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1. Introduction 

Glutathione transferases (GSTs) are a widely distributed super-family of enzymes involved in 
detoxification, catalyzing the conjugation of a great range of electrophilic compounds with the 
tripeptide glutathione (Boyland and Chasseaud, 1969). Much of the interest in insect GSTs has, 
for many years, been focused on their role in the development of resistance to many 
insecticides (Enayati et al., 2005;  Motoyama and Dauterman, 1980). The enzymes are involved 
in resistance to most of the major classes of insecticide. These include organophosphates (e.g. 
Lewis & Sawicki, 1971; Oppenoorth et al., 1977); organochlorines, especially DDT (Clark & 
Shamaan, 1984, Tang & Tu, 1994), chitin synthesis inhibitors (Sonoda & Tsumuki, 2005), and 
pyrethroids by both direct (Yamamoto et al., 2009b) and indirect (Vontas et al., 2001) 
mechanisms. There are many instances in which detoxication of insecticides has been shown to 
be catalyzed by GSTs of the Delta or Epsilon classes (Lumjuan et al., 2005; Tang & Tu, 1994; 
Wei et al., 2001) but GSTs from Omega and Zeta classes (Yamamoto et al., 2009a; Yamamoto et 
al., 2009b) have also been reported as being involved in insecticide resistance. 

In addition to their well-established toxicological roles, it is becoming increasingly apparent 

that insect GSTs may be involved in a number of other important physiological processes. 

These include olfaction (Rogers et al., 1999), regulation of apoptosis (Adler et al., 1999; 

Udomsinprasert et al., 2004), eye pigment synthesis (Kim et al., 2006), haeme binding 

(Lumjuan et al., 2007) and wound healing (Li et al., 2002). In order to disentangle these 

multiple roles, it is desirable to develop methods to characterize as fully as possible the 

expression under differing conditions of the many insect glutathione transferases. 

In a previous study (Alias & Clark, 2007) the glutathione conjugate of bromosulfophthalein 

(BSP), a strong inhibitor of several and a substrate of some GSTs (Prapanthadara et al., 2000) 

was employed as a ligand. The use of this matrix resulted in the purification of GSTs from 

Sigma, Delta and Epsilon families but many members from these families were not detected 

and no members of the Zeta and Omega families were detected at all. In the present work 
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the use of different ligands is examined, to determine to what extent ligand choice 

influences the part of the GST proteome thus isolated.  

Although the catalytic repertoires of GSTs tend to overlap, different families of GST are likely 

to have catalytic activity with substrate(s) characteristic principally of that family (Jakoby, 

1978; Yu, 2002). Many, but not all, GSTs use 2,4-dinitrochlorobenzene (CDNB) as a substrate 

and the use of the product conjugate (S-2,4-(dinitrophenyl) GSH (DNP-SG)) as a ligand might 

be expected to isolate a wide range of isoforms. On the other hand, in Drosophila, the substrate 

3,4-dichloronitrobenzene (DCNB) is used by a more restricted range of isoforms (Alias & 

Clark, 2007), so that a matrix employing its glutathione conjugate, S-(2-chloro-4-nitrophenyl) 

glutathione (CNP), might be expected to bind a narrower range of GSTs. Similarly, in using S-

(4-nitrobenzyl) glutathione (NB-SG) as ligand, by analogy with mammalian results (Jakoby, 

1978), it was anticipated that a different range of GSTs again would be selected. In the present 

work, we explore the potential of this approach to define the GST proteome.  

2. Material and methods 

2.1 Materials 

Sepharose 6B, epichlorhydrin, L-glutathione (reduced), CDNB, DCNB, lactate dehydrogenase, 

“modified” sequencing-grade trypsin, Coomassie Brilliant Blue G-250, and Protease Inhibitor 

Cocktail (general use) were purchased from Sigma-Aldrich. ImmobilineTM Drystrips, 

DestreakTM reagent, VivaspinTM centrifugal concentrators and HiTrapTM desalting columns (5 

ml) were obtained from GE Healthcare (NZ). Bradford Protein Assay reagent and SDS 2D 

PAGE protein standards were from BioRad Laboratories NZ. Aluminium-backed Silica Gel 60 

plates were from Merck Ltd. (NZ). BenchmarkTM protein ladder was obtained from Invitrogen 

(NZ) Ltd. 

All other materials and chemicals used were of the highest purity available commercially. 

Chromatography was carried out using an Amersham Bioscience AKTA FPLCTM.  

Drosophila melanogaster, wild-type adult, 5-day post-emergence, flies were supplied by the 

School of Biological Science, Victoria University of Wellington. They were collected and stored 

at -20 ºC until required.  

2.2 Synthesis of glutathione conjugates 

These conjugates were prepared by incubating CDNB and DCNB or p-nitrobenzyl chloride 

in ethanol with GSH in deionised water at pH 9.6, adapting the method of Vince et al (1971). 

The mixtures were kept at room temperature for 5-48 hr depending on the reactivity of the 

compound. After incubation, ethanol was removed from the mixture by rotary evaporation. 

The conjugates DNP-SG, CNP-SG or NB-SG were precipitated by decreasing the pH 9.6 

from to 3.0. The precipitate was filtered, redissolved and reprecipitated twice and dried in 

vacuo. The final product was chromatographically homogeneous when examined on 0.25 

mm layers of silica gel 60 in butanol: acetic acid: water (4:1:5 – upper phase) using ninhydin: 

collidine in ethanol (0.3: 5 : 95 (w:v:v)) as a location reagent (Lato et al., 1974). The conjugates 

were immobilised on epichlorhydrin-activated Sepharose 6B as described by for the BSP-SG 

conjugate (Clark et al., 1990).  
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The extent of substitution was estimated by dissolving aliquots of the gels by heating to 
100ºC in 6M HCl for 30 sec. The hydrolysates were neutralized with 1M-NaOH. The extent 
of substitution was calculated using extinction coefficients for DNP-SG and CNP-SG of 9600, 
8400 l.mol-1cm-1 at 340 and 344 nm respectively (Habig et al., 1974b) and for NB-SG of 4210 
l.mol-1cm-1at 280nm. The extent of substitution was 9.55 µmol/ ml of gel for DNP-SG, 9.65 
µmol/ ml of gel for CNP-SG and 11.5 µmol/ ml of gel for NB-SG. 

2.3 Enzyme assays 

Enzyme activity was assayed by measuring the conjugation of CDNB, DCNB and ethacrynic 
acid (EA) with glutathione (Habig et al., 1974b). Assays with p-nitrophenol acetate (p-NPA) 
(Keen et al., 1976), trans-2-nonenal (TNE) (Brophy et al., 1989) and dehydroascorbic acid 
(DHA) (Kim et al., 2006) were also carried out to study the specificity of the partially 
purified GST preparations.  

2.4 Protein determination 

During the affinity chromatographic procedures, protein was monitored by measuring the 
extinction of the collected fractions at 280 nm. For specific activity determination, samples of 
known enzymatic activity were pooled and concentrated using VivaSpin centrifugal 
concentrators (10kD) and protein was assayed by using the Bio-Rad protein assay kit, with 
bovine serum albumin (BSA) as the standard protein (Bradford, 1976). 

2.5 Enzyme preparation 

Adult fruit flies (1 – 3 g) were homogenised in five volumes of cold 0.05 M phosphate buffer, 
pH 7.4 containing 0.1 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM dithiothreitol (DTT), 
1 mM EDTA and 0.1 mM phenylthiourea (PTU) by using a Polytron TM homogeniser. Protease 
inhibitor cocktail was added to the concentration specified by the manufacturer and cysteine 
(2mg/ml) was added to prevent the oxidative darkening of the homogenate. The homogenate 
was centrifuged at 100,000 x g for 1h at 4ºC in a Beckman XL-80 ultracentrifuge. The 
supernatant was filtered through glass wool and passed over a 5 ml HiTrap Desalting column 
which had been equilibrated with 0.05 M sodium phosphate buffer, pH 7.4, at a flow rate of 30 
ml/h. This column bound potentially inhibitory pigments with sufficient affinity to separate 
them from the excluded proteins. In some experiments the supernatant was chromatographed 
on a column of Sephadex G-25 (5x 25 cm) to remove pigments. Fractions containing activity 
towards CDNB were pooled. Losses in activity were negligible during this procedure, but up 
to 20% of the activity was lost if the enzyme was allowed to stand for 24h at 4ºC. For this 
reason, affinity chromatography followed immediately after this procedure. 

2.6 Affinity chromatography  

The initial stage of the analysis involved chromatography of the pooled fractions from the 
depigmentation stage on a GSH-Sepharose column (1.0 x 5 cm) at a flow rate of 1 ml/min. 
The enzyme sample was followed by 0.05 M sodium phosphate buffer (Buffer A) until the 
absorbance at 280 nm had fallen to a value close to zero. Five volumes of 1.0 M NaCl 
buffered as above at pH 7.4 were then applied and followed again by five volumes of buffer 
A. The bound GSTs were eluted with 20 mM glutathione in 0.05 M sodium phosphate 
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buffer, pH 9.6. Fractions of 3 ml were collected. See Fig. 1. This column employed as its 
ligand glutathione, attached via its sulfhydryl group to epichlorohydrin-activated Sepharose 
(Clark et al., 1990). This matrix removes specifically, and almost quantitatively, glutathione 
transferases S1, D1 and D3 which enables a subsequent clearer separation of GSTs from 
other classes (Alias and Clark, 2007). The extent of substitution of this column routinely 
used was 10 µmol/ml gel but substitution levels of up to 30 µmol/ml gel were tested. 

The aryl-substituted GSH matrices were packed under gravity in disposable plastic syringes 
to form columns of bed volume 5 ml. Void fractions from the GSH affinity matrix having 
significant activity with CDNB were pooled and applied to the columns. The bound GSTs 
were eluted with 20 mM GSH at pH 9.6 as described above. Aliquots from each stage of the 
purification were reserved for testing for activity with the test substrates. Experiments were 
performed in triplicate. The ligands for these matrices, having aryl substituents on the 
sulfydryl group of the glutathione and therefore acting as product inhibitors competing 
with glutathione, are linked to the epichlorohydrin-activated Sepharose via the glutamyl 
amino group, as has been described for the glutathione conjugate of bromosulfophthalein 
(Clark et al., 1990).  

2.7 Gel electrophoresis 

Proteins in the material eluted from the affinity column were examined by SDS PAGE using 

standard conditions (Laemmli, 1970) in a 12% polyacrylamide gel and by 2D electrophoresis 

using the standard methods described below. In the first dimension isoelectric focusing was 

carried out in a MultiphorTM II Electrophoresis Unit (Pharmacia Biotech) apparatus. The 

precipitated proteins were mixed with rehydration buffer (8 M Urea, 2 % (w/v) CHAPS, 15 

mM DTT, 30 mM thiourea) containing 2% pH 3-10 Ampholyte solution and DestreakTM 

reagent. ImmobilineTM Drystrips (pI 4-7 and 3-10 for all samples) were rehydrated overnight 

and were focused in a three phase voltage programme. The first phase was at 200V for 1 

min; second, 200-3500V ascending for 1.5h and the third phase was 3500V for 1.5h. Proteins 

in the gel were reduced with DTT and alkylated with iodoacetamide using standard 

methods. In the second dimension, the focused strips were run on SDS PAGE to separate 

proteins based on molecular mass. Proteins were located by staining with colloidal 

Coomassie Blue G-250 (Neuhoff et al., 1988). 2D gels were calibrated with respect to 

molecular mass using the BenchMark™ Protein Ladder and with respect to isoelectric point 

with BioRad SDS 2D PAGE protein standards. 

2.8 Protein identification by MALDI-TOF 

Protein spots were excised from gels and destained with 50 mM ammonium bicarbonate: 

acetonitrile (MeCN) (1:1). When destained, gel pieces were dehydrated and completely 

dried by vacuum centrifugation. The gel pieces were then rehydrated with 2 µl of 50 mM 

ammonium bicarbonate solution containing 0.125 µg of sequencing grade trypsin at room 

temperature. After 2-3 h, 30 µl of 50 mM ammonium bicarbonate solution was added to 

assist diffusion of peptides at room temperature overnight. Peptides were later extracted by 

removing the ammonium bicarbonate solution, followed by two washes of 30 µl for 1 h each 

with a solution containing 0.2% TFA and then with 0.2% TFA:MeCN (1:1). The extracts were 

then dried in a Speed-Vac for 2 h. The samples were stored at 40C until required for analysis. 
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The MALDI-TOF analysis was performed using a PerSeptive Biosystem Voyager DETM PRO 
BiospectrometryTM Workstation equipped with a delayed extraction unit. The mass spectra 
were obtained by using a Voyager Instrument Control Panel V 5.0 programme. The laser 
intensity was in the range of 1800-2100, and the accelerating voltage was 20 kV. Peptide 
spectra were obtained in positive reflectron mode in the range of 750 to 3500 m/z. The 
peptide solution was loaded onto the MALDI target plate by mixing with 2 µl of a matrix 
solution, prepared by dissolving 15 mg/ml alpha-cyano-4-hydroxycinnamic acid solution in 
50% MeCN-0.1% trifluoroacetic acid (v/v), and allowed to dry. External calibration used 
Calibration Mixture 2 from Applied Biosystems. Each mass spectrum was generated by 
accumulating data from 150 to 200 laser shots. Database searches were carried out with the 
peptide masses against the non redundant NCBI database using the search programmes 
ProFound (http://prowl.rockefeller.edu/) (Zhang & Chait, 2000) and results were 
confirmed using MASCOT (www.matrixscience.com).  

2.9 Assignment of GST family 

GSTs identified by MALDI-TOF, which had not been explicitly assigned to particular 
families were matched against the D. melanogaster database in SwissProt Knowledgebase 
using the Basic Local Alignment Search Tool, BLAST (http://web.expasy.org/blast/). 
Family assignment was made on the basis of those known GSTs with which the test 
sequences had the greatest identity. 

3. Results 

Preliminary experiments showed that all three matrices bound GSTs from the Sigma, Delta, 
Epsilon and Omega classes. In order to reduce the complexity of the 2D gels obtained, an 
initial affinity purification of D. melanogaster extracts on GSH-agarose affinity was employed to 
remove the greater part of the Sigma and Delta sub-groups of GSTs. The GSTs removed had 
high specific activity for CDNB and 2D electrophoresis (not shown) confirmed earlier results 
that they consisted almost exclusively of GSTs S1, D1 and D3 (Alias and Clark, 2007). The use 
of matrix substituted with glutathione at up to 30 µmol/ml gel did not change the qualitative 
nature of the GSTs bound. As shown in Figure 1A and Table 1, a significant proportion of the 
material with CDNB activity (~40%) was not retained by the GSH affinity column.  

The ability of the S-substituted matrices to adsorb the unbound activity was then tested. All 

of them did adsorb such activity but adsorption was not complete: between 25 and 50% of 

the applied activity (i.e. 10-25% of the original starting activity) was recovered in the void 

fractions. Material adsorbed and then eluted from these columns contained significant GST 

activity with CDNB. A typical elution profile is shown in Fig 1B in which the DNP-SG 

matrix was used. Material eluted from DNP-SG and CNP-SG columns contained significant 

activity with DCNB (Table 2) but the eluate from the NB-SG column did not show 

significant activity with this substrate. 

Several model substrates were tested on the preparations and the results are shown in Table 
2 below. All preparations showed activity with most of the substrates. The specific activities 
of the preparations from the DNP-SG and CNP-SG matrices with the different substrates 
were almost identical. That from the NB-SG matrix differed in that it showed no detectable 
activity with DCNB. 
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Fig. 1. Typical chromatography elution profiles from substituted glutathione affinity matrices. 
(A) shows chromatography on immobilised glutathione; (B) shows chromatography on the 
DNP-SG matrix. Open symbols, enzyme activity with CDNB. Closed symbols, extinction at 
280 nm. Experiments were carried out in triplicate, as described in Section 2.6.  

 

Procedure 
Total activity
(μmol/min) 
CDNB

Specific activity
(μmol/min /mg) 
CDNB 

Yield 
(%) 

Purification  
(fold) 

GSH matrix 
Applied 12.7 ± 1.4 0.132 ± 0.023 100 0.95 
Unbound 6.00 ± 3.7 0.093 ± 0.04 43 0.67 
Bound 7.00 ± 1.2 10.76 ± 4.67 51 77.9 
DNP-GSH matrix 
Applied 3.00 ± 1.9 0.093 ± 0.04 100 1
Unbound 1.40 ± 0.5 0.051 ± 0.02 46 0.54 
Bound 1.20 ± 0.6 3.529 ± 0.09 40 38 
CNP-GSH matrix
Applied 3.00 ± 1.9 0.093 ± 0.04 100 1
Unbound 1.70 ± 0.7 0.054 ± 0.02 56 0.58 
Bound 1.30 ± 0.3 2.954 ± 0.77 43 32 
NB-SG matrix 
Applied 0.86 ± 0.07 0.38 ± 0.03 100 1
Unbound 0.22 ± 0.03 0.24 ± 0.03 25 0.63 
Bound 0.23 ± 0.01 7.9 ± 0.30 26 21 

Table 1. Affinity chromatography of glutathione transferase activity from D. melanogaster. 
Chromatographic separations were carried out as described in Section 2.5 and 2.6. The 
results above are mean +/- S.D. from triplicate experiments.  
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Otherwise, the spectrum of activities was similar to that of the other two types of 

preparation. Of note were the high dehydroascorbate reductase activities that all 

preparations showed. The material eluted from the GSH column had the highest specific 

activity with CDNB. 

The affinity-purified fractions obtained by using the DNP-SG and CNP-SG gels were 

concentrated, precipitated and subjected to 2D electrophoresis. The results from typical gels 

(pI = 4-7) after chromatography on these media are shown in Fig 2. Isoelectrofocusing over a 

3-10 range of pI resulted in poorly resolved protein zones in the range 5-6 and these gels are 

not shown. 

 

Fig. 2. Two dimensional gel electrophoresis on DNP-SG- (A) or CNP-SG- (B) affinity-

purified D. melanogaster GSTs. Affinity-purified D. melanogaster GSTs were separated in the 

first dimension on a 7 cm pH 4-7 linear IPG strip and then in the second dimension on a 12% 

SDS-PAGE gel. The gel was stained with Coomassie Blue G250. The identification of the 

numbered spots can be found in Table 3 below. 
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Substrate Specific activity (μmol/min/mg protein) 

 
Eluted from 
GSH 

Eluted from 
DNP-SG 

Eluted from CNP-
SG 

Eluted from NB-
SG 

CDNB 13.60± 3.4 4.30 ± 0.90 3.10 ± 0.06  7.34 ± 1.13 
DCNB n.s. 0.18 ± 0.01 0.09 ± 0.06  n.s. 
NPA 1.00 ± 0.40 1.30 ± 0.46  1.50 ± 0.52 1.99± 0.75 
TNE 0.84 ± 0.48  0.35 ± 0.16  0.16 ± 0.04 0.41 ± 0.12 
DHA 3.30 ± 0.70  11.1 ± 6.4 12.65 ± 0.43 27.4 ± 6.3 
EA 7.10 ± 1.20  14.2 ± 0.05 17.22 ± 0.01 21.77± 2.88 

Table 2. Substrate specificity of glutathione transferases preparations from D. melanogaster. 
Activities were determined from triplicate experiments as described in Section 2.3 

Proteins were identified by MALDI-TOF and are listed below in Table 3. Most marked are 
zones corresponding to DmGSTS1, not all of which had been trapped by the GSH column, and 
GST CG16936 (spots 2-5). The latter appears at four loci of the same apparent molecular mass 
and of differing pI. At higher isoelectric points (pI 6.7 and 8.0, not visible in gels covering the 
pH range 4-7) two Epsilon class GSTs, E3 and E9, were identified in DNP-SG preparations.  

 

Spot
No. 

Flybase  
Annotation

Protein Mr/pI  
(Theor.) 

Mr./pI
 (Exp.)

P/C Z 
score 

1 CG8938 GST S1 27.6/4.6 33/4.6 8/47 2.43

2 CG16936 Epsilon GST 25.4/5.9 24/5.0 6/33 2.43

3 CG16936 Epsilon GST 25.4/5.9 24/5.1 9/49 2.35

4 CG16936 Epsilon GST 25.4/5.9 24/5.2 8/47 2.35

5 CG16936 Epsilon GST 25.4/5.9 24/5.3 7/38 2.35

6 CG6673 Omega GST 28.7/6.5 28/5.4 13/48 2.43

7 CG6673 Omega GST 28.7/6.5 28/5.5 15/46 2.43

8 CG6776 Omega GST 27.7/6.5 26/5.4 5/24 1.90

9 CG6776 Omega GST 27.7/6.5 26/5.5 6/22 2.09

10 CG10045 GST D1 23.9/6.9 23/5.2 4/26 2.43

11 CG3269 Drab2  23.7/5.8 20/4.8 7/37 2.43

12 CG32671 Rab9Fa  23.1/6.0 20/4.9 4/21 2.43

13 CG1707 Glyoxallase 20.14/6.1 19/5.2 11/60 2.37

14 C CG1707 Glyoxallase 20.14/6.1 19/5.3 13/72 2.39

15 CG8725 CSN4  46.7/5.9 46/5.1 11/33 1.40

16 CG8725 CSN4  46.7/5.9 46/5.2 9/29 2.43

17 CG9042 GPDH 44.7/6.4 46/5.2 13/38 2.00

Table 3. Identification of Drosophila GSTs after chromatography on DNP-SG or CNP-SG 
matrices. Protein zones are numbered as in Fig. 2. The proteins were identified using 
MALDI TOF MS peptide mass fingerprinting as described in section 2.7. The P/C column 
shows the number of peptides identified (P) and the percent coverage of the identified 
protein (C). Also shown are the theoretical and experimental values for Mr and pI of the 
identified proteins. A Z-score of greater than 2.34 indicates a probability of less than 1% that 
the result could have been attained by chance.  
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These had previously been detected on the gels analysing the product of BSP-SG 

chromatography (Alias and Clark, 2007). Spots 6 and 7 were identified as Omega GST 

CG6673 (isoform B). Fainter protein zones (8 and 9) were identified, with lower confidence, 

as the Omega GST CG6776. 

Non-GST proteins eluted from the DNP-SG matrix were also identified. Spots 13 and 14 

were identified as CG1707, lactoyl glutathione lysase (Glyoxlase I). Also eluted from the 

matrix were Rab small GTP-binding proteins (spots 11, 12; CG3269 and CG32671) and 

higher molecular weight contaminants including glycerol 3-phosphate dehydrogenase (spot 

17; CG9042) and the COP9 complex homolog subunit 4 (CSN4, spots 15,16 ).  

The same experiments carried out using CNP-GSH as ligand produced very similar results: 

2D gels were almost indistinguishable and specific activities of the enzyme preparations 

obtained from the two different procedures were almost identical (See Table 2).  

Identities of corresponding protein zones in gels resulting from the two types of affinity 

chromatography were determined independently. These are shown in Table 3 below. 

 

Fig. 3. Two dimensional gel electrophoresis of NB-SG affinity-purified D. melanogaster GSTs. 
Affinity-purified D. melanogaster GSTs were analysed as described in Section 2.7. The 
identification of the numbered spots can be found in Table 4 below. 

When NB-SG was the affinity ligand, a rather different picture was seen (Fig. 3). As in the 

previous experiments Sigma GST had not been completely removed and there was 

detectable presence of GSTs D1 and D3. In addition to the Omega GSTs revealed by the 

other two matrices, the use of NB-SG showed the presence of CG6781, the Omega GST 

involved in synthesis of eye pigments (Kim et al. 2006).  
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Spot Flybase 
Annotation 

Protein  
 

pI/Mr 
(Theor.)  
 

pI/Mr 
(Exp.) 
 

P/C Z 
 score 

1 CG8938 GST S1 4.6/27.65 4.5/32.4 27/67 2.43 

2 CG6673-PB Omega GST 6.5/28.76 6.75/29.5 19/65 2.43 

3 CG6673-PB Omega GST 6.5/28.76 7.1/29.5 17/55 2.43 

4 CG6673-PB Omega GST 6.5/28.76 7.1/29.5 13/51 2.43 

6 CG6673-PA  Omega GST 7.1/29.17 8.1/29.5 11/62 2.27 

7 CG6781 Omega GST 5.5/24.87 5.9/286 5/22 2.43 

8 CG6781 Omega GST 5.5/24.88 6.1/28.6 15/21 2.43 

9 CG6776 Omega GST 6.5/27.76 6.75/27.4 7/18 1.35 

10 CG6776 Omega GST 6.5/27.77 7.1/27.4 10/47 2.43 

11 CG5224 Epsilon  5.6/25.36 6.25/26.0 9/30 1.71 

12 CG11784 Epsilon  6.1/25.98 6.5/26.0 6/35 2.43 

13 CG11784 Epsilon  6.1/25.99 6.75/26.0 9/48 2.43 

14 CG11784 Epsilon  6.1/25.10 7.0/26.0 6/38 2.22 

15 CG4381 GST D3 5.3/22.89 5.8/24.2 9/38 2.43 

16 CG10045 GST D1 6.9/23.89 6.1/24.2 3/24 1.03 

17 CG10045 GST D1 6.8/24.02 6.45/24.2 8/33 2.43 

18 CG10045 GST D1 6.8/24.03 6.85/23.7 11/45 2.43 

19 CG10045 GST D1 6.8/24.04 7.5/23.4 12/45 2.43 

20 CG10045 GST D1 6.9/23.89 8.25/23.4 10/40 2.43 

21 CG17524 GST E3 7.0/24.93 8.6/24.2 9/55 2.3 

22 CG1707 Glyoxallase 6.1/20.14 6.5/21.7 8/44 2.43 

23 CG1707 Glyoxallase  6.1/20.15 7.0/21.5 9/59 2.43 

Table 4. Identification of Drosophila melanogaster GSTs after chromatography on the NB-SG 

matrix. Proteins identified from the NP-SG affinity-purified fractions of D. melanogaster 

separated over a pH range 3-10. Protein zones are numbered as in Fig. 3. The proteins were 

identified using MALDI TOF MS peptide mass fingerprinting as described in Methods. The 

P/C column shows the number of peptides identified (P) and the percent coverage of the 

identified protein (C). Also shown are the theoretical and experimental values for Mr and pI 

of the identified proteins. A Z-score of greater than 2.34 indicates a probability of less than 

1% that the result could have been attained by chance.  

Particularly noticeable was the absence of the putative GST CG16936 a protein which was 

prominent in gels of preparations isolated with the other two matrices. Multiple forms of the 

closely related protein, CG11784 were seen in these gels. These two proteins as well as CG5224 

are closely related to the Epsilon class. Sequence analysis using the programme BLAST shows 

CG16936 to be closely aligned with GSTs E4 and E9, having 45 % identity with both: CG5224 

was most similar to E9 and E10 (scores of 42% with both) and GCG11784 was most similar to 

E7 and E5 (scores of 37 and 36% respectively). As with the other matrices, the NB-SG matrix 

also bound higher molecular weight contaminants including glycerol 3-phosphate 

dehydrogenase (GPDH).  
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4. Discussion 

The multiplicity and overlapping substrate specificities of the GSTs (Habig et al., 1974a; Jakoby 
1978) renders them an extremely effective defence against many toxic compounds but this, 
along with overlapping cellular roles, may render it difficult to attribute particular functions to 
any individual or group of GSTs and in many contexts, it may in fact be more appropriate to 
regard them as acting as a complex, rather than as individual enzymes. The current work 
investigates the potential of the use of S-substituted glutathiones as affinity ligands to isolate 
and characterise the expression of the members of this super-family, selectively. 

Several affinity chromatography systems have been used to isolate GSTs from many sources. 
Ligands tested have included glutathione immobilised through its sulphur group (Clark et al., 
1990; Fournier et al., 1992) and glutathione (Yu, 1989) and S-substituted glutathione 
immobilised through the γ-glutamyl amino group. Ligands in the latter category have 
included the glutathione conjugate of the dye bromosulfophthalein (BSP-SG) (Alias & Clark, 
2007; Clark et al., 1977), S-hexyl glutathione (Grant & Matsumura, 1989; Guthenberg et al., 
1979). S-(2,4-dinitrophenyl) glutathione appears to have been employed as an affinity ligand 
only in the isolation of the ATP-dependent glutathione transporter (Awasthi et al., 1998).  

In few studies on the affinity chromatography of insect GSTs has a detailed examination of 
the GST proteome thus isolated been made: the focus has usually been on the isolation of 
particular types of GST. Studies on Musca domestica (Clark et al., 1990; Fournier et al., 1992) 
and D. melanogaster (Alias & Clark, 2007) GSTs showed that the use of GSH immobilised 
through its thiol group led to the isolation and identification of a limited number of GSTs 
from only the Sigma and Delta families. These were, in the case of D. melanogaster S1, D1 and 
D3. The use of BSP-SG as ligand isolated more GSTs from the Delta and Epsilon families 
(Alias & Clark, 2007). These included D2 (elevated after treatment of the insects with 
phenobarbital), D1, D3, E3, E6, E7, E9 and an additional, putative Epsilon class GST, 
CG16936. A small fraction of the Sigma GST was also bound by this matrix. Several non-
GST proteins were also bound. Of these, CG1707 (Glyoxallase I) was unsurprising since its 
substrate is lactoyl glutathione and it binds, presumably, via its affinity for the glutathione 
moiety. However, this matrix also bound a number of dehydrogenases including CG12262 
(acyl CoA dehydrogenase), CG32954 (alcohol dehydrogenase), CG4665 (dihydropteridine 
reductase). The reason for binding of these proteins is not clear: they resist elution by high 
concentrations of salt and whether they bind through specific interactions with the matrix or 
by non-specific hydrophobic interaction or whether it may be through specific protein-
protein interaction with bound GST proteins is not currently known. 

Results from the present experiments show similarities to those obtained with the BSP 
matrix (Alias & Clark, 2007) but there are differences. There is, following use of the DNP-SG 
or CNP-SG materials a substantial zone of Sigma GST, larger than seen with use of the BSP 
matrix. This suggests that these materials have a stronger affinity for the Sigma GST than 
did the BSP matrix. The matrices currently under consideration appeared to have a differing 
selectivity for Epsilon class GSTs compared with the BSP-GSH matrix. Of this family, only 
E3, E9 and CG16936 are seen in common in preparations made with these matrices, the last-
named protein being the most abundant.  

A major difference from studies with the BSP-SG matrix is the appearance of four zones 

containing proteins from the Omega GST family, two identified as CG6673, isoform B (spots 
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6 and 7) and two (spots 8, 9) as CG6776. The Omega isoform CG6673B has a high 

dehydroascorbate reductase activity (Kim et al., 2006) and accounts for the high reductase 

activity in the material eluted from these columns. These isoforms also have minimal 

catalytic activity with CDNB (Kim et al., 2006) suggesting that GSTs may bind to GSH 

conjugates of a substrate with which they have little or no catalytic activity. This is 

supported by the observation that the matrices carrying conjugates of CDNB and DCNB, 

substrates that discriminate strongly between differing GSTs, appear to bind almost 

identical groups of proteins, both GSTs and non-GSTs. From this it may be concluded that 

differences in catalytic performance may be generated by relatively subtle changes in the 

active site that have little impact on the binding of product analogues. With regard to the 

Omega GSTs, this view is supported by the work of Whitbread et al. (2005) who 

demonstrated that the change of Cysteine 32 to Alanine resulted in an increase of activity 

with CDNB of over an order of magnitude. 

A striking feature of the studies of the affinity chromatographic analysis of D. melanogaster 

GSTs is in the small number so far identified. In the works cited here, the number of GSTs 

positively identified is fourteen, only one third of the number possible (Tu & Agkul, 2005). 

This may reflect the modest expression of some isoforms. Heavy loading of gels indicates 

the presence of as yet unidentified proteins in the appropriate Mr range on 2D gels. It may 

also be that some isoforms have low affinity for the media so far studied. That might explain 

the absence of any members of Zeta or Theta families from our list of identified proteins. 

5 Conclusions 

5.1 The present work 

The primary aim of this work was to determine whether affinity chromatography systems 

could be designed to characterise the proteome of the superfamily of glutathione S-

transferases, with their multiple toxicological and metabolic roles, in a target organism. This 

aim has been partially successful. These experiments, in combination with the results from 

Alias & Clark, 2007 show that the use of different S-substituted glutathiones as affinity 

ligands results in the isolation of differing, but overlapping groups of GSTs from the Delta, 

Epsilon, Sigma and Omega families. It has not been possible to predict which will bind to a 

given matrix. The use of these media demonstrates the expression in vivo of a number of 

GSTs, particularly those related to the Epsilon class, the production of which has not 

previously been shown. Their use also establishes the presence of multiple forms of several 

GSTs. In the case of the Sigma and D1 isoforms it seems probable that these result from 

post-translational modifications (Alias & Clark, 2007; Pal & Clark, unpublished).  

The proteins identified account for only about 50% of the Sigma, Delta, Epsilon and Omega 

families. This may be due to low levels of expression or to low affinity for the matrices of 

some isoforms. A further disappointing aspect of the work has been the failure to identify 

members of the Zeta or Theta families. 

5.2 Future work 

The overlap in specificities of the media discussed here suggests that their use in 

combination should lead to a greater coverage of the GST proteome than the use of any 
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single medium. Alternatively, their use in sequence should lead to the preferential isolation 

of particular types of GST (CG16936 would be a possible target for such a study) and 

sequential use might also be employed to enrich preparations in isoforms expressed at too 

low a level to be identified in the current experiments. 

It is possible that Theta and Zeta families have not been detected because of a low affinity 
for the S-aryl glutathiones. Different types of ligand need to be investigated for the isolation 
of members of these families. 

This work has involved the study of D. melanogaster as a model insect but the techniques 
described have been developed with a view to applying them to insect pests that are of 
economic or health significance. This proteomic approach generates information that does 
not depend on knowledge of the genome of the organism in question. Arthropod genomic 
databases are sufficiently extensive so that cross-database matching of proteomic data may 
be sufficient to obtain a provisional characterisation of GSTs isolated in this fashion from a 
pest species. The approach may thus serve as a tool for preliminary studies in organisms for 
which there is no genomic database. It enables preliminary characterisation of GSTs that are 
produced to a significant extent and are thus, perhaps, most immediately worthy of 
individual study. 
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