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1. Introduction  

Parasitic diseases represent one of the most important issues in public health. More than one 
billion people worldwide are infected by parasites causing different disease scenarios. 
Parasitic diseases are closely related to geographic, social and economic factors driving the 
prevalence and incidence of these pathologies (WHO, 2010). These represent a broad group 
of eukaryotic organisms that may cause severe diseases in animal and human populations. 
Parasites are the causative agents of pathologies such as Malaria. In 2008, there were 247 
million cases of Malaria and nearly one million deaths from the disease, mostly among 
children living in Africa. In Africa, a child dies of Malaria every 45 seconds; the disease 
accounts for 20% of all childhood deaths. Leishmaniasis threatens approximately 350 million 
men, women and children in 88 countries around the world. As many as 12 million people 
are believed to be currently infected by this disease, with approximately 1–2 million 
estimated new cases occurring every year. Additionally, an estimated of 10 million people 
are infected worldwide by Chagas disease (American trypanosomiasis), mostly in Latin 
America, where Chagas disease is endemic. More than 25 million people are at risk of 
acquiring this disease. It is estimated that in 2008, Chagas disease killed more than 10,000 
people. Schistosomiasis is a chronic, parasitic disease caused by blood flukes (trematode 
worms) of the genus Schistosoma. More than 207 million people are infected with these 
organisms worldwide, with an estimated 700 million people at risk in 74 endemic countries. 
Lymphatic filariasis affects more than 1.3 million people in 81 countries. Approximately 65% 
of those infected live in Southeast Asia, 30% in Africa and the remainder in other tropical 
areas. Lymphatic filariasis afflicts over 25 million men with genital disease and over 15 
million people with lymphoedema. Because the prevalence and intensity of infection are 
linked to poverty, elimination can contribute to achieving the United Nations Millennium 
Development Goals. Human African Trypanosomiasis (HAT) affects mostly poor 
populations living in remote rural areas of Africa. If untreated, it is usually fatal. Travellers 
also risk becoming infected if they venture through regions where the insect vector (tse tse 
flies) is common. Generally, the disease is not found in urban areas, although some cases 
have been reported in suburban areas of Kinshasa, the capital of the Democratic Republic of 
Congo, and Luanda, the capital city of Angola. In 2004, the number of new reported cases 
fell to 17,616, which the WHO considered to be due to increased control, estimating the 
cumulative rate to be between 50,000 and 70,000 cases (WHO, 2010). These trends show the 
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importance of developing strategies to mitigate the prevalence of these parasitic diseases, 
and molecular epidemiology arises as a potential tool to understand disease dynamics.  

Molecular epidemiology is considered a powerful tool for understanding the genetic 
variation and evolution of pathogens. The use of the technologies based on molecular 
biology techniques has allowed the scientific community to reveal disease determinants and 
the genetic structure of parasites that provoke diseases and cause millions of deaths each 
year. In recent years, new studies have been conducted with the purpose of elucidating the 
genetic structure of the etiological agents of these pathologies with the aim of designing 
strategies that could help to mitigate the associated diseases in human and animal 
populations. Molecular epidemiology and population genetics have shown to be powerful 
strategies to understand the genetic structure of parasites, with special emphasis on 
understanding disease and transmission dynamics. The objective of this chapter is to 
illustrate for the reader the paramount importance of molecular epidemiology in parasitic 
diseases, showing some clear examples of parasite disease and transmission dynamics. The 
focus will be on how molecular epidemiology can be a helpful tool to mitigate disease 
transmission, prevalence and incidence and can be used as a reliable tool for disease 
surveillance as well as the need to create synergy between molecular epidemiology and 
public health programmes to reduce the prevalence of parasitic diseases.  

2. Importance and relevance of molecular epidemiology 

Molecular epidemiology may be defined as a tool focused on the contribution of potential 
genetic factors identified by molecular techniques to the aetiology, distribution and 
prevention of disease across populations (Kilbourne, 1973). It is a field of study that has 
recently emerged from the integration of molecular biology, epidemiology, biochemistry 
and public health systems (Figure 1). This approach has been useful in attempting to 
determine the pathogenesis of certain diseases as well as the genetic variation and genetic 
structure of pathogens.  

 
Fig. 1. Molecular epidemiology is considered an interdisciplinary science that is a composite 
of different sciences. 

www.intechopen.com



 
Molecular Epidemiology of Parasitic Diseases: The Chagas Disease Model 

 

97 

Molecular epidemiology has recently gained paramount importance in the fields of human 
genetics and in molecular virology. One clear example of this is the use of molecular 
epidemiology to track viruses that generate severe acute respiratory syndrome (SARS). This 
allowed researchers to develop strategies with the purpose of tracking the transmissibility 
and dispersal of this virus, observing that the positive selection pressure associated with 
human hosts resulted in the emergence of lineages of the virus that became readily 
transmissible between humans, causing the epidemic outbreak of 2002-2003 (Zhao, 2007). 
The use of molecular markers also permitted the establishment of prevention and control 
strategies to mitigate the transmission of these genotypes, thus avoiding increased disease 
prevalence. Thus, this example shows how traceable pathogens can be and clearly 
demonstrates the great utility of molecular biology on the basis of molecular epidemiology 
in obtaining a deeper understanding regarding parasitic diseases.  

Molecular epidemiology has been established as a promising science for studying the 
contribution of potential genetic markers and environmental risk factors of parasitic 
diseases representing a close synergy between molecular biology and epidemiology. Some 
of the main objectives of molecular epidemiology focused on the study of parasitic diseases 
are as follows: 

- To enhance our understanding of the pathogenesis of parasitic diseases: Some authors 
have used the Toxoplasma gondii model to describe relationships between nucleoside 
triphosphate hydrolase (NTPase) isoforms and Toxoplasma strain virulence in human 
toxoplasmosis, reporting that different isoforms are involved in clinical forms of this 
parasitic disease (Johnson et al., 2003). 

- To define genetic susceptibility with genetic markers: The use of human pedigrees to 
observe patterns of susceptibility to visceral leishmaniasis in Brazil has allowed 
researchers to develop action plans to mitigate this tropical disease in endemic areas 
(Jamieson et al., 2007). 

- To allow evaluation of subclinical or early disease markers: Prognostic markers are one 
of the milestone deliverables in molecular epidemiology. In the case of T. gondii, a 
quantitative real-time PCR assay for amniotic fluid has been developed to provide a 
prognostic marker of foetal infection in pregnant women (Romand et al., 2004) 

- To provide new standards for descriptive epidemiology: Some of the problems 
involved in descriptive epidemiology show how difficult it is to track some kinds of 
diseases. In particular, the parasites that cause gastrointestinal syndromes fall into this 
category, such as Entamoeba histolytica, Taenia solium, Ascaris lumbricoides, Giardia 
intestinalis, Enterobius vermicularis and others. Microscopic identification becomes 
tedious and, in some case confusing due to similar morphologies among some 
parasites. Molecular detection based on PCR assays has provided the field of 
descriptive epidemiology with a more reliable way to analyse data in population 
descriptive studies (Singh et al., 2009; Pecson et al., 2006).  

- To improve precision in analytical epidemiology: While descriptive epidemiology 
provides the what, who, when and where; analytical epidemiology attempts to provide 
the why and how. Few examples are listed related to the detection of emergent 
genotypes in disease surveillance. A good example is that of HAT, which is caused by 
two sympatric subspecies (Trypanosoma brucei rhodesiense and T. b. gambiense); each 
subspecies is involved in disease severity causing a large number of annual deaths in 
Africa (Morrison et al., 2011). 
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As has been shown thus far, molecular epidemiology as applied to the study of parasites is 
considered an important and relevant tool to investigate these organisms. The important 
point to focus is on the correct use of the information obtained. Molecular methods are 
currently available and becoming cheaper every day, and the emergence of new accurate 
and feasible molecular methods shows promising results for the molecular epidemiology 
field; however, in molecular epidemiology, the clinical question must be always highlighted 
to obtain the most reliable results. Thus, the income data become the critical point in the 
study of parasitic diseases and the basis for obtaining a good outcome that can be translated 
to meet the main aims of molecular epidemiology studies (Figure 2). This chapter will 
discuss the molecular methods available to develop molecular epidemiology studies 
focused on parasites, with some clear examples of how useful and necessary molecular 
epidemiology is for understanding disease outcomes, transmission dynamics and the 
current genetic structure of parasitic diseases.  

 
Fig. 2. Flow of information based on the accurate and reliable use of molecular 
epidemiology focused on the study of parasitic diseases. 

3. Molecular biology tools applied in the analysis of parasitic diseases 

Molecular biology has made important contributions in the last ten years with respect to 
understanding the genetics of parasites causing human illness. A broad description of the 
markers used in molecular epidemiology and their features is presented in Table 1. The first 
techniques used to track pathogens and disease dispersal were based on biochemical 
markers, with Multilocus Enzyme Electrophoresis (MLEE) being broadly used to study 
parasites such as T. cruzi, Leishmania spp, E. histolytica and T. brucei (Miles et al., 1977; Pinto 
et al., 2005; Mathews et al., 1983; Nijokou et al., 2004). This technique is based on differences 
between loci; according to the obtained banding pattern, it is possible to distinguish among 
lineages. In the case of Leishmania, this technique was used to differentiate species of the 
genus involved in visceral and cutaneous leishmaniasis (Bañuls et al., 2000; Bañuls et al., 
2002; Zhang et al., 2006). A drawback of this technique is the need to culture large quantities 
of parasites, which are quite difficult to obtain in most parasitic diseases. Subsequently, 
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molecular biology techniques based on the use of DNA were developed, among which 
RAPDs (Random Amplified Polymorphic DNA), AFLPs (Amplified Fragment Length 
Polymorphism), PFGE (Pulse Field Gel Electrophoresis) and RFLPs (Restriction Fragment 
Length Polymorphism) were the most used techniques within the scientific community. In 
this sense, analysis of ribosomal markers using RAPDs was of paramount importance in 
attempting to develop assays to distinguish among morphologically similar amoebas. E. 

histolytica and E. dispar, which represent pathogenic and non-pathogenic amoeba species, 
respectively, have been suggested by many authors to have evolved identically up to the 
point when a mutation generated a cryptic speciation pattern (Clark et al., 2006). The use of 
RAPD techniques has also been an important aid in understanding genetic variation within 
E. histolytica isolated from different hosts (Gomes et al., 2000; Prakash et al., 2000). AFLPs 
and RFLPs are the most recent techniques to be employed to track pathogen dispersal and 
elucidate their genetic diversity. Fingerprinting based on AFLPs has been useful in 
differentiating subspecies of T. brucei, which is the aetiological agent of sleeping sickness, a 
pathology that affects more than 8 million people in Africa. These techniques have shown 
great reproducibility in distinguishing T. b. rhodesiense and T. b. gambiense, two sympatric 
species that generate different symptomatologies, demonstrating how molecular 
epidemiology can assist in understanding disease outcomes in certain pathologies, thus 
aiding in developing proper treatment and management measures (Agbo et al., 2002; 
Masiga et al., 2006). RFLPs have been applied to parasites such as T. gondii and Trichinella 

spiralis, which are two species for which pigs play an important role in transmission 
dynamics. T. gondiii is considered to display a clonal population, but its isolates have been 
divided into three types that are geographically clustered and, in some cases, are involved in 
disease outcomes (Wang et al., 1995; Su et al., 2002; Fuentes et al., 2001). These molecular 
markers have been shown to be important in discriminating species as well as evaluating 
genetic variability among isolates from the same species. The great advantage of these 
molecular markers is that they can be used to show the pattern of variation across the whole 
genome of a pathogen, rather than just a specific region, as will be shown later.  

 
Feature 

 
MLEE1

RAPD2

and 
AFLP3

RFLP4 
and 

PFGE5

 
Microarrays

 
MLMT6

 
MLST7

 
qPCR8

Genome 
Sequencing 

Culturing Yes No No No No No No No 
Analysis of 
distinct loci 

Yes No No Yes Yes Yes Yes No 

Cost Low Low Low High Medium Medium Medium High 
Labor High Low Low High Low Low Low Medium 
Informative Low Low Low High High High High High 
Portability Low Medium Medium Low High High Medium Low 

1 Multilocus Enzyme Electrophoresis, 2 Random Amplified Polymorphic DNA, 3 Amplified Fragment 
Length Polymorphisms, 4 Restriction Fragment Length Polymorphisms, 5 Pulse Field Gel 
Electrophoresis, 6 Multilocus Microsatellite Typing, 7 Multilocus Sequence Typing, 8 Quantitative Real 
Time PCR 

Table 1. Molecular markers used in molecular epidemiology studies. 
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The development of Polymerase Chain Reaction (PCR) was of great importance and 
represents an incredible advance in molecular biology. Since 1990, PCR has been broadly 
used to study parasites. Modifications of PCR, such as PCR-RFLP, Nested PCR, RT-PCR, 
AP-PCR (Allele Polymorphic Polymerase Chain Reaction), SHELA-PCR (Solution 
Hybridization Enzyme-Linked Assay Polymerase Chain Reaction) and qPCR (Quantitative 
Real Time Polymerase Chain Reaction), have been applied to study parasites. In these tests, 
the only thing that a researcher requires is a few aliquots of DNA, which simplifies the 
analysis. The use of PCR-RFLP is widely reported in discriminating Leishmania species. In 
these studies, the use of Heat Shock proteins with different molecular weights allows 
discrimination based on PCR amplification of genes that are subsequently digested with 
restriction endonucleases. According to the band patterns obtained in such analyses, it has 
been possible to distinguish between the subgenera Viannia and Leishmania as well as 
species from the different subgenera in some cases (Volpini et al., 2004; Montalvo et al., 
2006). Discrimination among Leishmania species or their complexes is necessary in 
conducting studies on treatment resistance and clinical manifestations associated with 
leishmaniasis, in which some species cause cutaneous forms, and others cause visceral 
forms. One of the most important advances in the modification of PCR assays has been the 
development of quantitative Real-Time PCR (qPCR). This assay involves the quantification 
of DNA copies in each PCR cycle. The first applications of this technique have been for 
diagnostic purposes in cases where it has been possible to estimate parasitic loads in 
infected patients. In the case of L. infantum, the species involved in visceral leishmaniasis 
manifestations, assays have been developed to estimate parasitic loads in biopsies of 
infected patients and, thus, to estimate the efficacy of treatment using qPCR (Mary et al., 
2004; Bretagne et al., 2001; Ranasinghe et al., 2008). Additionally, qPCR using SYBR green 
and Hybridisation probe chemistry has allowed the development of melting temperature 
(Tm) analysis according to a dissociation curve. This permits screening for genotypes or 
species according to the specific temperature of an amplicon and enables observation of 
single nucleotide polymorphisms, all in the same reaction. Thus, a qPCR Real Time protocol 
has been proposed to identify Leishmania species focused on spliced leader genes and 
minicircle kDNA regions; according to distinct temperatures, investigators were able to 
discriminate Leishmania species (Wortmann et al., 2005). This approach has also been applied 
to other parasites, such as Giardia, for which qPCR assays were developed to detect G. 
lamblia and to discriminate its genotypes in stool specimens (Guy et al., 2004). Additionally, 
it has been used to study schistosomiasis, an helminthic disease that affects populations in 
Africa, Asia and America, with qPCR assays being developed to discriminate species in 
water where the infective form (cercariae) lives and is transmitted to humans (Lier et al., 
2006). qPCR has been shown to be a reliable, feasible, fast and accurate method in molecular 
epidemiology to discriminate species as well as to determine genotypes within species. This 
suggests the need to pursue studies involving this method, though in some cases, validation 
studies are required, and further research is needed. A problem involved in working on 
parasites is sensitivity because in some parasite diseases, the parasitic loads are quite low 
and even undetectable in some cases, such that concentration methods must be applied or it 
may be necessary to analyse the whole sample. 

Other molecular markers include microarrays and Southern blot and northern blot 
techniques. The drawback of microarrays is that they are time consuming, expensive, and in 
some cases, they do not provide the desired information. In the last decade, the rise of 
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sequencing procedures has been an important addition to molecular epidemiology 
investigations. The ability to obtain DNA sequences has allowed researchers to unravel the 
genetic structure of parasites and to go further in the analyses that can be applied. Thus, 
molecular phylogenetics and population genetics have provided molecular epidemiology 
with certain, reliable tools for understanding the genetic structure of parasites. Molecular 
phylogenetics is the science focused on understanding the evolutionary relationships among 
groups of organisms based on molecular sequences, and these techniques have been broadly 
applied to parasites. Hence, molecular phylogenetics has allowed the reconstruction of 
phylogenetic trees based on maximum parsimony and/or maximum composite likelihood 
methods with the aim of understanding the evolutionary history of parasites and, in some 
cases, developing analysis involving loci. Based on the use of DNA sequences and 
phylogenetic reconstructions, new methods such as MLST (Multilocus Sequence Typing) 
have arisen. MLST has been broadly used in bacteria and yeast but has only recently been 
applied to parasites; the drawback of MLST in addressing protozoan parasites associated 
with working with clonal diploids instead of clonal haploids, such as bacteria. The genetic 
structure of clonal diploid pathogenic organisms is important in terms of elucidating the 
drivers of disease prevalence, installation and outcomes as well as the virulence factors and 
geographical distribution related to the disease. In recent years, the population structure of 
microorganisms such as Plasmodium, Giardia, Entamoeba, Trypanosomes (T. brucei, T. 
congolense and T. cruzi), Candida, Leishmania and Toxoplasma has gained paramount relevance 
due to the discussion of clonal propagation versus sexual recombination (De Meeus et al., 
2006; Benett et al., 2010; Grigg and Suzuki, 2003; Morrison et al., 2009; Rougeron et al., 2010; 
Mzilahowa et al., 2007). There are three hypotheses that describe the genetic structure 
observed in clonal diploid organisms. In 1987, Harvey and Keymer suggested a panmictic 
population structure in which sexual recombination is frequent. In 1991, Tibayrenc et al. 
proposed the clonal theory of parasitic protozoa, suggesting that these organisms display a 
clonal propagation mode associated with infrequent sexual recombination events. Finally, in 
1993, Maynard-Smith et al. proposed an epidemic population structure with a background 
level of frequent sexual recombination and with occasional clonal expansion of particular 
genotypes. These hypotheses have been tested using a large number of parasitic protozoa; 
however, the debate still continues. 

The use of new methods for typing and elucidating the genetic variability of parasites like 
MLST has gained importance because it can be considered to be an improvement of MLEE. 
MLST makes use of different loci involved in parasite metabolism. Thus, MLST strategies 
have been developed in Leishmania for species identification using five metabolic enzymes 
that are able to discriminate species and genotypes within complexes (Zemanova et al., 
2007). An MLST approach has also recently been described for discriminating among 
subtypes of Blastocystis, which is a protozoan parasite involved in bowel inflammation and 
acute diarrhoea in immunodeficient patients (Stensvold and Clark, 2011). MLST analyses are 
not only used to discriminate genotypes of species but also to detect recombination or likely 
genetic exchanges among parasite populations (diploid clonals). In the case of sexual 
parasites such as helminthes, these approaches are employed to discriminate among species 
or to detect genotypes. Another important development in molecular epidemiology has 
been the use of microsatellite markers in developing MLMT (Multilocus Microsatellite 
Typing) strategies. Microsatellite markers are defined as tandem repetitions of 1-6 base pair 
segments of DNA; they are neutral and co-dominant and are useful in developing 
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population genetics analyses. The variability of microsatellites is due to their higher rate of 
mutation compared to other neutral regions of DNA. The use of microsatellite markers is 
widely reported for purposes ranging from species identification to detection of 
recombination based on population genetics statistics. In P. vivax, polymorphic 
microsatellite markers have been amplified and analysed to unravel the genetic structure of 
this parasite and to understand its co-evolution with other Plasmodium species (Gomes et al., 
2003; Imgwon et al., 2006). Population genetics tools present a limitation when working with 
clonal diploids related to the assumption of Hardy-Weinberg equilibrium and other 
statistics, such as Fis and Fst.  

In recent years, DNA sequencing has become an important tool in understanding 
microorganisms, particularly those involved in human pathologies. Sequencing procedures 
have been improved, and pyrosequencing has become an important method to obtain more 
feasible and accurate DNA sequences. Pyrosequencing is a method of DNA sequencing 
based on the "sequencing by synthesis" principle. It differs from Sanger sequencing in that it 
relies on the detection of pyrophosphate release upon nucleotide incorporation, rather than 
chain termination with dideoxynucleotides. Genome sequencing methods developed in 
bacteria have also been applied to sequence whole genomes in parasites. The first parasite 
genome sequenced was that of P. falciparum (Gardner et al., 2002), followed by the genomes 
of other parasites, such as Leishmania, T. brucei, T. cruzi and T. gondii (Ivens et al., 2005; 
Elsayed et al., 2005; Bontell et al., 2009). New initiatives have been developed to sequence 
larger genomes, such as those from helminthes including Ascaris, Taenia, Schistosoma and 

Echinococcus. These approaches have allowed scientists to develop projects aimed at 
annotating parasite genomes for the purpose of detecting possible pharmaceutical markers 
to develop drugs against these microorganisms. Genome sequencing is becoming cheaper 
due to the advances made by Illumina, which will allow the scientific community to begin 
sequencing genomes instead of single genes. The possibility of obtaining this type of 
metadata permits the application of tools in bioinformatics, metabolomics, immunomics, 
vaccinomics, proteomics and other field with the purpose of transitioning into the OMICS 
era. The OMICS era is considered to be associated with the most advanced techniques for 
understanding the molecular epidemiology of parasitic diseases. These tools will be of 
paramount importance in developing new drugs against parasites as well as evaluating 
surveillance disease markers or prognostic disease markers to understand the relatedness 
between disease outcomes and parasite genetic variability, which is one of the main 
objectives in molecular epidemiology. 

4. Comparative molecular epidemiology: The Chagas disease model 

Chagas disease, which is caused by the parasite T. cruzi, is a complex zoonosis that is widely 
distributed throughout the American continent. The infection can be acquired through 
triatomine faeces, blood transfusion, oral and congenital transmission and laboratory 
accidents. Chagas disease represents an important public health problem, with estimates by 
the Pan American Health Organization in 2005 of at least 7.7 million people being infected 
with T. cruzi and another 110 million being at risk (WHO, 2007). Additionally, immigration 
of infected people from endemic countries is now making Chagas disease a relevant health 
issue in other regions, including Europe and the United States (Rassi et al., 2009). Chagas 
disease is comprised of two stages, with the acute phase occurring approximately one week 
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after the initial infection and approximately 30-40% of infected patients developing the 
chronic phase of the disease, in which cardiomyopathy is the most frequent and severe 
clinical manifestation (Rassi et al., 2009). Chagas has lately gained more importance due to 
recent reports of imported cases in Europe, the United States and Canada (Schmunis and 
Yadon, 2010).  

Obtaining a full understanding of the aetiology and epidemiology of Chagas disease across 
its distribution has proved elusive and complex and remains the subject of intense 
investigation to the present day. The difficulty in completely defining the epidemiology of 
Chagas disease is attributable to several factors. First, Chagas disease is a zoonosis, and a 
variety of widely distributed mammals serve as reservoirs for T. cruzi. Moreover, all 
mammals are susceptible to T. cruzi infection. An additional factor that contributes to the 
complexity of Chagas disease as a zoonosis is the variety of vectors involved, as they are not 
simply represented by a range of related species or genera, as is the case for all other known 
insect vector-associated diseases. Triatomine bugs are a subfamily of insects, and across this 
relatively broad taxonomic range, there are members from all groups that can harbour T. 

cruzi. However, most transmission is attributable to three main genera: Rhodnius, 

Panstrongylus, and Triatoma, but this diversity still represents two different tribes of the 
subfamily (Rhodniini and Triatomini). Furthermore, the insects vary in more than their 
ancestry, being associated with a diverse range of vertebrate hosts and ecological 
associations. The third factor that complicates the epidemiology of Chagas disease and 
accounts for variation in the clinical manifestation of the disease is the subspecific diversity 
of T. cruzi itself. Much work has been conducted over the past 40 years to elucidate the 
variation of T. cruzi across its geographical distribution and associations with hosts and 
vector species. 

The T. cruzi parasite comprises a heterogeneous population that displays clonal propagation 
due to its different cycles of transmission and the possibility of recombination exchanges, 
which can be found in nature and have previously been reported in vitro (Gaunt et al., 2003, 
Sturm et al., 2003; Westenberger et al., 2002). T. cruzi is genetically diverse and is classified 
into a series of strains or subtypes. This genetic diversity was initially discovered using a 
panel of isoenzyme markers to investigate differences between parasites involved in 
domestic and sylvatic cycles in Bahia state in Brazil (Miles et al., 1977). This study 
represented a breakthrough, revealing that in Bahia, there were substantial genetic 
differences between the parasites involved in sympatric sylvatic and domestic transmission 
cycles. These variants were designated zymodemes I and II (ZI and ZII). Soon thereafter, it 
was revealed that the widespread strain associated with the sylvatic cycle in Brazil (ZI) was 
the predominant cause of human disease in Venezuela (Miles et al., 1981). These 
groundbreaking findings paved the way for investigating the aetiology of Chagas disease, 
allowing host-vector-parasite associations and comparative geographical distributions to 
be explored, as reviewed by Miles et al. (2009). Subsequently, four additional zymodemes 
were described from Brazil, Paraguay, and Bolivia. In the following two decades, various 
authors proceeded to characterise strains of T. cruzi, applying other molecular methods as 
they became available. As a result, further diversity was discovered within the original 
zymodemes. However, the designations of subtypes in the literature began to become 
confusing. Recently, a new nomenclature for T. cruzi has been adopted that includes six 
Discrete Taxonomic Units (DTUs) designated T. cruzi I (TcI), T. cruzi II (TcII), T. cruzi III 
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(TcIII), T. cruzi IV (TcIV), T. cruzi V (TcV) and T. cruzi VI (TcVI) based on different molecular 
markers and biological features (Zingales et al., 2009). These DTUs are broadly distributed 
in the American continent in diverse ecotopes (Figure 3). Discrimination of the six DTUs has 
become an important issue in the molecular epidemiology of T. cruzi. There are many 
reports showing algorithms for the molecular characterisation of these DTUs by performing 
RAPD, PCR-RFLP, qPCR, MLST, MLMT and DNA sequencing analyses, but to date, there is 
no consensus protocol for strain typing (Lewis et al., 2009; Rozas et al., 2007; Ramírez et al., 
2010; Duffy et al., 2009; Yeo et al., 2011; Llewelly et al., 2009). One of the most recent and 
reliable algorithms for T. cruzi typing was reported by Ramírez et al., 2010 and has been 
applied on biological samples (Figure 4). 

 
Fig. 3. Geographical distribution of T. cruzi DTUs in the American continent based on 
Patterson and Guhl, 2010. 
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Fig. 4. Algorithm for typing T. cruzi DTU´s based on five molecular markers and also used 
to genotype biological samples (Ramírez et al., 2010). 

In a sense, the findings of Miles et al. (1977) were the tip of the iceberg in unravelling the 
genetic structure of T. cruzi, but at the same time, they hit the nail on the head. The observed 
predominance of TcI in the human populations in Venezuela and Colombia and TcII, TcV, 
and TcVI mostly infecting human hosts in Brazil was to prove representative (i.e., it has 
since been demonstrated that TcI predominates in countries north of the Amazon and TcII-
TcVI in Southern Cone countries, but this distribution is not absolute). This is particularly 
illuminating given that there are distinct clinical differences between patients presenting 
with Chagas disease in these two geographical regions. Strains appear to differ in terms of 
both their pathogenicity and response to treatment. TcI and TcII-VI are all associated with 
cardiac lesions in human infections, but it appears that only TcII, TcV, and TcIV are also 
associated with digestive tract lesions (Prata, 2001), despite the recent report of digestive 
tract lesions in Colombia caused by TcI (Mantilla et al., 2010). TcI is generally considered to 
be less pathogenic with lower parasitemia (Burgos et al., 2007) and more chronic cases being 
asymptomatic compared to Chagas caused by TcII, TcV, and TcVI in Argentina, Brazil, 
Chile, Paraguay, and Uruguay. TcI is almost the only form found in human infections north 
of the Amazon region. Moreover, there is an observed general partitioning of former TcII 
subtypes between sylvatic and domestic transmission cycles; the human disease is 
associated with TcII, while TcV is rarely associated with sylvatic hosts (Yeo et al., 2005), and 
TcIII and TcIV are predominantly sylvatic. 

TcI has remained a constant grouping in the nomenclature since it was first described. 
However, recent studies based on mini-exon gene (SL-IR) sequences have shown 
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polymorphism on this region, with four genotypes being reported within TcI. These 
genotypes have also been reported in various regions of South America, where five TcI 
genotypes have been detected (Figure 5) (Cura et al., 2010; Herrera et al., 2007; Guhl and 
Ramírez, 2011). Different molecular markers, including a 48 set of microsatellite loci, have 
also shown the great diversity in TcI (Guhl and Ramírez, 2011; Llewellyn et al., 2009; 
Spotorno et al., 2008; Ramírez et al., 2011). Primers designed based on TcI sequences 
confirmed the existence of three genotypes (Ia, Ib and Id) and a new genotype found in the 
Southern cone countries designated TcIe (Cura et al., 2010; Falla et al., 2009).  

 
Fig. 5. Geographical distribution of T. cruzi I genotypes based on SL-IR region (Guhl and 
Ramírez, 2011) 

Genetic variability has been clearly demonstrated in T. cruzi, with reports of homogeneous 
(TcII) and heterogeneous groups considered to be hybrids due to recombination events 
(TcIII-TcVI) (Gaunt et al., 2003, Sturm et al., 2003; Westenberger et al., 2002). It has been 
shown that TcIII and TcIV are likely to be a product of recombination of TcI and TcII and 
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TcIV-TcVI to be a product of recombination of TcII and TcIII/TcIV (Brisse et al., 2003), 
although this last statement is still controversial. The recent advances in sequencing 
procedures have allowed three complete T. cruzi genomes to be obtained. The first strain 
fully sequenced was CL Brener (TcVI), which showed a large number of repetitive elements 
along the core genome (Elsayed et al., 2005). Likewise, the recent sequencing of the 
Esmeraldo (TcII) and Sylvio X10 (TcI) genomes has shown the relationship between 
repetitive elements and mucin-like proteins, which are closely associated with parasite cell 
invasion and survival, showing this area of inquiry to be quite promising with respect to 
obtaining more information about the genetic structure of T. cruzi DTUs (Franzen et al., 
2011; Andersson, 2011). 

The molecular epidemiology and distribution of T. cruzi genotypes may have important 
implications with respect to characteristics of the disease. However, few correlations have 
related T. cruzi genetic variability and disease outcome, though it has been shown that TcI is 
more closely related to patients with cardiomyopathy in Colombia and Venezuela,  
while TcII-TcVI are more associated with patients with digestive syndrome 
(megaesophagus/megacolon) (Mantilla et al., 2011; Rassi et al., 2009). The distribution of T. 
cruzi genotypes and reservoirs is implicated in the genetic epidemiology of the disease. In 
the southern part of the American continent, infection of Canis familiaris has been found to 
be related to TcIV, V and VI, whereas infections in the north are associated with genotypes 
Ia and Ib (Falla et al., 2009; Herrera et al., 2009). Furthermore, a significant number of D. 
marsupialis are infected with the TcId genotype, which suggests an association with the 
sylvatic transmission cycle. Similar studies in primates have demonstrated that TcI 
predominantly infects arboreal reservoirs (Cura et al., 2010; Falla et al., 2009). There are 
several hypotheses regarding the distribution of different genetic groups of T. cruzi, 
suggesting that reservoirs belonging to arboreal ecotopes are preferentially infected with TcI 
and that terrestrial ecotopes are infected with TcII-TcVI (Yeo et al., 2005). This hypothesis is 
controversial in light of recent reports demonstrating that the arboreal ecotope reservoirs 
Monodelphis brevicaudata, Philander frenata and Didelphis aurita are infected with TcIII, TcIV 
and TcII, respectively (Marcili et al., 2009; Llewellyn et al., 2009b).  
 

However, the associations are not absolute, and in the case of TcI, there is no apparent 
clustering of particular TcI genotypes with Didelphis in comparison to isolates from other 
arboreal mammals (Llewellyn et al., 2009b). Additionally, with respect to phylogeographical 
analyses of TcIII, the results indicate that isolates cluster according to geography rather than 
host association (Marcili et al., 2009; Llewellyn et al., 2009b). This could also be supported by 
the recent analysis developed in mammals naturally infected with TcI using microsatellite 
markers revealing the role of mammalian reservoirs in diversifying selection on T. cruzi 
(Llewellyn et al., 2011). Two interesting studies on host responses to different strains have 
confirmed, by comparative artificial infection, that in the southern USA, two species of 
opossum (Monodelphis domestica and Didelphis virginiana) seem to be resistant to TcIV 
(Roellig et al., 2009; Roellig et al., 2010). This highlights a mechanism for the association of a 
vertebrate host with one strain over others. The strong association between TcI and Rhodnius 
species can be explained by a similar mechanism: comparative studies on artificial infection 
of R. prolixus with various strains revealed a tendency for this species to be resistant to 
infection by TcII (Mello et al., 1995). In triatomines, susceptibility or resistance to 
trypanosome infections seems to be modulated by intestinal symbionts that are vital for 
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development. T. cruzi is considered to be subpathogenic for triatomines, whereas 
Trypanosoma rangeli is a species that commonly infects Rhodnius species and causes 
pathogenicity based on reduction of the number of symbionts (Vallejo et al., 2009). Studies 
using different species of triatomines, such as R. pallescens, T. dimidiata, R. colombiensis and P. 
geniculatus, have shown the affinity of TcI for infecting these species in comparison with TcII 
(Mejia-Jaramillo et al., 2009). At least half of all species of triatomine bugs have been found 
to be naturally infected with T. cruzi (Lent and Wygodzinsky, 1979; Schofield, 1994). 
Unfortunately, the vast majority of these records do not include specific strain associations. 
This is clearly an area of potential research. In the context of dispersal triggered by 
starvation, there is evidence that starvation decreases T. cruzi infection in triatomines 
(Kollien and Schaub, 1998), and in some species, starvation may clear the infection 
altogether (Phillips et al., 1967; Vargas et al., 1985). This factor could help to explain 
paradigms such as that observed in Venezuela, where sylvatic and domestic bugs seem to be 
in panmixia, but TcI shows discrete general clustering of sylvatic and domestic cycles 
(Fitzpatrick et al., 2009; Llewellyn et al., 2009b). Triatomine bugs directly determine the 
aetiology of the strains of T. cruzi involved in human transmission cycles. This is clear 
because despite TcI and Didelphis being widespread, it is the northern distribution of 
Rhodnius that corresponds with its occurrence in human cycles. Overall, the aspects of 
epidemiological relevance are that associations between terrestrial ecology, T. infestans, 
terrestrial mammals, and T. cruzi strains TcII/TcIV have led to the prominence of TcII, TcV, 
and TcIV in human infections in the southern cone countries of South America. In the 
northern cone countries of South America, human American Trypanosomiasis infections 
seem to stem from TcI associated with arboreal Rhodnius and arboreal mammals. 

The definition of T. cruzi nomenclature must be related to the biological, clinical and 
pathological characteristics associated with specific populations of T. cruzi (Campbell et al., 
2004; Zafra et al., 2009). To our knowledge, few correlations reported have been 
demonstrated to date regarding differences of the host humoral response to specific T. cruzi 
genotypes; however, these findings were flawed because of the low reliability of the 
diagnostic tests used, leading to a high proportion of false negatives due to variability in the 
T. cruzi strain used for the diagnosis. The implication of TcI in severe forms of myocarditis 
in cardiac samples from chronic chagasic patients in Argentina and the lack of any specific 
clinical manifestation related to T. cruzi DTUs in Bolivian chagasic patients indicate the 
pleomorphism of T. cruzi (Ramírez et al., 2009; Moncayo and Ortiz, 2006; Burgos et al., 2010; 
del Puerto et al., 2010). There have been studies reporting detection of T. cruzi in blood 
samples. Direct detection of T. cruzi DTUs in the blood of chronic Chagasic patients was 
carried out by amplification of the 24Sα rDNA divergent domain and the use of 
mitochondrial house-keeping genes (Zafra et al., 2009). In this study, molecular 
characterisation of T. cruzi DTUs showed that most of the patients were infected with TcI, 
while some patients were found to be infected with TcII (9.9%). Recently, a new approach to 
T. cruzi DTU detection in chronic Chagasic patients was developed indicating that TcI is the 
predominant DTU, though TcII was also detected, and it was reported that the genetic 
characteristics of TcII parasites found in Colombia were similar to those of TcII found in 
Bolivia and Chile (González et al., 2010). Regarding the genetic variability of the parasite, 
prognostic markers based on mitochondrial genes where the presence of specific mutations 
can trigger complications of the chronic phase of the disease in asymptomatic patients have 
also been demonstrated (dos Santos et al., 2009; Carranza et al., 2009). Despite the observed 
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genetic variability, it is important to consider the presence of T. cruzi clones that can be 
found in different tissues. Several studies have demonstrated a specific histiotropism of T. 

cruzi in mice showing differences in the pathological, immunological and clinical features 
that the parasite can elicit in the host (Andrade et al., 2002; Ramírez et al., 2010; Manoel-
Caetano et al., 2008). Moreover, some authors have shown that the T. cruzi population in a 
patient's bloodstream could be dissimilar to the parasite population that causes tissue 
damage (Vago et al., 2000). Differences were found in T. cruzi populations in the 
bloodstreams of patients with chronic Chagasic cardiomyopathy and those of Chagasic 
patients without cardiomyopathy (Venegas et al., 2009). Microsatellite analyses have also 
shown multiclonality in heart samples and in the bloodstreams of infected patients, 
demonstrating that specific populations of T. cruzi can probably determine disease outcome 
(Burgos et al., 2007; Valadares et al., 2008). 

Molecular epidemiological studies on T. cruzi have attempted to establish the effects of 
different DTUs in the clinical progression of Chagas disease. Several studies have shown the 
effect of genetic variability on the host immune response (dos Santos et al., 2009; Melquiades-
Rodriguez et al., 2010; Ramírez et al., 2009). It was previously known that cardiopathies in 
southern cone countries were caused by TcII, TcV and TcVI, but it has recently been 
demonstrated that TcI can play an important role specifically in severe cardiopathies related to 
Chagas disease. Studies of cardiac biopsies from Argentinean patients revealed that patients 
with severe myocarditis were infected with TcI, whereas those with moderate or absent 
myocarditis were infected with TcII, TcV or TcVI (Burgos et al., 2010). At the same time that 
the TcI genotype was found in severe myocarditis patients, it was demonstrated that in 
patients with chronic chagasic cardiopathy, the TcIa genotype was most commonly found in 
the bloodstream, whereas TcId was most commonly found in cardiac biopsies. These results 
are consistent with reports from patients in Colombia, where the least and most prevalent Tcl 
genotypes in adult patients with chronic chagasic cardiopathy were Tcld and TcIa, 
respectively (Ramírez et al., 2010). This suggests a possible type of histotropism associated 
with Tcl genotypes as well as the epidemiological importance of this DTU in southern 
countries, where cardiopathies were previously thought to be caused primarily by TcII, TcV 
and TcVI. A model of clonal histiotropism has been previously reported showing how a 
composite of clones is related to disease outcome. Recently reported results from Colombia 
support this premise, with cardiac biopsies being observed to be infected with TcId, while TcIa 
is found circulating in the bloodstream (Zafra et al., 2011; Ramírez et al., 2010). This suggests 
the need to pursue studies to correlate the association between T. cruzi genotypes and clinical 
manifestations of Chagas disease. New studies are also necessary to determine the specific T. 

cruzi populations generating tissue damage in infected patients.  

Most of the research performed in Chagas disease is related to understanding the molecular 
epidemiology of this endemic pathology. Many questions are continually emerging every 
day in this field based on epidemiological circuits with the aim of better estimating the 
transmission dynamics of T. cruzi in endemic areas. The involvement of T. cruzi genetic 
variability in clinical manifestations is of paramount importance and could resolve the 
question regarding the high pleomorphism displayed by this clinical entity. New initiatives 
must be created with interdisciplinary groups with the purpose of unravelling the molecular 
comparative epidemiology of Chagas disease and attempting to mitigate this pathology in 
endemic countries. 
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5. Concluding remarks 

In this chapter, many examples regarding the usefulness of molecular epidemiology in 
parasitic diseases were addressed. These examples illustrated different applications of 
molecular methods to understand the pathogens that cause human parasitic diseases. It is 
important to consider the need for synergy between descriptive, analytical and molecular 
epidemiological methods to develop robust and unbiased data. As a relevant example, we 
presented the case of T. cruzi and described how molecular methods have been useful in 
defining hypotheses about the parasite’s geographical distribution, host associations and 
the implications of different genotypes for clinical manifestations related to the heart. 
Despite the studies reported in the literature on molecular epidemiology in parasites, 
public health systems do not consider the importance of integration between these two 
areas. We propose the integration of molecular epidemiology and public health systems to 
mitigate and reduce the prevalence of tropical diseases caused mainly by parasites, and 
this combination could become a potential tool for disease prevention and control as well 
as for the development of appropriate programmes for disease surveillance in endemic 
countries. 
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