform a proper orthogonal 
decomposition during basic functions determination in opposite to the Moment matching 
and the Equivalent circuit ROM approaches for which it is enough to use ANSYS only for 
FEM model matrices building. 
It seems to be interesting and perspective trying to combine mentioned approaches, for 
example, to start with Krylov/Arnoldi reduction of ODE dimension, then to build the 
proper equivalent circuit for obtained ODE systems and finally to apply Y/Δ transformation 
or n-port transformation for further reducing macromodel order. 

6. References 

[1] S. D. Senturia, “CAD challenges for microsensors, microactuators, and microsystems,” 
Proc. IEEE, vol. 86, pp. 1611–1626, 1998. 

www.intechopen.com



 
Microelectromechanical Systems and Devices 

 

188 

[2] E. B. Rudnyi and J. G. Korvink, “Model order reduction for large scale engineering 
models developed in Ansys.” Lect. Notes Comput. Sc., vol. 3732, pp. 349–356, 2006. 

[3] M. G.Mand G. Ostergaard, “Electro-mechanical trasducer for MEMS analysis in Ansys,” in 
Proc. Int. Conf. on Modeling and Simulation of Mycrosystems (MSM)’99, pp. 270–273, 1999. 

[4] W. Z. Lin, K. H. Lee, S. P. Lim, and Y. C. Liang, “Proper orthogonal decomposition and 
component mode synthesis in macromodel generation for the dynamic simulation 
of a complex MEMS device,” Journal of Micromechanics and Microengineering, vol. 13, 
no. 5, pp. 646–654, 2003. 

[5] A.I.Petrenko,” Design Methology and Workflow for MEMS Design ”, Proc. 
MEMSTECH’2011, 11-14 May, Polyana-Svalyava (Zakarpattya), UKRAINE, pp.12-15, 2011. 

[6] Peter Avitabile. “Experimental Modal Analysis- A Simple Non-Mathematical 
Presentation”, Modal Analysis and Control Lab., University of Massachusetts Lowell, 16 
p.,2001. 

[7] Gunner C. Larsen, Morten H. Hansen, Andreas Baumgart, Ingemar Carl. ” Modal 
Analysis of Wind Turbine Blades”, Riso–R–1181(EN), ISBN 87–550–2697–4 
(Internet), Riso National Laboratory, Roskilde, Denmark, 72 p., February 2002. 

[8] W. Z. Lin, S. P. Lim, and Y. C. Liang, “Proper orthogonal decomposition and component 
mode synthesis in macromodel generation for the dynamic simulation of a complex 
MEMS device,” J. Micromech. Microeng., vol. 13, pp. 646–654, 2003. 

[9]  H. M. Park and D. H. Cho, “The use of the Karhunen-Lo`eve decomposition for the 
modeling of distributed parameter systems,” Chem. Eng. Sci., vol. 51, no. 1, pp. 81–
98, 1996. 

[10] Y. C. Liang, W. Z. Lin, H. P. Lee, S. P. Lim, K. H. Lee, and D. P. Feng, “A neural-
network-based method of model reduction for the dynamic simulation of MEMS,” 
Journal of Micromechanics and Microengineering, vol. 11, no. 3, pp. 226–233, 2001. 

[11] Elmer S. Hung and Stephen D. Senturia.” Generating Efficient Dynamical Models for 
Micro-electro-mechanical Systems from a Few Finite-Element Simulation Runs”, 
Journal of Microelectromechanical Systems, vol. 8, no. 3, September 1999.- pp.280-289. 

[12] Lynn D. Gabbay, Jan E. Mehner, and Stephen D. Senturia. “Computer-Aided 
Generation of Nonlinear Reduced-Order Dynamic Macromodels—I: Non-Stress-
Stiffened Case”, Journal of Microelectromechanical Systems,, vol. 9, no. 2, June 2000.-
pp.262-269. 

[13] Jan E. Mehner, Lynn D. Gabbay, and Stephen D. Senturia. “Computer-Aided 
Generation of Nonlinear Reduced-Order Dynamic Macromodels—II: Stress-
Stiffened Case”, Journal of Microelectromechanical Systems, vol. 9, no. 2, June 2000.-
pp.270-278. 

[14] Schlegel, M.; Bennini, F.; Mehner, J.; Herrmann, G.; Muller, D.; Dozel, W.: “Analyzing 
and Simulation of MEMS in VHDL-AMS Based on Reduced Order FE-Models”, 
IEEE Sensors 2003, Second IEEE International Conference on Sensors, Toronto, 
Canada, 2003. 

[15] Bennini, F.; Mehner, J.; Dotzel, W. “ Computational Methods for Reduced Order 
Modeling of Coupled Domain Simulations”, Proc. of 11 International Conference on 
Solid State Sensors and Actuators (Transducers 01), Germany, 2001. 

[16] M. Schlegel, F. Bennini, J. E. Mehner, G. Herrmann, D. Mueller, and W. Doetzel, 
“Analyzing and simulation of MEMS in VHDL-AMS based on reduced-order FE 
models” , IEEE Sensors J., vol. 5, no. 5, 2005. 

[17] J. Chen and S. M. Kang, “An algorithm for automatic model reduction of nonlinear 
MEMS devices,” in Proc. IEEE Int. Symp. Circuits and Syst., pp. 445–448, 2000. 

www.intechopen.com



 
Macromodels of Micro-Electro-Mechanical Systems (MEMS) 

 

189 

[18] E. S. Hung, Y.-J. Yang, and S. D. Senturia, “Low-order models for fast dynamical 
simulation of MEMS microstructures” , Digest of Technical Papers, IEEE Int. Conf. on 
Solid-State Sensors Actuators and Microsystems (Transducers’97), pp. 1101–1104, 1997. 

[19] L. H. Feng, “Review of model order reduction methods for numerical simulation of 
nonlinear circuits,” Appl. Math. Comput., vol. 167, no. 1, pp. 576–591, 2005. 

[20] M. I. Younis, E. M. Abdel-Rahman, and A. Nayfeh, “A reduced order model for 
electrically actuated microbeam-based MEMS” , IEEE J. Microelectromech. S., vol. 12, 
no. 5, pp. 672–680, 2003. 

[21] A. H. Nayfeh, M. I. Younis, and E. M. Abdel-Rahman, “Reduced-order models for 
MEMS applications,” Nonlinear Dynamics, vol. 41, no. 1–3, pp. 211–236, 2005. 

[22] Chun-Hsu Ko ,Jin-Chern Chiou.わ Fuzzy Macromodel for Dynamic Simulation of 
Microelectromechanical Systemsわ, IEEE Trans.on Systems, Man and Cybernetics—
Part A: Systems and Humans, vol. 36, no. 4, pp.823-830, JULY 2006 

[23] Pu Li, Yuming Fang. “A Wavelet Interpolation Galerkin Method for the Simulation of 
MEMS Devices under the Effect of Squeeze Film Damping”, Hindawi Publishing 
Corporation, Mathematical Problems in Engineering, Article ID 586718, pp.1-25,2010. 

[24] Z. Bai, “Krylov subspace techniques for reduced-order modeling of large-scale 
dynamical systems,” Applied Numerical Mathematics, vol. 43, pp. 9–44, 2002. 

[25] Zhaojun Bai, Daniel Skoogh,” Krylov Subspace Techniques for Reduced-Order 
Modeling of Nonlinear Dynamical Systems”, 2002 

[26] Jan Lienemann. “Complexity reduction techniques for advanced MEMS actuators 
simulation,” Ph.D. dissertation, Albert-Ludwigs Universit at Freiburg im Breisgau, 298 
p.,2006.  

[27] A. Odabasioglu, M. Celik, L. T. Pileggi, PRIMA: Passive reduced-order interconnect 
macromodeling algorithm, IEEE Trans Comput Aid D, 17 (8) pp. 645–654,1998. 

[28] Lihong Feng. “Review of model order reduction methods for numerical simulation of 
nonlinear circuits”, Applied Mathematics and Computation, vol. 167 , pp. 576–591,2005.  

[29] Z. J. Bai and Y. Su, “SOAR: A second-order Arnoldi method for the solution of the 
quadratic eigenvalue problem,” SIAM J. Matrix Anal. A, vol. 26, no. 3, p. 640659, 2005. 

[30] Z. Bai, P. M. Dewilde, and R. W. Freund, “Reduced-order modeling,” Numerical 
Analysis, vol. 02, pp. 1–59, 2002. 

[31] M. Rewienski and J.White, “A trajectory piecewise-linear approach to model order 
reduction and fast simulation of nonlinear circuits and micromachined devices,” 
IEEE Trans. Comput.Aid. D., vol. 22, p. 155170, 2003. 

[32] J. Chen, Sung-Mo Kang, Jun Zou,Chang Liu and José E. Schutt-Ainé. “Reduced-Order 
Modeling of Weakly Nonlinear MEMS Devices with Taylor-Series Expansion and 
Arnoldi Approach¨, IEEE J. Microelectromech. S, vol. 13, no. 3, pp.441-446, JUNE 2004. 

[33] L. Del Tin, J. Iannacci, R. Gaddi, A. Gnudi, E. B. Rudnyi, A. Greiner and J. G. Korvink. 
“Non Linear Compact Modeling of RF-MEMS Switches by means of Model order 
rerduction”, Solid-State Sensors, Actuators and Microsystems International Conference, 
2007. TRANSDUCERS 2007. Lyon, 10-14 June 2007, pp.635 – 638. 

[34] A.Petrenko, V.Ladogubets, O.Beznosyk, O.Finogenov, ろUsing Optimization 
Procedures to Calculate Parameters of MEMS Macromodels”, Proc. CADSM’2009, 
24-28 February, Polyana-Svalyava (Zakarpattya), UKRAINE, pp.511-514, 2009. 

[35] Hsu J.L., Vu-Quoc . A rational formulation of termal circuit models for electrothermal 
simulation. -part 1: finite element method. IEEE Trans. Circuits & Systems –
I:Fund.Theory &Appl., 43, 9, pp.721-732, 1996. 

[36] Beznosyk O., Ladogubets V., Finogenov O., Tchkalov O. ろUsing circuit design 
software to simulate microelectromechanical components // MEMSTECH 2008, 

www.intechopen.com



 
Microelectromechanical Systems and Devices 

 

190 

IV-th International Conference on Perspective Technologies and Methods in MEMS 
Design, Polyana,Ukraine, pp.130-133, 2008. 

[37] H. Tilmans, “Equivalent circuit representation of electromechanical transducers: I. 
lumped-parameter systems,” IEEE J. Electromicromech. Syst., vol. 6, no. 1, pp. 157–
176, Mar. 1996. 

[38] T. Veijola, H. Kuisma, and J. Lahdenper.a, “Dynamic modelling and simulation of 
microelectromechanical devices with a circuit simulation program,” in Proc. Int. 
Conf. on Modeling and Simulation of Mycrosystems (MSM)’98, pp. 245–50, 1998.38. 
Sheehan JB.N.  

[39] TICER: Realizable Reduction of Extracted RC Circuits // Digest of Technical Papers – 
IEEE/ACM Proc. of ICCAD, pp. 200-203, 1999.  

[40] Petrenko A., Sigorsky V., "Algorithmic analysis of electronic circuits", Western Periodical 
Corp., San Francisco, 618 p, 1975. 

[41]  Petrenko A.I.,“ RLC – circuits models size reduction “, Proc. CADSM’05, Lviv-Polena, 
p.3-8, 2005. 

[42] Petrenko A.I., Ladogubets V.V., Tchkalov V.V., Pudlowsky Z.J. ALLTED - a Computer - 
Aided System for of Electronic Circuit Design, UICEE.(UNESCO), Melbourne, 205 p, 
1997. 

[43] Beznosyk O., Finogenov O., Ladogubets V. Presentation of a System of Ordinary 
Differential Equations as an Equivalent Electrical Circuit.- // Perspective 
Technologies and Methods in MEMS Design : VI-th International Conference 
MEMSTECH’2010, 20-23 April 2010, Lviv-Polyana, Ukraine: proc. – Lviv : 
Publishing House Vezha&Co, 2010. – P. 116–120. 

[44] J.Wibbeler, J.Mehner, F.Vogel, F. Bennini. ” Development of ANSYS/Multiphysics 
Modules for MEMS by CAD-FEM GmbH”, 19-th CAD-FEM Users’ Meeting 2001, 
International Congress on FEM Technology, Berlin, Potsdam, October , 2001, pp.1-10. 

[45] Sven Reitz, Jens Bastian, Joachim Haase, Peter Schneider, Peter Schwarz.” System Level 
Modeling of Microsystems using Order Reduction Methods”, Journal Analog 
Integrated Circuits and Signal Processing, vol.37, Issue 1, 2003, pp.7-16.  

[46] L. Del Tin, R. Gaddi, E. B. Rudnyi, A. Gnudi, A. Greiner, J. G. Korvink, ”Nonlinear 
compact modeling of RF-MEMS switches by means of model order reduction”, 
Proc. 14th International Conference on Solid-State Sensors, Actuators and Microsystems 
(Transducer’07), 10-14 June, Lyon (France).2007. 

[47] M. G.Mand G. Ostergaard, “Electro-mechanical trasducer for MEMS analysis in Ansys,” 
in Proc. Int. Conf. on Modeling and Simulation of Mycrosystems (MSM)’99, 1999, pp. 
270–273.  

[48] J. Iannacci, L. Del Tin, R. Gaddi, A. Gnudi and K. J. Rangra,”Compact Modeling of a 
MEMS Toggle-Switch based on Modified Nodal Analysis”, Symposium on Design, 
Test, Integration and Packagingof MEMS/MOEMS (DTIP) 2005, Montreux, 
Switzerland, 0103 June 2005. 

[49] Peter Schwarz. “Microsystem CAD: From FEM to System Simulation”, Proc. Intern. 
Conf. "Simulation of Semiconductor Processes and Devices" (SISPAD98), Leuven, 2-4. 
Sept. 1998, pp.141-148, Springer, Wien 1998. 

[50] Xuan F. Zha, Ram D. Sriram. “ Information and Knowledge modeling for computer 
supported Micro-electro-mechanical systems design and development”, Proceedings 
of ASME Design Engineering Technical Conference (DETC;2005) September 24-28, 2005, 
Long Beach, California, USA, pp.1-11. 

www.intechopen.com



Microelectromechanical Systems and Devices
Edited by Dr Nazmul Islam

ISBN 978-953-51-0306-6
Hard cover, 480 pages
Publisher InTech
Published online 28, March, 2012
Published in print edition March, 2012

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

The advances of microelectromechanical systems (MEMS) and devices have been instrumental in the
demonstration of new devices and applications, and even in the creation of new fields of research and
development: bioMEMS, actuators, microfluidic devices, RF and optical MEMS. Experience indicates a need
for MEMS book covering these materials as well as the most important process steps in bulk micro-machining
and modeling. We are very pleased to present this book that contains 18 chapters, written by the experts in
the field of MEMS. These chapters are groups into four broad sections of BioMEMS Devices, MEMS
characterization and micromachining, RF and Optical MEMS, and MEMS based Actuators. The book starts
with the emerging field of bioMEMS, including MEMS coil for retinal prostheses, DNA extraction by micro/bio-
fluidics devices and acoustic biosensors. MEMS characterization, micromachining, macromodels, RF and
Optical MEMS switches are discussed in next sections. The book concludes with the emphasis on MEMS
based actuators.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Anatoly Petrenko (2012). Macromodels of Micro-Electro-Mechanical Systems (MEMS),
Microelectromechanical Systems and Devices, Dr Nazmul Islam (Ed.), ISBN: 978-953-51-0306-6, InTech,
Available from: http://www.intechopen.com/books/microelectromechanical-systems-and-devices/macromodels-
of-micro-electro-



© 2012 The Author(s). Licensee IntechOpen. This is an open access article
distributed under the terms of the Creative Commons Attribution 3.0
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/3.0

