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1. Introduction

In this chapter, we revise the main features of a topological model of electromagnetism,

also called the model of electromagnetic knots, that was presented in 1989 (Rañada, 1989)

and has been developed in a number of references. Some of them are (Arrayás & Trueba,

2010; 2011; Irvine & Bouwmeester, 2008; Rañada, 1990; 1992; Rañada & Trueba, 1995; 1997;

2001; Rañada, 2003). One of the main characteristics of this model is that it allows to obtain

interesting topological quantization rules for the electric charge (Rañada & Trueba, 1998) and

the magnetic flux through a superconducting ring (Rañada & Trueba, 2006). We will pay

special attention to these features.

An electromagnetic knot is defined as a standard electromagnetic field with the property that

any pair of its magnetic lines, or any pair of its electric lines, is a link with linking number

ℓ. This number is a measure of how much the force lines curl themselves the ones around

the others. These lines coincide with the level curves of a pair of complex scalar fields φ(r, t),
θ(r, t). In the model of electromagnetic knots, the physical space and the complex plane are

compactified to S3 and S2, so that the scalars can be interpreted as maps S3 �→ S2, which are

known to be classified in homotopy classes characterized by the integer value of the Hopf

index n, which is related to the linking number ℓ.

The topological model of electromagnetism is locally equivalent to Maxwell’s standard theory

in the sense that the set of electromagnetic knots coincides locally with the set of the standard

radiation fields (radiation fields are electromagnetis fields such that the magnetic field is

orthogonal to the electric field at any point and at any instant of time). In other words,

standard radiation fields can be understood as patched together electromagnetic knots. This

can still be expressed as the statement that, in any bounded domain of space-time, any

standard radiation fields can be approximated arbitrarily enough by electromagnetic knots.

It is remarkable that the standard Maxwell’s equations are the exact linearization, by change of

variables not by truncation, of a set of nonlinear equations referring to the complex scalar fields

φ(r, t) and θ(r, t). The fact that this change is not completely invertible has the surprising

consequence that the linearity of the Maxwell’s equations is compatible with the existence of

topological constants of the motion which are nonlinear in the magnetic and electric fields. In

this chapter we will see how to find some of these topological constants.
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2. Electromagnetic knots

As said before, the topological model of electromagnetic knots makes use of two fundamental

complex scalar fields φ(r, t) and θ(r, t), the level curves of which coincide with the magnetic

and electric lines, respectively. This means that each one of these lines are labelled by the

constant value of the corresponding scalar. These complex scalar fields are assumed to

have only one value at infinity, which is equivalent, from the mathematical point of view,

to compactify the three-space to the sphere S3. Moreover, the complex plane C is also

compactified to the sphere S2. Both compactifications imply that the scalars φ and θ can

be interpreted (via stereographic projection) as maps S3 → S2, which can be classified in

homotopy classes and, as such, be characterized by the value of the Hopf index n. It can be

shown that the two scalars have the same Hopf index and that the magnetic (resp. electric)

lines are generically linked with the same Gauss linking number ℓ. If μ is the multiplicity of

the level curves (i.e. the number of different magnetic (resp. electric) lines that have the same

label φ (resp. θ)), then n = ℓμ2; the Hopf index can thus be interpreted as a generalized linking

number if we define a line as a level curve with μ disjoint components.

From the dimensionless scalars φ(r, t) and θ(r, t), one can construct a magnetic field B and an

electric field E as

B(r, t) =

√
a

2πi

∇φ ×∇φ̄

(1 + φ̄φ)2
,

E(r, t) =

√
ac

2πi

∇θ̄ ×∇θ

(1 + θ̄θ)2
, (1)

where φ̄ and θ̄ are the complex conjugates of φ and θ respectively, i is the imaginary unit, a is

a constant introduced so that the magnetic and electric fields have correct dimensions, and c

is the speed of light in vacuum. In the SI of units, a can be expressed as a pure number times

the Planck constant h̄ times the speed of light c times the vacuum permeability μ0.

In order to obtain a solution of the Maxwell’s equations in vacuum from the fields given by

Equations (1), they also have to satisfy

B(r, t) =

√
a

2πic(1 + θ̄θ)2

(

∂θ̄

∂t
∇θ − ∂θ

∂t
∇θ̄

)

,

E(r, t) =

√
a

2πi(1 + φ̄φ)2

(

∂φ

∂t
∇φ̄ − ∂φ̄

∂t
∇φ

)

. (2)

Equations (1) and (2) constitute the definition of an electromagnetic knot, and the magnetic

and the electric fields resulting from these equations satisfy exactly Maxwell’s equations in

vacuum.

It is possible to write Equations (1) and (2) in a more compact way by using the language of

differential forms (a nice reference in which Electromagnetism is written in this language is

(Hehl & Obukhov, 2003)). If μ, ν = 0, 1, 2, 3 are space-time indices and i, j,= 1, 2, 3 are purely

space indices, Aμ = (V/c, A) (in which V is the electrostatic potential and A is the vector

potential) is the 4-vector potential of the electromagnetic field, so that the electromagnetic
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tensor is

Fμν = ∂μ Aν − ∂ν Aμ, (3)

in which x0 = ct. From this tensor one finds the components of the electric field as Ei = c Fi0,

and the magnetic field as Bi = −ǫijkFjk/2 as usual. Moreover, the dual to the electromagnetic

tensor is defined as

Gμν =∗ Fμν =
1

2
ǫμναβFαβ, (4)

with components Bi = G0i, Ei = −c ǫijk Gjk/2. Now, the Faraday 2-form is defined as

F =
1

2
Fμνdxμ ∧ dxν, (5)

and its dual 2-form is defined as

∗ F =
1

2
Gμνdxμ ∧ dxν. (6)

Because of clarity, we will use in this work natural units, in which the speed of light c, the

Planck constant h̄, the vacuum permittivity ε0 and the vacuum permeability μ0 are chosen

as c = h̄ = ε0 = μ0 = 1. In this system of units, the constant a in Equations (1) and (2)

is a pure number. In the language of differential forms, Equations (1) and (2) simply and

remarkably mean that the Faraday form F and its dual ∗F of any electromagnetic knot are

the two pull-backs of σ, the area 2-form in S2, by the maps φ and θ from S3 to S2, i. e.

F = −
√

a φ∗σ,

∗F =
√

a θ∗σ. (7)

As a consequence the two maps are dual to one another in the sense that

∗ (φ∗σ) = −θ∗σ, (8)

* being the Hodge or duality operator. The existence of two maps satisfying Equation (8)

guarantees that both F and ∗F obey the Maxwell equations in empty space without the

need of any other requirement. The electromagnetic fields obtained as in Equations (7) are

electromagnetic knots. They are radiation fields , i. e. they verify the condition E · B = 0.

Note that, because of the Darboux theorem, any electromagnetic field in empty space can be

expressed locally as the sum of two radiation fields.

As stated before, the model of electromagnetic knots is locally equivalent to Maxwell’s

standard theory (Rañada & Trueba, 1998; Rañada, 2003). However, its difference from

the global point of view has interesting consequences, as are the following topological

quantizations:

• The electromagnetic helicity H is quantized. In natural units,

H =
1

2

∫

R3
(A · B + C · E) d3r = na, (9)
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where B = ∇ × A, E = ∇ × C, the integer n being equal to the common value of the

Hopf indices of φ and θ. Note that H = NR − NL, where NR and NL are the classical

expressions of the number of right- and left-handed photons contained in the field (i.e.

H = NR − NL =
∫

d3k(āRaR − āLaL), aR(k), aL(k) being Fourier transforms of Aμ in

the classical theory, but creation and annihilation operator in the quantum version). This

implies that, if we take the constant a to be a = 1,

n = NR − NL, (10)

which is a curious relation between the Hopf index (i.e. the generalized linking number)

of the classical field and the classical limit of the difference NR − NL. This difference has a

clear topological meaning, what is attractive from the intuitive physical point of view.

• The topology of the model of electromagnetic knots implies also the quantization of the

electromagnetic energy in a cavity, as studied in Reference (Rañada, 2003). More precisely,

the model predicts that its energy E in a cubic cavity verifies

E = nω, (11)

with n = d/4, d being an integer, equal to the degree of a certain map between two

orbifolds, and ω is the angular frequency of the electromagnetic radiation. This rule is

different from the Planck-Einstein law but very similar.

• The model of electromagnetic knots explains the discretization of the values of the electric

charge and the magnetic flux through a superconducting ring. These properties will be

studied in the next sections of this work.

3. The problem of the quantization of the electric charge

It is a experimental fact that electric charge is discrete. The theoretical prediction of this fact

has been linked to the existence of magnetic monopoles. So far there is not any evidence

of the existence of monopoles, although some modern unified theories of cosmology and

fundamental interactions imply the existence of magnetic monopoles.

In the next section we will present a theoretical argument for the quantization of the electric

charge where there is not need for the existence of a magnetic charge or quantum mechanics.

However, in this section we also present the standard arguments of the electric charge

quantization. We advice to consult the bibliography, specially (Jackson, 1998) and (Schwinger

et al., 1998) for more details.

3.1 Thomson’s calculation of the angular momentum

J. J Thomson considered in (Thomson, 1904) the electromagnetic field of a system consisting

in a magnetic pole and an electric charge. He calculated the momentum and the angular

momentum of the electromagnetic field. Then, from its conservation he deduced the magnetic

part of the Lorentz force.

Let us assume that we have a magnetic pole g at the point A and a electric charge e at the

point B both at rest. We have then that at an arbitrary point P of the space the electric field
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and magnetic fields are given, in natural units, by

E =
e

4π

r1

r3
1

,

B =
g

4π

r2

r3
2

(12)

where r1 = rP − rA and r2 = rP − rB. It is very interesting to see how Thomson assumed in

this work that the magnetic field produced by a magnetic pole was of the Coulomb type. In

(Thomson, 1904), the author cites Coulomb and Gauss to provide the experimental proof. The

fact that he assumed that, in a magnet, the total magnetic charge has to be zero led him to get

the right answers.

The linear momentum of the field is

P f =
∫

E × B d3r = 0, (13)

as the linear momentum field lines are circles with their centres along the line AB and their

planes at right angles to it. The angular momentum of the electromagnetic field is defined as

L f =
∫

r × (E × B) d3r. (14)

Since the total linear momentum is null, the total angular momentum will be independent of

the point chosen to calculate it, according to Classical Mechanics. It will point in the direction

of the line AB. To evaluate it, we take origin at the position of the magnetic pole A, the axis z

as the line AB, and we have L f = Lz ẑ with

Lz =
eg

(4π)2

∫

sin θ

r|r − R|2 sin α d3r, (15)

where R = R ẑ is the position of the electric charge at B, θ = ∠PAB and α = ∠APB. Using

spherical coordinates and the law of sines, it turns out that

Lz =
egR

8π

∫

∞

0

∫ π

0

r sin3 θ

(r2 + R2 − 2Rr cos θ)3/2
dr dθ. (16)

The integral can be calculated by different methods as can be seen in (Adawi, 1976). A change

of variables r = R(cos θ + sin θ tan γ), γ ∈
[

θ − π/2, π/2
]

solves the integral and yields 1/2,

so that

L f =
eg

4π

R

R
. (17)

From the conservation of the total linear and angular momenta of the field plus the system

of the pole and the charge, Thomson deduces then the magnetic part e(v × B) of the Lorentz

force over the charge. Note that Jackson follows the converse argument, starting from the

Lorentz force between a monopole and a charge, to get the same result.
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3.2 The semiclassical quatization rules by Saha and Wilson

Thomson result (17) was used by Saha (Saha, 1949) and independently by Wilson (Wilson,

1949) to get the same quantization condition that Dirac had obtained earlier (we will revise

Dirac’s argument below). The idea is that, from quantum mechanics, the angular momentum

is quantized. Using Saha words, if we apply the quantum logic, identifying the angular

momentum of the field created by a charge and a monopole with the quantum number for

the angular momentum, we get the Dirac result in natural units,

eg = 2πn, (18)

so the existence of a monopole implies the quantization of the charge. For further

considerations of the role of the angular momentum and its conservation in the monopole

problem, we will refer to the work (Goldhaber, 1965).

3.3 Dirac’s argument

Now the turn for the source: Dirac’s consideration about the wave function of a particle (Dirac,

1931; 1948). A particle in quantum mechanics is represented by a wave function

ψ = Aeiγ (19)

where A and γ are real functions of r and t, denoting the amplitude and the phase respectively.

The physical meaning of the wave function, according to the quantum postulates, allows for

an arbitrary numerical constant coefficient that we can choose to be of modulus unity. So we

can add to the phase γ an arbitrary function β. This arbitrary function β does not have to

be a unique value in each point (r, t), as if we go around a closed curve could change, but

this change has to be the same for all the wave functions or vary for different wave functions

in multiples of 2π, otherwise will have physical consequences such as interference between

states. But it has to have definite derivatives as it has to be a solution of a quantum wave

equation.

Following Dirac, we will introduce the four vector κμ as

κx =
∂β

∂x
, κy =

∂β

∂y
, κz =

∂β

∂z
, κt =

∂β

∂t
, (20)

and they have to be well defined as stated above. Thus the change in phase round a close

curve in the 4-D space, where the vector κμ is defined, can be calculated as

∮

κμ dsμ = 2πn. (21)

If we take the close curve very small, the continuity of the wave function imposes the value

n = 0 for a simple connected domain, as the integration domain reduces to a point. However,

if there are points where the wave function vanishes, then the phase would have not meaning.

Since the wave function is a complex number, we need two conditions for its vanishing, so we

well have in general a nodal line. But now, if we take the closed curve for the integration in

(21) around such a line, the continuity considerations are not longer able to tell us that the
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phase change must be zero. All we can say is that the change will be 2πn being n an integer,

positive or negative depending on the defined orientation.

On the other hand, we can apply Stoke’s theorem to the circulation in Equation (21) to write

it as
∮

κμ dsμ =
∫

S
(curl κ)j dSj, (22)

where the domain is any hypersurface bounded by the closed curve, and the (curl κ)j is a 6-D

vector that we can write in three dimensional vector notation as

∇× k = e B

∇κ0 −
∂k

∂t
= e E, (23)

where k = (κx, κy, κz). We can identify, as the notation in (23) suggests, this curl with an

electromagnetic field given by the electromagnetic potentials (V, A) = (−κ0, k)/e. This can

be seen clearer calculating the momentum using Equation (19) with the arbitrary phase β,

P = −i∇ (ψeiβ) = eiβ(−i ∇ψ + k) = p + eA. (24)

The interpretation of the phase curl as an electromagnetic field as far reaching consequences,

as Dirac noted. If the close curve is taken in three-dimensional space, only the magnetic flux

will come to play so, from Equations (21) and (22), one obtains

e
∫

S
B · dS = 2πn. (25)

So the magnetic flux through any surface bounded by the curve will be equal to the phase

shift difference of the wave equation. We have seen that if there is not any nodal line across

the surface defined by the curve, the phase difference is equal zero. If we take a closed surface

around a nodal line, in the case that the nodal line comes in and out, and that difference should

be again zero. But if the nodal line had an end, and we take the close surface around that end,

then the phase shift will be nonzero. But that would mean that the there is a net magnetic

flux crossing a closed surface, so there is a magnetic charge or monopole inside the surface.

The magnetic flux can be written as g, being g the strength of the magnetic pole. Then we get,

from Equation (25),

eg = 2πn, (26)

which is the same condition as in Equation (18) that we got with the semiclassical rule. There

is a nice account of bibliography related to the monopole problem in Reference (Goldhaber &

Trower, 1990).

4. Quantization of the electric charge in the model of electromagnetic knots

A topological mechanism for the quantization of the charge in the model of electromagnetic

knots can be seen in Reference (Rañada & Trueba, 1998). Quantization of charge is usually

stated by saying that the electric charge of any particle is an integer multiple of a fundamental

value e, the electron charge, whose value in the International System of Units is e = 1.6× 10−19

C. The Gauss theorem allows a different, although fully equivalent, statement of this property:
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the electric flux across any closed surface Σ which does not intersect any charge is always an

integer multiple of e. This can be written as

∫

Σ

E · n dS = ne, (27)

where n is a unit vector orthogonal to the surface, E is the electric field and dS the surface

element. We could as well write Equation (27) as

∫

Σ

∗F = ne, (28)

∗F being the dual to the Faraday 2-form F = 1/2 Fμνdxμ ∧ dxν. Stating in this way

the discretization of the charge is interesting because it shows a close similarity with the

expression of the topological degree of a map. Assume that we have a regular map θ of Σ

on a 2-sphere S2 and let σ be the normalized area 2-form in S2. It then happens that

∫

Σ

θ∗σ = n, (29)

θ∗σ being the pull-back of σ and n an integer called the degree of the map, which gives the

number of times that S2 is covered when one runs once through Σ (equal to the number of

points in Σ in which θ takes any prescribed value). The comparison of Equations (28) and (29)

shows that there is a close formal similarity between the dual to the Faraday 2-form and the

pull-back of the area 2-form of a sphere S2.

Suppose that an electromagnetic field is given, such that its form ∗F is regular except at

the positions of some point charges. Suppose also that we have a map θ : R3 �→ S2 which

is regular except at some point singularities where its level curves converge or diverge. It

happens then that Equations (28) and (29) are simultaneously satisfied for all the closed

surfaces Σ which do not intersect any charge or singularity. This means that the electric charge

will be automatically and topologically quantized in a model in which these two forms ∗F and

θ∗σ are proportional, the fundamental charge being equal to the proportionality coefficient

and the number of fundamental charges in a volume having then the meaning of a topological

index.

This is exactly what happens in the topological model of electromagnetic knots. In it, the dual

to the Faraday 2-form is expressed as

∗F =
√

a θ∗σ, (30)

where a is a normalizing constant, that is a pure number in natural units, or proportional

to the product h̄cμ0 in the International System of Units. The electric field is then E =√
a c (2πi)−1(1 + θ̄θ)−2∇θ̄ ×∇θ, the electric lines being therefore the level curves of θ. The

degree of the map Σ �→ S2 induced by θ is given by Equation (29). Therefore,

∫

Σ

∗F = n
√

a. (31)

As this is equal to the charge Q inside Σ, it does happen that Q = n
√

a, what implies that

there is then a fundamental charge q0 =
√

a, the degree n being the number of fundamental
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charges inside Σ. This gives a topological interpretation of n, the number of fundamental

charges inside any volume.

It is easy to understand that n = 0 if θ is regular in the interior of Σ. This is because each level

curve of θ, i. e. each electric line, is labeled by its value along it (a complex number) and, in

the regular case, any one of these lines enters into this interior as many times as it goes out

of it. But assume that θ has a singularity at point P, from which the electric lines diverge or

to which they converge. If Σ is a sphere around P, we can identify R3 except P with Σ × R,

so that the induced map θ : Σ �→ S2 is regular. In this case, n need not vanish and is equal

to the number of times that θ takes any prescribed complex value in Σ, with due account to

the orientation. Otherwise stated, among the electric lines diverging from or converging to P,

there are |n| whose label is equal to any prescribed complex number.

To understand better this mechanism of discretization, let us take the case of a Coulomb

potential as in Reference (Rañada & Trueba, 1997): E = Qr/(4πr3), B = 0. The corresponding

scalar is

θ = tan

(

ϑ

2

)

exp

(

i
Q√

a
ϕ

)

, (32)

where ϕ and ϑ are the azimuth and the polar angle. The scalar (32) is well defined only

if Q = n
√

a, n being an integer. The lines diverging from the charge are labeled by

the corresponding value of θ, so that there are |n| lines going in or out of the singularity

and having any prescribed complex number as their label. If n = 1, it turns out that

θ = (x + iy)/(z + r).

This mechanism has a very curious aspect: it does not apply to the source but to the

electromagnetic field itself. This is surprising since one would expect that the topology should

operate restricting the fields of the charged particles. However, in this model, it is the field

who mediates the force the one which is submitted to a topological condition. It must be

emphasized furthermore that the maps S3 �→ S2, given by the two scalars φ, θ are regular

except for singularities at the position of point charges, either electrical or magnetic (if the

latter do exist). At these points, the level curves (the electric lines) converge or diverge.

In the case that the value of a in natural units is a = 1 (in order to obtain the right quantization

of the electromagnetic helicity), the topological model of electromagnetic knots predicts that

the fundamental charge has the value

q0 = 1, (33)

which is about 3.3 times the electron charge. Note that this applies both to the electron charge

and to the hypothetical monopole charge. This property can be stated saying that, in the

topological model, the electromagnetic fields can only be coupled to point charges which

are integer multiple of the fundamental charge q0 = 1. Note that the same discretization

mechanism would apply to the hypothetical magnetic charges (located at singularities of φ),

their fundamental value being also q0 = 1.

5. Quantization of the magnetic flux in the model of electromagnetic knots

Electromagnetic knots are compatible with the quantization of the magnetic flux of a

superconducting ring, which in standard theory is always an integer multiple of g/2, where

g =
√

a (or g = 1 in natural units) is the value of the magnetic monopole in the topological
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model of electromagnetic knots. The mechanism of quantization was stablished in Reference

(Rañada & Trueba, 2006). To understand how this mechanism of quantization works, let us

begin with the case of an infinite solenoid.

5.1 Flux quantization in an infinite solenoid

Consider again the equations for any electromagnetic knot. The Faraday 2-form and its dual

generated by the pair of complex scalar fields φ and θ can be written, with the constant a fixed

to a = 1 in natural units, as

F = ds ∧ dp, with p = 1/(1 + |φ|2), s = arg(φ)/2π
∗F = dv ∧ du, with v = 1/(1 + |θ|2), u = arg(θ)/2π, (34)

so that φ =
√

(1 − p)/p ei2πs and θ =
√

(1 − v)/v ei2πu. This implies that the magnetic and

electric fields have the form

B = ∇p ×∇s = (∂0u∇v − ∂0v∇u) ,

E = ∇u ×∇v = (∂0s∇p − ∂0 p∇s) . (35)

The quantities (p, s) and (v, u) are called Clebsch variables of the fields B and E, respectively (or

of the scalars φ and θ). Note that φ and θ are not uniquely determined by the magnetic and

electric fields. Indeed, a different pair defines the same fields E, B if the corresponding Clebsch

variables (P, S), (V, U) can be obtained through a canonical transformation (p, s) → (P, S)
or (v, u) → (V, U). However, the canonical transformation must satisfy two conditions: (i)

0 ≤ P, V ≤ 1, and (ii) S, U must be arguments of complex numbers in units of 2π, i. e. they

can be multivalued but their change along a closed curve must be an integer.

Let us turn to our physical problem. Consider an infinite perfect solenoid around the z-axis

with N turns per unit length and intensity I (perfect means that no flux escapes through

the coils). This can happen exactly only in a superconducting ring. Indeed, from the

purposes of the present study, perfect solenoids and superconducting rings can be considered

synonymous. The magnetic field vanishes outside and is equal to B = μ0NI inside. Now let us

ask what can be the scalar φ (which gives a map S3 �→ S2) that corresponds to that magnetic

field if we restrict ourselves to the model of electromagnetic knots. With the configuration

of the magnetic lines of that solenoid, it is impossible that φ be regular in all the sphere S3.

However, we may consider the 3-space as S2 × R and require that φ be regular in the induced

map S2 �→ S2, the first S2 being the plane (x, y), the second the complex plane, both completed

with the point at infinity. If φ = |φ| exp(2πis) and p = 1/(1 + |φ|2), then

B = ∇p ×∇s. (36)

As B = 0 outside the solenoid, p and s can not be independent functions there. This may

happen in three ways:

1. The first possibility is s = f (p), f being a nontrivial function. We can change s to s − f (p).
This is a canonical transformation of the variables (s, p) which does not affect the value

of B in view of Equation (36). The new expression of φ is real outside the solenoid, but

not inside in general. Consequently, the magnetic flux across a section of the solenoid is
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topologically quantized, being equal to the area of the set φ(S) in the sphere S2, where S is

any surface that cuts the solenoid and is bordered by a circuit outside it. Indeed its value is

necessarily Flux = n/2, because any curve contained in a great circle of a sphere encircles

a integer multiple of semispheres.

2. The second possibility is s = s0 = constant. The situation is similar to and gives the same

flux quantization as in the previous case (outside the solenoid, φ takes values also in a

great circle of S2). That is Flux = n/2.

3. The last possibility is p = p0 = constant. Let p = p0 outside and s variable. Then the scalar

would be

φ =

√

1 − p0

p0
ei2πs(r,ϕ), (37)

where r = (x2 + y2)1/2 and ϕ is the azimuth. Moreover,

∫ 2π

0

∂s

∂ϕ
dϕ = m, (38)

where m is an integer number. In order for φ to be a regular map, there are two possibilities:

s = s0 = constant, and s = function of ϕ but with either p0 (and φ = ∞) or p0 = 1 (and

φ = 0). In both cases, it turns out that Flux = n/2.

So, in conclusion, in the topological model of electromagnetism based on electromagnetic

knots, the magnetic flux in an infinite perfect solenoid is always an semi-integer multiple of

the fundamental magnetic charge q0 (with q0 = 1 in natural units),

Flux =
n

2
q0. (39)

This is interesting, because it says that the flux in the solenoid is necessarily quantized, the

fundamental fluxoid being half the fundamental magnetic charge q0 (as the real fluxoid is half

the Dirac monopole). This quantity, however, is q0/2 = 1/2 in natural units, as compared

with g/2 = 10.37 for the Dirac monopole.

5.2 Flux quantization in a finite solenoid

Let us consider now the case of a superconducting ring, i. e. of a perfect but finite solenoid. We

can imagine it as a cylinder around de z-axis between z = −L/2 and z = L/2 and the radii r0

and r0 + h, although these magnitudes are quite irrelevant in this case. Since the magnetic field

does not enter inside the superconductor, B = 0 inside it. If the superconductor is infinitely

think (i.e. h = ∞), the topology of the problem is the same as in the previous case of infinite

solenoid, and all the results are also the same. In the realistic case in which h is finite, there

are also three cases. In the two first cases, the result would be the same. However, it is not

clear that the same could be said of the third possibility. We have to take a different way for

the third possibility.

Consider the quantization of the magnetic flux across a superconducting ring in the standard

theory (Feynman et al., 1965). In this case the wave function can be treated as a classical
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macroscopic field ψ =
√

ρ eiϑ, the following equation being satisfied

h̄∇ϑ = QA, (40)

where Q is the charge of a Cooper pair of electrons, equal to 2e. The flux is thus

Flux =
∮

A · ds =
2πn′

Q
, (41)

where n′ is an integer. We see that the fundamental unit of flux is then 2π/Q.

Let us take a finite superconducting ring of cylindrical shape, with axis along the z-axis,

between the planes z = ±L/2 and radii r0 and r0 + h. The interior magnetic field created

by the superconducting ring at the central plane z = 0 can be written as

B = B(r) ẑ, (42)

r being the radial coordinate. The magnetic flux across the ring is

Flux =
∫

C0

B(r) rdrdϕ, (43)

where C0 is the circle of radius r0. Because of the symmetry of the problem, we can take a

scalar φ(r, ϕ), with p = 1/(1 + |Φ|2) and s = arg(Φ)/2π, such that

B =
1

r

(

∂p

∂r

∂s

∂ϕ
− ∂p

∂ϕ

∂s

∂r

)

ẑ. (44)

It is convenient to define the dimensionless radial coordinate

R =
r

r0
, (45)

so that, in each plane (R, ϕ), φ can be taken as a map φ : C1 → S2, where C1 is the circle of

unit radius, and

B =
1

r2
0

1

R

(

∂p

∂R

∂s

∂ϕ
− ∂s

∂ϕ

∂s

∂R

)

ẑ. (46)

The magnetic flux across the superconductor results

Flux =
∫

C1

(

∂p

∂R

∂s

∂ϕ
− ∂p

∂ϕ

∂s

∂R

)

dRdϕ. (47)

The quantity between brackets in (47) is the Jacobian of the change of variables (p, s) → (R, ϕ),
so that

Flux =
∫

φ(C1)
dpds, (48)

where φ(C1) is the image in S2 of the unit circle C1.

In the framework of London’s theory of type II superconductors (the case in which

the magnetic flux is quantized), the magnetic field in the superconductor satisfies a

phenomenological equation in the transition layer in which the magnetic field goes to zero.
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This is the second London equation,

A = −λ2 ∇× B, (49)

where A(r) obeys Coulomb gauge and λ is the penetration length of the magnetic field inside

the superconductor material (in practice, λ is about ten Angstroms, much shorter than the

inner radius of the superconductor ring r0).

From Equation (44), the vector potential A(r) for the magnetic field B(r) in the Coulomb

gauge (∇ · A = 0) can be written as

A =
p

r

ds

dϕ
uϕ. (50)

It follows that s = s(ϕ) and p = p(r). Furthermore, the quantity
∫ 2π

0 Aϕr dϕ has to be

independent of r inside the superconductor. From these considerations one obtains

p = p0, s = n
ϕ

2π
. (51)

Inserting Equation (50) into London Equation (49), we obtain the following ordinary

differential equation for p(r),

λ2

(

d2 p

dr2
− 1

r

dp

dr

)

− p = 0. (52)

Up to first order in λ/r0, we can neglect the first term in (52) to obtain

p(r) = 0, r ≥ r0, (53)

characterizing p inside the superconductor. As the Clebsch variable p has to be continuous

and constant inside the superconductor, with a value p = p0, we obtain p0 = 0, i.e. φ = ∞.

In the model of electromagnetic knots, if an electromanetic field is generated by the scalar

field φ and the Clebsch variables (p, s), it is also generated by the scalar 1/φ̄ and the Clebsch

variables (1 − p,−s). In the latter case, Equation (53) would be 1 − p(r) = 0, r ≥ r0, so that

p0 = 1 and φ = 0 inside the superconductor.

Consequently, the value of the scalar field φ inside the superconductor is φ = ∞ or φ = 0. In

both cases, the magnetic flux is

Flux =
∫

C1

A(R) r0R dϕ =
∫ 2π

0

n

2π
dϕ = n. (54)

If we consider the solutions given by the families 1 and 2 at the begining of this subsection, it

results that the magnetic flux is quantized, being always an integer multiple of 1/2.

The previous argument relies on London’s equation. However, the same conclusion can be

reached considering the following. The radial derivative of p is in general discontinuous at

r0. However, this irregularity in the map φ is vanished if either φ = 0 or φ = ∞ inside the

superconductor. Therefore, the requirement that the map is regular leads to the topological

quantization of the flux, without taking into account the London equation.
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5.3 The fine structure constant at infinite energy equal to 1/4π?

Because the topological model here presented is classical, the electric charge q0 =
√

h̄cǫ0 must

be interpreted as the fundamental bare charge, both electric and magnetic (remember that we

are using natural units). The corresponding fine-structure constant α = q2
0/4πh̄cǫ0 is clearly

equal to α0 = 1/4π, which is certainly a nice and simple number. We will argue now that

1/4π is an appealing and interesting value for the non-renormalized fine-structure constant

(i. e. neglecting the effect of the quantum vacuum). As we show now, the topological model

seems to describe the electromagnetic field at infinite energy.

The argument goes as follows. Let us combine this topological quantization of the charge

with the appealing and plausible idea that, in the limit of very high energies, the interactions

of charged particles could be determined by their bare charges, i. e. the values of that their

charges would have if they were not renormalized by the quantum vacuum; see e. g. Section

11.8 of Reference (Milonni, 1994). A warning is necessary, however. As the concept of bare

charge is not simple, it is convenient to speak instead of charge at a certain scale. To avoid

confusion and be precise, the expression “bare charge" will be used here as synonymous

or equivalent of “infinite energy limit of the charge" or, more correctly, “charge at infinite

momentum transfer Q", defined as e∞ =
√

4πh̄cǫ0α∞, where α∞ = lim α(Q2) when Q2 → ∞.

The possibility of a finite value for α∞ is an interesting idea worth of consideration. In fact,

it was discusseed by Gell-Mann and Low in their classical and seminal paper “QED at small

distances", Reference (Gell-Mann & Low, 1954), in which they showed that it is something

to be seriously studied. However, they could not decide from their analysis whether e∞ is

finite or infinite. The current wisdom idea that it is infinite was established later on the basis

of perturbative calculations, but the alternative posed by Gell-Mann and Low has not been

really settled. It is still open.

The infinite energy charge e∞ of an electron is partially screened by the sea of virtual pairs

that are continuously being created and destroyed in empty space. It is hence said that

it is renormalized. Because the pairs are polarized, as are the molecules in a dielectric, a

polarization cloud is formed around any charged particle, with the result that the observed

value of the electron charge is smaller than e∞. Moreover, the apparent electron charge

increases as any probe goes deeper into the polarization cloud and is therefore less screened.

This effect is difficult to measure, since it can be appreciated only at extremely short distances.

However it has been observed in experiments of electron-positron scattering at high energies

Reference (Levine et al., 1997). This means that the vacuum is dielectric. On the other hand,

it is paramagnetic because the effect of the magnetic field is due to the spin of the pairs. The

consequence is that the hypothetical magnetic charge would be observed with a greater value

at low energy than at very high energy, contrary to the electron charge.

It is easy to understand the reason for the expression “bare charge" to denote e∞. When two

electrons interact with very high momentum transfer, each one is located so deeply inside the

polarization cloud around the other that very little space is left between them to screen the

charges, so that the bare charges, namely e∞, interact directly. As unification is is assumed to

happen at very high energy, it is an appealing idea that α∞ = αGUT (GUT stands for “Grand

Unified Theories", that include weak and gravitation ones. This suggests that a unified theory

could be a theory of bare particles (i. e. in the sense that it neglects the effect of the vacuum.)
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If this were the case, nature would have provided us with a natural cut-off, αGUT = α∞. As

a consequence, it can be argued that the topological model implies that αGUT = α∞ = 1/4π.

The argument goes as follows.

1. The value of the fundamental charge predicted by this topological quantization, e0 =√
h̄cǫ0 = 5.28 × 10−19 C is in the right interval to verify e0 = e∞ = g∞, in other words to be

equal to the common value of both the fundamental electric and magnetic bare charges. This is

so because, as the quantum vacuum is dielectric but paramagnetic, the following inequalities

must be satisfied: e < e0 < g, as it happens since e = 0.3028, e0 = 1, g = e/2α = 20.75, in

natural units. Note that it is impossible to have a completely symmetry between electricity

and magnetism simultaneously at low and high energies. The lack of symmetry between the

charges of the electron and the Dirac monopole would be due to the vacuum polarization:

according to the topological model, the electric and magnetic infinite energy charges are equal

and verify e∞g∞ = e2
0 = 1, but they would be decreased and increased, respectively, by the sea

of virtual pairs, until their current values that verify eg = 2π. This qualitative picture seems

nice and appealing.

2. Let us admit as a working hypothesis that two charged particles interact with their bare

charges at high energies. There could be then a conflict between (a) a unified theory of

electroweak and strong forces in which α = αs and (b) an infinite value of α∞. The reason

is that unification implies that the curves of the running constants α(Q2) and αs(Q2 must

converge asymptotically to the same value αGUT. It could be argued that, to have unification

at a certain scale, it would suffice that these two curves be close in an energy interval, even

if they cross and separate afterwards. However in that case the unified theory would be just

an approximate accident. On the other hand, the assumption that both running constants go

asymptotically to the same finite value gives a much deeper meaning to the idea of unified

theory. In that case, e∞ must expected to be finite, and the equality αGUT = α∞ must be

satisfied.

3. The value α0 = e2
0/4πh̄cǫ0 = 1/4π = 0.0796 for the infinite energy fine-structure constant

is thought-provoking and fitting, since αGUT is believed to be in the interval (0.05, 0.1). This

reaffirms the assertion that the fundamental value of the charge given by this topological

mechanism e0 could be equal to e∞, the infinite energy electron charge (and the infinite energy

monopole charge, as well). It also supports the statement that αGUT = α0 = 1/4π. All this

is certainly curious and intriguing: indeed, the topological mechanism for the quantization of

the charge here described is obtained simply by putting some topology in elementary classical

low energy electrodynamics.

We believe, therefore, that the following three ideas must be studies carefully: (1) the complete

symmetry between electricity and magnetism at the level of the infinite energy charges, where

both are equal to
√

h̄cǫ0, this symmetry being broken by the dielectric and paramagnetic

quantum vacuum; (2) That the topological model on which the topological mechanism of

quantization is based could give a theory of high- energy electromagnetism at the unification

scale and (3) that the value that this model predicts for the fine-structure constant α0 = 1/4π

could be equal to the infinite energy limit α∞ and also to αGUT, the constant of the unified

theory of strong and electroweak interactions.
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6. Conclusions

The topological model of electromagnetism constructed with electromagnetic knots is based

on the existence of a topological structure which underlies the Maxwell’s standard theory, in

such a way that the Maxwell’s equations in empty space are the exact linearization of some

nonlinear equations with topological properties and constants of the motion. Although the

model is classical, it embodies the topological quantizations of the helicity and the energy

inside a cavity, which suggest that it offers a way to understand better the relation between the

classical and quantum aspects of the electromagnetic theory. The model is locally equivalent

to Maxwell’s standard theory in empty space (but globally non-equivalent). This means that

it can not enter in conflict with Maxwell’s theory in experiments of local nature.

In the model of electromagnetic knots, the electric charge which is topologically quantized,

its fundamental value being q0 = 1 in natural units (or q0 =
√

h̄cǫ0 = 5.28 × 10−19 C in

the International System of Units). Furthermore, the number of fundamental charges inside a

volume is equal to the degree of a map between two spheres. It turns out that there are exactly

|m| electric lines going out or coming into a point charge q = mq0, for which a complex scalar

field is equal to any prescribed complex number (taking into account the orientation of the

map).

The topological model is completely symmetric between electricity and magnetism, in the

sense that it predicts that the fundamental hypothetical magnetic charge would be also q0.

Note that q0 = 3.3 e, where e is the electron charge, and that the corresponding fine structure

constant is α0 = 1/4π. Hence, q0 could be interpreted as the bare electron and monopole

charge. As the quantum vacuum is dielectric but paramagnetic, the observed electric charge

must be smaller than q0, but the Dirac magnetic monopole must be greater (it is equal to

20.75 q0). This suggests that α0 could be the fine structure constant at infinite energy and,

consequently, that the coupling constant of the Grand Unified Theory could be also αs = α0 =
1/4π.

The model of electromagnetic knots also predicts that the magnetic flux is quantized, the

fundamental flux unit being 1/2 in natural units. Consequently, the relation between the

fundamental magnetic flux and electric charge in this model is the same as that between

the Dirac monopole and the electron charge in standard theory. The quantum vacuum

increases the value of the magnetic fields by a factor 2π/e, according to the above mentioned

interpretation. This can be represented by a relative permeability μr = 2π/e = 20.75 (with

respect to the state in which there is neither matter nor radiation and the effect of the zero

point radiation has been discounted). The renormalized magnetic flux must be therefore equal

to μr × Flux , where Flux = 1/2 is the bare value. This implies that the flux is a multiple

integer of π/e, either in standard theory or in the topological theory after multiplying by the

permeability μr to take care of the effect of the quantum vacuum. Hence, the topological

quantization of the magnetic flux coincides with the standard one after introducing a relative

permeability to account for the effect of the quantum vacuum. This is fully coherent with the

interpretation given in the previous paragraph that the topological model of electromagnetic

knots gives a theory of high energy electromagnetism at the unification scale or a theory of

bare electromagnetism.
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