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1. Introduction 

Brain injury occurs from either a traumatic (mechanical), ischemic (decreased oxygen; 
accounts for 83% of stroke cases), or hemorrhagic (ruptured blood vessel; accounts for 17% 
of stroke cases) insult to the brain.  Stroke and traumatic brain injury (TBI) are major 
contributors worldwide to both deaths and persistent disabilities.  Stroke is the third leading 
cause of death (behind heart disease and cancer) in the United States, with 137,000 
Americans dying from stroke each year (Heron et al., 2009).  Stroke is the leading cause of 
serious, long-term disability in the United States.  Currently, 795,000 people have a stroke 
each year and 15-30% of survivors have a permanent disability (Roger et al., 2011).  
Annually, 1.7 million people sustain a TBI in the United States, resulting in 52,000 deaths 
and over 124,000 permanent disabilities each year (Faul et al., 2010).  Annual direct (e.g., 
medical) and indirect (e.g., loss of productivity) costs to the United States are $41 billion and 
$60 billion for stroke and TBI, respectively (Finkelstein et al., 2006; Roger et al., 2011). 

Though the etiology differs between traumatic and ischemic injury, there are many 
similarities in their pathology (Bramlett & Dietrich, 2004; Leker & Shohami, 2002).  The 
primary insult initiates a cascade of secondary events such as edema, excitotoxicity, and 
increases in free radicals, which act to spread the injury to surrounding tissue (for reviews of 
the pathology, see Greve & Zink, 2009 for TBI and Mitsios et al., 2006 for ischemic stroke).  
Note that ischemia is part of the secondary injury response for TBI (Coles, 2004; Garnett et 
al., 2001).  The brain attempts to repair and regenerate, but depending on such factors as 
injury severity, age of onset, and prior injuries, these endogenous attempts are often 
insufficient to restore normal function.  A treatment that limits the spread of secondary 
damage and/or promotes repair and regeneration is needed.  Current clinical treatment 
practices for TBI primarily aim to reduce intracranial pressure in an effort to minimize brain 
damage caused by swelling.  For ischemic stroke, the only FDA-approved treatment is 
breaking down blood clots with tissue plasminogen activator.  However, patients must meet 
strict criteria for receiving this therapy, including a 4 hour time window and no evidence of 
the following: bleeding, a severely elevated blood pressure or blood sugar, recent surgery, 
low platelet count, or end-stage liver or kidney disorders.  Numerous pharmacological 
treatments that seemed promising in animal models have failed in clinical trials (Maas et al., 
2010; O’Collins et al., 2006).  Patients with brain injury vary widely with respect to 
demographics, severity of injury, location of injury, and co-morbidity factors making clinical 
trials challenging.  Most treatments previously tested involved pathways that are both 
deleterious and beneficial, making the dosage and timing critical to not interfere with 
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normal homeostasis or reparative mechanisms in the brain.  Furthermore, these treatments 
targeted single mechanisms, which may not be enough in light of the multi-faceted 
pathology.  Therapies that currently seem more promising, such as progesterone 
administration (Wright et al., 2007) and cell transplantation, address multiple pathological 
events.     

2. Mesenchymal stromal cells to treat brain injury 

2.1 Mesenchymal stromal cells (MSCs) 

Mesenchymal stem cells are multipotent cells that can differentiate into cells of the 
mesoderm germ layer.  These cells can be isolated from adipose tissue, amniotic fluid, 
placenta and umbilical cord, though are most commonly and efficiently derived from adult 
bone marrow.  Marrow-derived cells that adhere to tissue-culture plastic in vitro are a 
heterogeneous population of cells that contain mesenchymal stem cells, but the entire 
population is more correctly defined as mesenchymal stromal cells (Horwitz et al., 2005).  As 
we learn more about these cell populations, the terminology evolves and the acronym MSC 
is used (and sometimes misused) for mesenchymal stem cell, mesenchymal stromal cell, 
multipotent stromal cell, and marrow stromal cell.  For the purposes of this chapter, we will 
not distinguish amongst these cell populations and use MSC as a general acronym.   

2.2 Using MSCs to treat brain injury 

MSCs are an attractive cell source for transplantation because they are relatively easy to 
obtain, expand, and manipulate in vitro.  In addition, adult human MSCs do not have the 
tumorigenicity risks that pluripotent cells carry.  Ample preclinical data demonstrate that 
MSC transplantation promotes functional recovery following experimental cerebral 
ischemic or TBI (for review, see Li & Chopp, 2009 or Parr et al., 2007).  Autologous MSC 
therapy has already shown promise for treating clinical stroke (Battistella et al., 2011; 
Honmou et al., 2011; Lee et al., 2010; Suarez-Monteagudo et al., 2009) and TBI (Cox et al., 
2011; Zhang et al., 2008).  Collectively, these trials demonstrate that transplanting MSCs 
either intra-arterially, intravenously, or intracerebrally is safe and no cell-related adverse 
events were reported.  These groups also indicate that some patients receiving MSCs had 
improved functional outcome; however, these hints at efficacy must be cautiously 
interpreted because these were primarily safety trials and were not designed to show robust 
efficacy.   

Important considerations for using MSCs in the clinic include timing (acute versus chronic), 
delivery route (most commonly intravenous, intra-arterial, or intracerebral), and donor 
source (autologous versus allogeneic).  There are advantages and disadvantages for each of 
these issues, which are outlined in Table 1.  According to www.clinicaltrials.gov (searched 
in August 2011; summarized in Table 2), there are 11 ongoing clinical trials worldwide using 
MSCs (either primary or derivatives) to treat stroke.  Of these 11 studies, 5 are using 
autologous MSCs and the other 6 are using allogeneic MSCs from either bone marrow, 
placenta (1 study) or umbilical cord (1 study).  Two of the trials are injecting cells directly 
into the injured brain (either into the injury cavity or the peri-infarct tissue), 1 trial is 
injecting cells into the carotid artery, and the other 8 are injecting MSCs intravenously.  With 
regard to timing, 2 of the trials are delivering the cells during the acute phase (within 72 
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hours post-stroke), 7 trials during the sub-acute phase (between 4 days and 6 weeks post-
stroke), and 2 studies are delivering cells during the chronic phase (over 6 months post-
stroke).  As trials more definitively reveal that MSCs transplantation is both safe and 
effective for treating brain injury in humans, issues of delivery timing and route and donor 
source, as well as dosage and the use of immunosuppression will need to be more carefully 
compared.   

 

Issue Options Advantages Disadvantages 

Timing  

Acute 

phase 
supports neuroprotection 

volatile environment 

strict timing may limit 

availability 

Chronic 

phase 

supports regeneration 

endogenous regeneration 

efforts are stabilized 

easier to distinguish between 

effects of cell therapy and 

normal recovery 

targets larger patient 

population 

Delivery 

Intravenous 

or Intra-

arterial 

less invasive 
cells accumulate in the lungs 

and spleen 

cells home to site of injury 

requires high cell numbers 

possible systemic effects 

requires blood brain barrier 

permeability (thus limits time 

window) 

Intracerebral cells placed at site of injury  

more invasive 

extent and location of injury is 

variable 

Donor 

Source 

Autologous immunocompatible 
patients undergo additional 

procedures 

Allogeneic 

MSCs are immunoprivileged 
may require 

immunosuppression 

more cost-effective 

requires storage of cell product 

better for repeat dosing 

off-the-shelf treatment 

cells can be manipulated ex 

vivo without treatment delays

Table 1. Clinical considerations for using MSCs to treat brain injury  
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# Px= planned number of patients to enroll; Auto=autologous; Allo=allogeneic; IV=intravenously; 
IC=intracerebral (cavity or peri-infarct tissue); IA=intra-arterial (carotid); TP=transplant 

 
 
 
 

Table 2. Ongoing clinical trials for using MSCs to treat stroke 
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3. Mechanisms of action underlying beneficial effects 

Transplanting stem cells is attractive because they can potentially differentiate into multiple 
cell types and replace cells lost to injury or disease.  MSCs normally give rise to cells along 
the mesodermal lineage (including bone, cartilage, and adipose tissue); however, there are 
reports suggesting that they can transdifferentiate into neural cells in certain in vitro 
(Sanchez-Ramos et al., 2000; Woodbury et al., 2000) and in vivo (Kopen et al., 1999; Munoz-
Elias et al., 2004) environments.  Though some studies show a small percentage of donor 
MSCs express neuronal markers in the injured brain, there is little evidence that these cells 
functionally incorporate into the endogenous neuronal circuitry.  In fact, there is a decidedly 
lack of evidence that neuronal replacement is the primary mechanism of action for MSC 
therapy; moreover, there are data demonstrating artifacts associated with MSC to neuron 
transdifferentiation (Barnabe et al., 2009; Lu et al., 2004; Neuhuber et al., 2004; Phinney & 
Prockop, 2007; Wells, 2002).  There is also the possibility that MSCs replace supporting glial 
cells (astrocytes, oligodendrocytes, or microglia), which outnumber neurons 10:1 in the 
brain (reviewed in Boucherie & Hermans, 2009).  However, ample evidence shows that 
benefits and functional recovery occur rapidly and persist long after the donor cells are 
gone, indicating permanent cell replacement is not required.  The most likely governing 
mechanism is that MSCs provide trophic support to the injured brain, which augments 
endogenous repair and regeneration pathways.  Trophic support, by definition, acts through 
secreted molecules called trophic factors.  MSCs may act as mini-pumps delivering 
beneficial factors to their microenvironment.  Using cells as pumps is preferred to actual 
engineered pumps because they can deliver a plethora of factors at the site of injury in 
physiologic concentrations and also respond to the needs of the injured tissue with 
appropriate feedback.  Trophic factors can either directly or indirectly (via a mediator cell) 
promote neuroprotection (enhance cell survival through repair) or neuroregeneration.  
MSCs also secrete factors that augment angiogenesis – another important aspect of 
regeneration after brain injury.  An additional likely mechanism of action contributing to the 
benefit of MSCs is immunosuppression.  MSCs can affect immune cells via secreted factors, 
which would fall under trophic support.  For the purposes of this chapter, we will treat it as 
a separate category since targeting immune functions indirectly promotes recovery 
compared to acting directly on neural or vascular cells.  There is a great deal of overlap 
between these functions and these categories are fluid.  Figure 1 summarizes hypothesized 
mechanisms of action for MSCs in the injured brain, which are mediated by secreted factors 
and direct cell-cell contacts.  

3.1 Terminology 

Trophic support classically means to provide nutrition, but the definition has been 
expanded to include promoting cellular growth, survival, differentiation, or migration.  
Similarly, the terms “trophic factor“ and “growth factor“ have also become more inclusive.  
Neurotrophic factors are trophic factors acting specifically on neural cells, i.e., promoting 
the growth, survival, differentiation, or migration of primarily neurons, but also glial cells 
(astrocytes, oligodendrocytes, microglia and Schwann cells).  The name neurotrophin is 
sometimes used synonymously with neurotrophic factor; however neurotrophins specify a 
family of four structurally-related proteins: nerve growth factor (NGF), brain-derived 
neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5). The 
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term cytokines was initially used to distinguish factors that had specific immunomodulatory 
properties (produced by and act on immune cells), such as interleukins, lymphokines, and 
interferons.  However, it is now known that many classic cytokines are also produced by 
and act on non-immune cells.  Chemokines are a subclass of cytokines that promote 
chemotaxis (cell movement in response to a chemical concentration gradient).  In general, as 
more functions are discovered about these proteins, definitions and classifications broaden 
and the terms are often used interchangeably.  While trophic factors commonly refer to 
soluble proteins, extracellular matrix (ECM) proteins that are immobilized in the 
intercellular space also fall into this category since they direct cell growth, survival, 
differentiation, and migration.  

 

Fig. 1. Summary of likely mechanisms of action for MSCs in the injured brain, highlighting 
the interconnectivity.  

3.2 Trophic support 

Transplanted MSCs augment host repair and recovery primarily through direct and indirect 
trophic support.  MSCs secrete a plethora of factors that are known to promote neural cell 
survival and regeneration through paracrine signaling to neural, vascular, and immune cells.  
An overview of relevant trophic factors found to be secreted by human bone marrow-
derived MSCs in vitro is provided in Table 3.  Which of these factors are secreted in the 
injured brain is under current investigation.  Research is also ongoing to determine the exact 
or even the most critical mechanism(s) governing the beneficial effects of MSC 
transplantation.  For now, we make a leap of knowledge based on existing evidence.  There 
are numerous studies demonstrating that transplanted MSCs promote certain aspects of 
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Reference Detection Method Trophic Factors Found Abbreviation 

(Haynesworth et al., 

1996)  

ELISA of 

Conditioned 

Medium 

Granulocyte colony stimulating 

factor 
G-CSF 

Granulocyte-macrophage colony 

stimulating factor 
GM-CSF 

Interleukin-11 IL-11 

Interleukin-6 IL-6 

Leukemia inhibitory factor LIF 

Macrophage colony stimulating 

factor 
M-CSF 

Stem cell factor SCF 

(Potian et al., 2003) Cytokine Array of 

Conditioned 

Medium 

Angiogenin Angiogenin 

Granulocyte colony stimulating 

factor 
G-CSF 

Granulocyte-macrophage colony 

stimulating factor 
GM-CSF 

Growth related oncogene- GRO 

Interleukin-6 IL-6 

Interleukin-8 IL-8 

Monocyte chemoattractant 

protein-1 
MCP-1 

Oncostatin M OSM 

Transforming growth factor- TGF 

(Kinnaird et al., 2004) ELISA or 

Immunoblotting of 

Conditioned 

Medium 

Angiopoietin-1 ANG-1 

Fibroblast growth factor-2 FGF-2 

Interleukin-6 IL-6 

Monocyte chemoattractant 

protein-1 
MCP-1 

Platelet derived growth factor PDGF 

Placental growth factor PlGF 

Vascular endothelial growth 

factor-A 
VEGF-A  

(Arnhold et al., 2006) ELISA of 

Conditioned 

Medium 

Brain derived neurotrophic factor BDNF 

Glial cell line-derived 

neurotrophic factor 
GDNF 

Nerve growth factor NGF 

(Crigler et al., 2006) ELISA of 

Conditioned 

Medium 

Brain derived neurotrophic factor BDNF 

Interleukin-11 IL-11 

Nerve growth factor NGF 

Stromal derived factor-1 SDF-1 

(Wang et al., 2006) ELISA of 

Conditioned 

Medium 

Hepatocyte growth factor HGF 

Insulin-like growth factor-1  IGF-1 

Vascular endothelial growth factor VEGF 
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Reference Detection Method Trophic Factors Found Abbreviation 

(Potapova et al., 2007) ELISA of 
Conditioned 
Medium 

Angiogenin Angiogenin 

Bone morphogenetic protein-2 BMP-2 

Interleukin-6 IL-6 

Interleukin-8 IL-8 

Interleukin-11 IL-11 

Monocyte chemoattractant 
protein-1 

MCP-1 

Vascular endothelial growth 
factor 

VEGF  

(Schinkothe et al., 2008) Cytokine Array of 
Conditioned 
Medium 

Angiopoietin-2 ANG-2 

Fibroblast growth factor-4 FGF-4 

Fibroblast growth factor-9 FGF-9 

Granulocyte colony stimulating 
factor 

G-CSF 

Growth related oncogene GRO 

Hepatocyte growth factor HGF 

Interleukin-8 IL-8 

Interleukin-11 IL-11 

Interleukin-17 IL-17 

Monocyte chemoattractant 
protein-1 

MCP-1 

Neurotrophin-4/5 NT-4/5 

Oncostatin M OSM 

Placental growth factor PlGF 

Tissue inhibitors of 
metalloproteinase-1 

TIMP-1 

Vascular endothelial  
growth factor 

VEGF 

Bone morphogenetic protein-4 BMP-4 

(Tate et al., 2010) Cytokine Array of 
Conditioned 
Medium 

Bone morphogenetic protein-7 BMP-7 

Dickkopf-1 DKK-1 

Fibroblast growth factor-7 FGF-7 

Heparin-binding epidermal 
growth factor-like growth factor 

HB-EGF 

Hepatocyte growth factor HGF 

Interleukin-6 IL-6 

Monocyte chemoattractant protein 
-1 

MCP-1 

Platelet derived growth factor-
AA 

PDGF-AA 

Vascular endothelial growth 
factor 

VEGF 

Collagen I Collagen I 

(Lai et al., 2010) Immunofluorescence 
of Extracellular 
Matrix 

Decorin Decorin 

Fibronectin Fibronectin 

Laminin Laminin 

Perlecan Perlecan 

Table 3. Factors secreted in vitro by human bone marrow MSCs that may affect neural recovery. 
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recovery (e.g., decrease apoptosis, increase neurogenesis, synaptogenesis, and angiogenesis) 
in the injured brain.  Concurrently, there are other studies showing that factors known to be 
secreted by MSCs are involved in mechanisms that promote these same aspects of recovery.  
The assumption is that some combination of these pro-recovery mechanisms occurs when 
MSCs are transplanted into the injured brain and that MSC-secreted factors are essential for 
these effects.  Table 4 reviews potential beneficial mechanisms of action for repair and 
regeneration of the injured brain provided by MSC-secreted factors.  The table provides 
references that demonstrate that the protein of interest enhances either 1) neuroprotection, 
2) neural stem/progenitor cell proliferation or migration, 3) neural stem/progenitor cell 
differentiation, 4) neuritogenesis or synaptogenesis, 5) angiogenesis, or 6) another 
mechanism involved in recovery (such as reducing inhibitory components of the glial scar).  
While these entries are based on a thorough search, it is not intended to be completely 
exhaustive.  Also, only the beneficial aspects of the various growth factors are presented.  
Some factors that enhance one pathway act as inhibitors in another (e.g., the pro-
inflammatory molecule interleukin-17 potentiates neuronal cell death but supports 
angiogenesis).  Since these studies often examine pathways individually, it is not clear 
which are the primary mechanisms that occur when (if) the molecule is secreted by MSCs in 
the injured brain.  Further, the exact timing and concentration of the trophic factor are likely 
critical in determining to which pathways they contribute.  

  

Neuro-
protection      

(↓Apoptosis) 

Promotes Neuroregeneration 

↑Angiogenesis Additional 
  

↑ NSC 
Proliferation 
or Migration 

↑ NSC 
Differentiation

↑ Neurite 
Outgrowth or 

Synapse 
Formation 

S
o

lu
b

le
 G

ro
w

th
 F

a
ct

o
rs

 

Angio-

genin 
    

(*Distler et al., 

2003) 
 

ANG-1 
(*Hansen et al., 

2008) 

(*Ohab & 

Carmichael, 

2008) 

 
(*Hansen et 

al., 2008) 

(*Distler et al., 

2003) 

Restore BBB 
(Nag et al., 

2011) 

ANG-2  (Liu et al., 2009)
neuronal (Liu 

et al., 2009) 
 

in presence of 

VEGF 
(*Distler et al., 

2003) 

 

BDNF 
(*Lykissas et 

al., 2007) 

(*Bath & Lee, 

2010; *Schabitz 

et al., 2007) 

neuronal (*Bath 

& Lee, 2010) 

(Gascon et al., 

2005; *Lipsky 

& Marini, 

2007; 
*Lykissas et 

al., 2007) 

(Qin et al., 

2011) 
 

BMP-2 
(Iantosca et al., 

1999) 
 

astrocytic 
(*Sabo et al., 

2009) 

(Gratacos et 

al., 2001) 
  

BMP-4 
(Iantosca et al., 

1999) 
 

astrocytic 
(*Sabo et al., 

2009) 

   

BMP-7 
(Yabe et al., 

2002) 

(Chou et al., 

2006) 

astrocytic 
(Gajavelli et al., 

2004) 
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Neuro-
protection      

(↓Apoptosis) 

Promotes Neuroregeneration 

↑Angiogenesis Additional 
  

↑ NSC 
Proliferation 
or Migration 

↑ NSC 
Differentiation

↑ Neurite 
Outgrowth or 

Synapse 
Formation 

DKK-1    
(Endo et al., 

2008) 
(Smadja et al., 

2010) 
 

FGF-2 

(*Alzheimer & 
Werner, 2002; 
*Zechel et al., 

2010) 

(*Mudo et al., 
2009; *Zechel et 

al., 2010) 

(*Mudo et al., 
2009; *Zechel et 

al., 2010) 

(*Zechel et al., 
2010) 

(*Distler et al., 
2003; Kumar et 

al., 1998) 

↑MSC 
homing 

(Schmidt et 
al., 2006); 

Restore BBB 
(Bendfeldt et 

al., 2007) 

FGF-4  
(Kosaka et al., 

2006) 

neuronal 
(Kosaka et al., 

2006) 
 

(*Fan & Yang, 
2007) 

 

FGF-7 
(Sadohara et 

al., 2001) 
  

(Terauchi et 

al., 2010) 
(Gillis et al., 

1999) 
 

FGF-9 
(Lum et al., 

2009) 
(Lum et al., 

2009) 
neuronal (Lum 

et al., 2009) 
 

(Frontini et al., 

2011) 
 

G-CSF 

(Schabitz et al., 
2003; Schneider 

et al., 2005; 
Sehara et al., 

2007; Solaroglu 
et al., 2006) 

(Schneider et 
al., 2005; Shyu 

et al., 2004) 

neuronal 
(Schneider et 

al., 2005) 
 

(Minamino et 
al., 2005; 

Sehara et al., 
2007) 

↑MSC 
homing 

(Deng et al., 
2011) 

GM-CSF 
(Huang et al., 

2007) 
  

(Bouhy et al., 
2006) 

(Buschmann et 
al., 2003) 

 

GDNF 

(Lu et al., 2005; 
Shang et al., 

2011; Shirakura 
et al., 2004) 

(Dempsey et 
al., 2003) 

 
(Shirakura et 

al., 2004) 
  

GRO   
oligodendrocyt
ic (Robinson et 

al., 1998) 
 

(Bechara et al., 
2007) 

 

HB-EGF 
(Opanashuk et 

al., 1999) 
(Jin et al., 2002)

neuronal (Jin et 
al., 2004) and 

glial (Korblum 
1999) 

   

HGF 
(Honda et al., 
1995; Shang et 

al., 2011) 

(Shang et al., 
2011) 

neuronal and 
glial (Shang et 

al., 2011) 

(Hamanoue et 
al., 1996; 

Shang et al., 
2011; 

Shimamura et 

al., 2006) 

(*Distler et al., 
2003; Shang et 

al., 2011; 
Shimamura et 

al., 2006) 

↑ MSC 
homing 

(Neuss et al., 
2004; Ponte et 
al., 2007; Son 

et al., 2006); ↓ 
glial scar 

(Shang et al., 
2011; 

Shimamura et 
al., 2006) 
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Neuro-
protection      

(↓Apoptosis) 

Promotes Neuroregeneration 

↑Angiogenesis Additional 
  

↑ NSC 
Proliferation 
or Migration 

↑ NSC 
Differentiation

↑ Neurite 
Outgrowth or 

Synapse 
Formation 

IGF-1 
(Wilkins et al., 
2001; Yamada 

et al., 2001) 

(Dempsey et 
al., 2003; 
*Joseph 

D’Ercole & Ye, 
2008) 

neuronal and 
glial (*Joseph 

D’Ercole & Ye, 
2008) 

(*Joseph 
D’Ercole & 
Ye, 2008) 

(*Distler et al., 
2003; Lopez-
Lopez et al., 

2004) 

↑MSC 
homing 

(Ponte et al., 
2007) 

IL-6 
(Swartz et al., 

2001) 
 

neuronal (Oh et 
al., 2010) and 

astrocytic 
(Taga & 

Fukuda, 2005) 

(Oh et al., 
2010) 

(*Fan & Yang, 
2007) 

 

IL-8 
(Araujo & 

Cotman, 1993) 
   

(*Fan & Yang, 
2007) 

↑MSC 
homing 

(Wang et al., 
2002) 

IL-11   
neuronal 

(Mehler et al., 
1993) 

   

IL-17     
(Numasaki et 

al., 2003) 
 

LIF 
(Nobes & 

Tolkovsky, 
1995) 

(Bauer et al., 
2003; 

Shimazaki et 
al., 2001) 

 
(Blesch et al., 

1999) 
 

↑cell homing 
(Sugiura et al., 

2000) 

MCP-1  
(Widera et al., 

2004; Yan et al., 
2007) 

   

↑MSC 
homing 

(Wang et al., 
2002) 

M-CSF 
(Vincent et al., 

2002) 
   

(Minamino et 
al., 2005) 

 

NGF 

(*Lykissas et 
al., 2007; 

Shirakura et al., 
2004) 

 
neuronal (Yung 
et al., 2010; Zhu 

et al., 2011) 

(Gascon et al., 
2005; 

*Lykissas et 
al., 2007) 

(*Lazarovici et 
al., 2006) 

 

NT-4/5 
(*Lykissas et 

al., 2007) 
 

neuronal (Shen 
et al., 2010) 

(*Lykissas et 
al., 2007) 

  

OSM 
(Weiss et al., 

2006) 
 

oligoendrocytic 
(Glezer & 

Rivest, 2010) 
 

(Vasse et al., 
1999) 

 

PDGF 
(Iihara et al., 
1997; Vana et 

al., 2007) 

(Forsberg-
Nilsson et al., 

1998) 

neuronal (Johe 
et al., 1996) 

 
(*Beck & Plate, 
2009; *Fan & 
Yang, 2007) 

↑MSC 
homing 

(Ponte et al., 
2007) 

PlGF (Du et al., 2010)    
(*Beck & Plate, 

2009) 
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Neuro-
protection      

(↓Apoptosis) 

Promotes Neuroregeneration 

↑Angiogenesis Additional 
  

↑ NSC 
Proliferation 
or Migration 

↑ NSC 
Differentiation

↑ Neurite 
Outgrowth or 

Synapse 
Formation 

SCF 

(Dhandapani et 

al., 2005; 
Erlandsson et 

al., 2004; Li et 

al., 2009) 

(Bantubungi et 

al., 2008; 
Erlandsson et 

al., 2004; Zhao 

et al., 2007) 

  
(Sun et al., 

2006) 

↑MSC 
homing 

(Bantubungi 
et al., 2008; 

Erlandsson et 

al., 2004) 

SDF-1  

(*Ohab & 
Carmichael, 

2008; Thored et 

al., 2006) 

   

↑ MSC 
homing 

(Ponte et al., 
2007; Son et 

al., 2006) and 
survival 

(Kortesidis et 

al., 2005) 

TGF 

(*Buisson et al., 
2003; Lu et al., 

2005) 

(Ma et al., 2008; 
Mathieu et al., 

2010) 
 (Yi et al., 2010)

(*Beck & Plate, 
2009; *Fan & 
Yang, 2007) 

 

TIMP-1 
(Tan et al., 

2003) 
     

VEGF 
(Jin et al., 2000; 
Sun et al., 2003)

(Sun et al., 
2003; Wang et 

al., 2007a; 
Wang et al., 

2007b) 

 
(Erskine et al., 
2011; Jin et al., 

2006) 

(*Greenberg & 
Jin, 2005; 
*Shibuya, 

2009) 

 

M
a

tr
ix

 P
ro

te
in

s 

Collagen I  (Ma et al., 2004)
neuronal (Ma et 

al., 2004) 
 (*Sottile, 2004)  

Decorin    
(Davies et al., 

2004) 
 

↓ glial scar 
(Davies et al., 

2004) 

Fibro-
nectin 

(Sakai et al., 
2001; Tate et al., 

2007) 

(*Henderson & 
Copp, 1997; 

Tate et al., 2004; 
Testaz & 

Duband, 2001)

oligodendrocyt
ic (Hu et al., 

2009) 

(Einheber et 

al., 1996; 
*Pires Neto et 

al., 1999) 

(*Sottile, 2004)  

Laminin 
(Hall et al., 

2008) 

(Hall et al., 
2008; *Perris & 

Perissinotto, 
2000; Tate et al., 

2004) 

neuronal 
(Boote Jones & 
Mallapragada, 
2007; Tate et al., 

2004) 

(*Colognato 
and 

Yurchenco, 
2000; *Pires-
Neto 1999) 

(*Sottile, 2004) 

Restore BBB 
(Hunter et al., 
1992);↓glial 
scar (Hou et 

al., 2005) 

Perlecan 
(*Bix & Iozzo, 
2008; Lee et al., 

2011) 
   

(*Bix & Iozzo, 
2008; Lee et al., 

2011) 
 

*Indicates review article; NSC=Neural stem/progenitor cell; Growth factor abbreviations are defined in 
Table 3  

Table 4. Evidence of MSC-secreted factors promoting neuroprotection or regeneration.  
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3.2.1 Neuroprotection  

Following the initial insult, secondary injury mechanisms persist and cause cell death to 

surrounding tissue.  While the initial ischemic or mechanical insult causes immediate 

necrotic death, secondary cell death primarily occurs through apoptosis.  MSCs secrete 

multiple factors known to promote neural cell survival (see Table 4).  Human MSCs have 

been shown to rescue neural cells following in vitro injury (e.g., oxygen glucose 

deprivation, glutamate toxicity) via secreted soluble factors (Tate et al., 2010; Zhong et al., 

2003) and ECM proteins (Aizman et al., 2009).  There are several reports of decreased 

apoptotic markers and enhanced preservation of neural cells in the injury penumbra 

when transplanting MSCs following experimental ischemic stroke (Li et al., 2010; Li et al., 

2002; Xin et al., 2010) or TBI (Kim et al., 2010; Xiong et al., 2009).  For example, delivering 

human MSCs intravenously 1 day following experimental cerebral ischemia in rats led to 

significant reduction in apoptotic cell death in the injury penumbra as well as functional 

behavioral recovery (Li et al., 2002).  This study also found an increase in BDNF and NGF 

in the ipsilateral hemisphere of MSC-treated rats at 7 days post-stroke; however, they did 

not distinguish whether these trophic factors were produced by the donor or host cells.  Li 

et al. (2010) show that transplanting human MSCs into the injury penumbra 1 week 

following experimental cerebral ischemia in monkeys decreased apoptotic cell death and 

the lesion volume.  Human MSCs transplanted into the injury cavity 1 week following 

experimental TBI in rats lead to enhanced cell survival in the hippocampus and improved 

functional recovery, and this was further improved when the MSCs were delivered within 

a collagen I scaffold (Xiong et al., 2009). Kim et al. (2010) found that delivering human 

MSCs intravenously 1 day post-TBI in rats improved functional recovery and enhanced 

host cell survival by increasing pAkt and decreasing caspace-3 cleavage.  Further, this 

group reports increases in BDNF, NGF, and NT-3 in the MSC-treated brains, though they 

did not distinguish between donor or host origin.  Clearly, exogenous MSCs provide 

neuroprotection following brain injury and this is one probable mechanism of action for 

their benefit. 

3.2.2 Neuroregeneration  

After brain injury, the brain attempts to regenerate by resorting to a developmental-like 

state with increased neurogenesis, neurite outgrowth, synaptogenesis, re-myelination, 

re-formation of the blood brain barrier, and angiogenesis.  Once thought to be unable to 

regenerate, it is now known that neural stem cells persist in the normal adult brain 

(neurogenic zones include the subventricular zone in the lateral ventricles and the 

subgranular zone in the dentate gyrus of the hippocampus). After an ischemic or 

traumatic injury, endogenous neural stem cells proliferate, migrate to the site of injury, 

and differentiate into neurons and glia (Kernie & Parent, 2010). Neuroplasticity is the 

reorganization of neuronal circuitry by changing the number and/or strength of neurites 

and synapses.  Such remapping occurs throughout life for learning and memory 

formation, and compensatory plasticity occurs in the spared tissue following brain injury 

(Nishibe et al., 2010). Neuroregeneration collectively includes neural stem/progenitor 

cell proliferation, migration and differentiation, neurite outgrowth, and synapse 

formation. 
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There are multiple in vitro studies showing that MSCs direct neuroregenerative processes.  
Bai et al. (2007) show that mouse neural stem cells had increased migration and neuronal 
and oligodendrocytic differentiation when they were cultured with either human MSCs or 
MSC-conditioned medium, indicating that soluble proteins are responsible for these 
effects.  In related work, co-culture of human MSCs with rat neural stem cells revealed 
that MSCs promote differentiation into primarily astrocytes and oligodendrocytes 
(Robinson et al., 2011).  However MSC-conditioned media promoted primarily 
oligodendrocytic differentiation (Robinson et al., 2011), indicating that matrix components 
or direct cell-cell contact also account for the effects of MSCs on neural stem cell 
differentiation.  Indeed, Aizman et al. (2009) demonstrate that human MSC-derived ECM 
promotes differentiation of cortical cells into neurons, astrocytes and oligodendrocytes 
and also enhances neuronal neurite networks compared to single ECM proteins.  
Transplantation of MSCs augments endogenous regeneration following experimental 
ischemic stroke (Bao et al., 2011; Li et al., 2010; Li et al., 2002; Xin et al., 2010; Yoo et al., 
2008) and TBI (Mahmood et al., 2004; Xiong et al., 2009). For example, both Bao et al. (2011) 
and Yoo et al. (2008) show that intracerebral transplantation of human MSCs 3 days 
following experimental cerebral ischemia in rats increases proliferation and migration of 
host neural stem cells and also decreases their apoptosis, thus enhancing neurogenesis.  
They also report enhanced behavioral recovery, and Bao et al. demonstrate increases in 
BDNF, NT-3, and VEGF in the brains of MSC-treated rats, though they do not identify the 
source of these cytokines.  Xin et al. (2010) found that intravenous delivery of mouse 
MSCs 1 day following experimental stroke in mice lead to increases in axon fiber density, 
synaptogenesis and myelination.  Following experimental TBI in rats, transplanted rat 
MSCs promoted increased proliferation and neuronal differentiation in neurogenic zones 
along with improved motor and sensory recovery (Mahmood et al., 2004).  Xiong et al. 
(2009) also report that transplanting human MSCs intracerebrally 1 week post-TBI in rats 
leads to increased axonal fiber length and that the fiber length was directly proportional 
to performance on the behavior tasks.  Multiple trophic factors secreted by MSCs may 
contribute to enhancing neuroregeneration (see Table 4). 

The glial scar that forms following brain injury acutely acts to sequester the injury.  Cellular 
components of the glial scar include reactive astrocytes, which help buffer excess glutamate 
and secrete neurotrophic factors, and activated microglia/macrophages which clear out dead 
tissue and secrete neurotrophic factors.  However, extracellular components of the glial scar 
that persists adjacent to the injury site have been found to inhibit neurite extension (e.g., 
neurocan, Nogo protein), thus limiting regeneration (for review, see Properzi et al., 2003).  
Transplantation of MSCs helps overcome this glial scar limitation following experimental 
stroke (Li et al., 2010; Li et al., 2005; Pavlichenko et al., 2008; Shen et al., 2008) and TBI (Zanier et 
al., 2011).  Following ischemic stroke, rats treated with rat MSCs transplanted intravenously 
had decreased glial scar thickness at both the acute (3 and 6 days post-stroke; Pavlichenko et 
al., 2008) and chronic (4 months post-stroke; Li et al., 2005) phases.  Along with decreased glial 
scar thickness, these studies report decreased lesion volume, enhanced regeneration, and 
functional recovery for animals treated with MSCs.  Shen et al. (2008) show a decrease in 
neurocan (an inhibitory chondroitin sulphate proteoglycan) and enhanced axonal outgrowth 
in the injury penumbra when ischemic rats were treated with rat MSCs.  Zanier et al. (2011) 
transplanted human umbilical cord blood-derived MSCs MSCs into the traumatically injured 
mouse brain and observed a decrease in reactive astrocytes in the glial scar region along with 
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decreased lesion volume and functional recovery. Collectively, these data illustrate that 
exogenous MSCs promote neuroregeneration following brain injury by directly affecting 
neural stem/progenitor cells and neurons and/or by reducing inhibitory glial scar 
components.  

3.2.3 Angiogenesis 

Another important aspect of regeneration is angiogenesis, which is the formation of new 
blood vessels from existing vasculature.  In the adult, angiogenesis occurs after injury to 
help supply the damaged tissue with oxygen and nutrients.  The process includes basement 
membrane disruption, endothelial cell migration and proliferation, three-dimensional tube 
formation, maturation, and stabilization by vascular smooth muscle cells.  Each step is 
regulated by multiple cytokines and ECM molecules (for review, see Distler et al., 2003 or 
Fan & Yang 2007).  Studies show that MSC-conditioned medium enhances endothelial cell 
proliferation (Kaigler et al., 2003) and promotes angiogenesis in vitro and in vivo (Kinnaird et 

al., 2004).  Transplanting MSCs increases angiogenesis following experimental ischemic 
stroke (Omori et al., 2008; Onda et al., 2008; Pavlichenko et al., 2008) and TBI (Xiong et al., 
2009).  Potential pro-angiogenic factors secreted by MSCs are provided in Table 4.  Notably, 
there is overlap between factors that promote angiogenesis and 
neurogenesis/neuritogenesis (reviewed in Emanueli et al., 2003 and Lazarovici et al., 2006).  
A unique feature of brain vasculature is the existence of the blood-brain barrier (BBB), 
formed by astrocyte end-feet surrounding specialized capillary endothelial cells in order to 
tightly regulate brain homeostasis.  After injury, there is increased permeability of the BBB 
leading to edema (reviewed in Nag et al., 2011).  Part of the repair process includes restoring 
the BBB, and regeneration includes formation of the BBB for new vasculature.  Specific 
MSC-secreted factors such as ANG-1, FGF-2, and laminin may be involved in reforming the 
BBB following injury.  

3.3 Immunomodulation  

There is a potent immune response following ischemic and traumatic brain injury.  The 
innate immune response is a part of the normal wound healing process; however, 
persistent inflammation can become cytotoxic.  In addition to interacting with neural and 
vascular cells, MSCs communicate with immune cells and are now known to be 
immnosuppressive.  Examining the interactions of MSCs with immune cells in vitro 
reveals that MSCs suppress T cell proliferation and activation, inhibit B cell proliferation 
and IgG production, prevent dendritic cell differentiation and migration, and shift the 
cytokine secretion profile of dendritic cells, helper T cells, and natural killer cells towards 
anti-inflammatory (reviewed in Mezey et al., 2010 and Nauta & Fibbe, 2007).  
Interestingly, studies that separate the MSCs from the immune cells using semi-permeable 
membranes indicate that soluble factors are critical for these effects.  Candidate 
immunomodulatory factors secreted by MSCs include interleukin-6 (IL-6), transforming 
growth factor  (TGF),prostaglandin E2, hepatocyte growth factor (HGF), indoleamine 
2,3-dioxygenase (IDO), and monocyte colony stimulating factor  (M-CSF) (reviewed in 
Mezey et al., 2010 and Nauta & Fibbe, 2007).  Moreover, ECM proteins, such as 
fibronectin, also interact with immune cells (Mosesson, 1984; Nasu-Tada et al., 2005).  
Since shifting to a less inflammatory environment may facilitate neural repair and 
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regeneration, immunomodulation is another feasible therapeutic mechanism of action for 
transplanted MSCs.  Note that many immunomodulatory factors also have potential roles 
for directly promoting neural cell survival and regeneration (see Table 4).  Likewise, NGF, 
the prototypic neurotrophic factor, has been shown to be anti-inflammatory (Villoslada & 
Genain, 2004).  The interaction between angiogenesis and inflammation is also well-
documented (for review, see Jackson et al., 1997 or Noonan et al., 2008), which further 
underscores the complexity and interrelatedness of these recovery mechanisms.   

3.4 Challenges of identifying critical factors and mechanisms 

Cell transplantation is a dynamic treatment that can target multiple therapeutic 
mechanisms.  Advantages of transplanting cells compared to pharmaceutical treatments 
include the ability to 1) easily localize the treatment to the affected tissue, 2) supply a variety 
of trophic factors at physiologic concentrations, 3) persist long enough to alter the 
microenvironment of the injured brain tissue; and 4) interact with host cells.   The beneficial 
effects of transplanted MSCs have been corraborated in vitro and in vivo and some potential 
pathways have been identified as described above.  It is probable that a combination of 
multiple mechanisms of action synergistically contribute to improve functional recovery.  
While this ability to intervene along multiple pathways is desirable for a robust treatment, it 
makes identifying key mechanisms and factors challenging.  Clarifying critical mechanisms 
of action would allow for treatments to be optimized to best facilitate these roles.  
Furthermore, difficulty pinpointing key mechanisms is a hurdle for developing potency 
assays for the clinical use of MSCs.  Potency assays are critical for ranking and qualifying 
different cell lots on their ability to promote recovery.  Another complication for 
determining potency of cells ex vivo is that transplanted cells interact with the host cells via 
paracrine signaling and possibly direct cell-cell contact.  MSCs alter the secretion profile of 
host neural and immune cells, such as astrocytes and microglia (Gao et al., 2005; Xin et al., 
2010), which further acts to promote repair and regeneration.  Additionally, the secretion 
profile of MSCs is a function of the microenvironment and changes in the presence of 
injured brain tissue (Chen et al., 2002a, 2002b).  Thus, there is a complex and dynamic web of 
players involved in MSC-mediated effects.  Ideally, potency assays would be easily 
reproducible in vitro assays, however the interplay between donor cells and the host 
environment is difficult to model in vitro.  Elucidating critical aspects of this therapy will be 
the focus of intense research for years to come.  

4. Conclusion 

Stroke and TBI are major contributors to death and persistent disability, and treatments that 
effectively promote repair and regeneration are desired.  Cell transplantation is a promising 
treatment for brain injury, and MSCs are an attractive cell source due to their technical and 
safety advantages.  Pre-clinical in vivo data show that transplanting MSCs enhances 
neuroprotection, promotes regeneration and/or suppresses inflammation.  MSCs secrete 
numerous soluble and insoluble factors that are known to benefit the injured brain, which 
are likely crucial to the mechanisms of action governing MSC-mediated recovery.  MSCs aid 
injured brain tissue by targeting multiple, non-mutually exclusive pathways, which is an 
advantage for a potential treatment, but a challenge for elucidating critical mechanisms and 
factors. 
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