1. Introduction

The automatic modulation classification (AMC) problem aims at identifying the modulation scheme of a given communication system with a high probability of success and in a short period of time. AMC has been used for decades in military applications in which friendly signals should be securely transmitted and received, whereas hostile signals must be located, identified and jammed (Gardner, 1988). More recently, the interest for AMC has been renewed by the research on cognitive radios (Haring et al., 2010; Wang & Wang, 2010; Xu et al., 2011), where AMC plays an important role in spectrum sensing (Haykin et al., 2009).

The AMC approaches are typically organized in likelihood and feature-based methods (Dobre et al., 2007). Alternatively, the AMC methods are distinguished in this chapter by the corresponding learning algorithm: generative (also called informative) or discriminative (Rubinstein & Hastie, 1997). One advantage of this nomenclature is to benefit from the insights accumulated in the machine learning community with respect to the generative and discriminative approaches (Long & Servedio, 2006).

Generative algorithms perform the classification based on probabilistic models that are typically constructed by estimating probability distributions for each class separately. Examples are Naïve Bayes (Tan et al., 2006), hidden Markov models obtained with maximum likelihood estimation (Bremaud, 2010) and methods that uses likelihood ratio tests such as the average likelihood ratio test (ALRT) (Su et al., 2008), generalized likelihood ratio test (GLRT) (Xu et al., 2011) and the hybrid likelihood ratio test (HLRT) (Polydoros, 2000).

Discriminative algorithms are used to learn classifiers that focuses in class boundaries, not on modeling distributions. Examples include support vector machines (SVM) (Cortes & Vapnik, 1995) and neural networks (Krose & van der Smagt, 1996).

There are research of AMC (Dobre et al., 2007; Xu et al., 2011) and spectrum sensing (Haykin et al., 2009; Yucek & Arslan, 2009). Instead of providing an overview of alternatives, this chapter compares two AMC methods: one that uses the well-established features based on cyclostationary analysis (Gardner & Spooner, 1992; Haykin et al., 2009) and the recently proposed CSS (concatenated sorted symbols) front end (Muller et al., 2011). The idea is to contrast the characteristics of these methods and emphasize practical aspects. In the experiments, SVM is adopted as the learning algorithm given its performance in many classification tasks. Moreover, the implementation on a field-programmable gate array
(FPGA) of an AMC system using CSS and SVM is discussed and suggested the hardware requirements of an AMC module.

2. The modulation classification problem

An AMC system consists of a front end and a back end or classifier. The front end converts the received signal $r(t)$ to a vector $x[k], k = 1, \ldots, N$ composed of N elements. Having $x[k]$ as input, the classifier decides the class $y \in \{1, \ldots, C\}$ among C pre-determined modulation schemes. The process is depicted in the diagram below:

$$r(t) \xrightarrow{\text{signal}} \xrightarrow{\text{front end}} \xrightarrow{x[k] \text{ (parameters)}} \xrightarrow{\text{classifier}} \xrightarrow{y \text{ (class)}}$$

There are several options to implement the front end (Mishali & Eldar, 2011), but in order to be concrete, the following alternative will be assumed:

$$r(t) \rightarrow \text{FILT/DOWN} \rightarrow c(t) \rightarrow A/D \rightarrow c[n] \rightarrow \text{DSP} \rightarrow s[n] \rightarrow \text{parameter extraction} \rightarrow x[k]$$

where FILT/DOWN denotes operations such as filtering, down-conversion and signal conditioning, $c(t)$ is the input to the analog-to-digital (A/D) converter, $s[n]$ is obtained from $c[n]$ via digital signal processing (DSP) and the last block converts the time-domain signal $s[n]$ into the parameters of interest.

A classifier in a likelihood-based AMC (Su et al., 2008) assumes that $s[n]$ is a sequence of N received symbols (Proakis, 2001) and $x[k] = s[n]$. Hence, these classifiers are considered here to be a special case of feature-based classifiers. The adoption of symbols as features is restricted to the case where the modulation is digital and linear, such as QAM, PSK, etc. (Proakis, 2001). Hence, the likelihood-based AMC can be implemented as

$$r(t) \rightarrow \text{FILT/DOWN} \rightarrow c(t) \rightarrow A/D \rightarrow c[n] \rightarrow \text{DSP} \rightarrow x[k]$$

where $c[n]$ is the complex envelope (Proakis, 2001). In this case, the DSP block samples the complex envelope according to the signaling rate. This kind of model is widely adopted in the AMC literature (Mak et al., 2007).

In practice, several impairments must be mitigated to have $x[k]$ as a reasonable approximation of the transmitted symbols, such as lack of synchronism, carrier frequency offset and channel noise. The front end that perfectly recovers the transmitted symbols in a digital modulation is called here canonical. Several works assume such front end and then contaminate $x[k]$ by additive white Gaussian noise (AWGN) and other impairments. Alternatively, a front end based on cyclostationarity can extract features other than the symbols. This chapter focuses on the two distinct front ends for AMC and one classification technique, which are discussed in the sequel.

2.1 Front end: CSS

The CSS front end has been recently proposed by Muller et al. (2011) and uses the symbols of the constellations (Proakis, 2001) as input parameters for the classifier. The CSS front end takes the magnitude and the phase of the received symbols, normalizes them and sorts them.
separately. The two ordered vectors (magnitude and phase) are concatenated, generating a new vector with length $D = 2N$, which should reflect an individual signature of the corresponding constellation. Recall that N is the number of symbols.

For example, Fig. 1(a) and Fig. 1(b) represent the constellations of noise-free (ideal) 16QAM and 8PSK modulations, respectively. An example of two possible vectors of parameters representing a 16QAM and 8PSK modulations is also illustrated. There is no noise and both curves of received symbols, before and after ordering, are shown in Fig. 1(c) and Fig. 1(d). Each vector is composed of $D = 2N = 500$ features (corresponding to 250 magnitudes and 250 phases). It is observed that ordering creates a pattern that can be used to identify the type of modulation used in the generation of the received signal. For example, one can note from Fig. 1(d) that all first $N = 250$ normalized and ordered symbols corresponding to the magnitude of the 8PSK modulation are equal to one. For improved clarity, Fig. 2 summarizes the information in Fig. 1 by showing the comparison between the signatures of the 16QAM

![Modulation Classification in Cognitive Radio](https://www.intechopen.com)
and 8PSK modulations provided by the CSS front end. For obtaining Fig. 3 and Fig. 4, white Gaussian noise was added to achieve signals with SNR = 15 dB. It can be observed that the signatures are modified with respect to the ideal case and their differences are less visible. However, in Muller et al. (2011) it was shown that even with noise, it is possible to distinguish these two modulations when the SNR is large enough by using, for example, an SVM classifier.

The next subsection presents an alternative front end, which will be used for performance comparisons.

Fig. 2. Examples of vector of parameters with $D = 2N = 500$ for comparison between 16QAM and 8PSK under ideal conditions.

Fig. 3. 16QAM and 8PSK modulation, with SNR = 15 dB. (a) A constellation diagram for 16QAM. (b) A constellation diagram for 8PSK.
2.2 Front end: Cyclostationarity

Cyclostationary analysis has been increasingly considered for use in a large range of applications, including signal detection, classification, synchronization and equalization. In Gardner & Spooner (1992), a large number of advantages of cyclostationary analysis are identified when compared to radiometric approaches (which are based in the measured energy of the received signal). Among its advantages are the reduced sensibility to noise and interfering signals, and also its ability to extract signal parameters such as the carrier frequency and the symbol rate.

In spite of its robustness, it is well-known that the computational cost of a cyclostationary analysis is high. According to the work of Lin & He (2008), a discrete-time signal $x[n]$ is defined to be cyclostationary if its autocorrelation function is invariant in relation to time shifts to all integer m multiple of T_0, that is

$$R_x(n + mT_0, l) = R_x(l).$$

(1)

Two mathematical functions are used to characterize cyclostationary signals. The first is the cyclic autocorrelation function (CAF) (Castro, 2011), defined by

$$R_x^\alpha(l) = \lim_{N \to \infty} \frac{1}{2N + 1} \sum_{n=-N}^{N} \{x[n + l]e^{-j2\pi\alpha(n+1)}\} \{x[n]e^{-j2\pi\alpha n}\}^*$$

(2)

where R_x^α denotes the CAF for a discrete-time signal $x(n)$ and α is referred to as the cyclic frequency. When the signal $x(n)$ is cyclostationary, its CAF is nonzero at some time delay l and cyclic frequency $\alpha \neq 0$ (Wang et al., 2010).

Fig. 4. Examples of vector of parameters with $D = 2N = 500$ for comparison between 16QAM and 8PSK. SNR = 15 dB.
The second function, the spectral correlation density (SCD), or cyclic spectral density, is calculated from the Fourier transform of the CAF:

\[S^\alpha_x(k) = \sum_{l=-\infty}^{\infty} R^\alpha_x(l)e^{-j2\pi kl}, \]

where \(k \) is the frequency. When \(\alpha = 0 \), the CAF and SCD represent the autocorrelation and power spectral density functions, respectively.

2.2.1 Estimation of the SCD

When the AMC is based on cyclostationary features, estimating the SCD is fundamental to extract features that should distinguish modulated signals. Two algorithms to estimate the SCD were proposed in Schnur (2009): FFT Accumulation Method (FAM) and Strip Spectral Correlation Algorithm (SSCA). The FAM algorithm is considered to be more computationally efficient than the SSCA and is adopted in the sequel.

Assuming discrete-time processing, the FAM algorithm calculates

\[S^\alpha_x(k) \approx S^\alpha_x(n,k) = \frac{1}{N} \sum_{n=0}^{N-1} \left[\frac{1}{N'} X_{N'}^n(n,k+\frac{\alpha}{2})X_{N'}^n(n,k-\frac{\alpha}{2}) \right] \]

where \(N \) is the number of time samples within the range of observation of the signal, \(k \) and \(\alpha \) are the frequency and cyclic frequency, respectively. The parcels \(X_{N'}^n(n,k+\frac{\alpha}{2}) \) represent the complex envelope of the spectral component of \(x[n] \) and can be computed in the following way:

\[X_{N'}^n(n,k) = \sum_{r=-N'/2}^{N'/2} a[r]x[n-r]e^{-j2\pi k(n-r)T_s}, \]

where \(a[r] \) is the data taper window (for instance Hamming window) and \(T_s \) is sampling period. In this method, the complex envelopes are estimated by means of sliding \(N' \) FFT points, followed by a downshift in frequency to baseband. For improved clarity, Fig. 5 represents the diagram implementation of this method. Fig. 5 pictorially represents the steps for estimating the SCD, which are:

- The input sample sequence \(x[n] \) of length \(N \) is divided into \(P \) blocks, where each block containing \(N' \) samples, and \(L \) is the overlap factor;
- A Hamming window is applied across each block;
- The FFT of each block is computed;
- The complex envelopes \(X_{N'}^n(n,k) \) are downshift in frequency to baseband;
- The SCD function is estimated by multiplying \(X_{N'}^n(n,k) \) by its complex conjugate;
- The smoothing operation of the product sequences is executed by means of \(P \)-points FFT.

The value of \(L \) is configured to be equal to \(N'/4 \), because this value is a good trade off between computational efficiency and minimizing cycle leakage and cycle aliasing. The value of \(N' \) is
The value of P is determined according to the desired cyclic frequency resolution $\Delta \alpha$, and is given by:

$$P = \frac{f_s}{L \Delta \alpha}.$$ \hspace{1cm} (7)

To perform AMC by means of cyclostationarity features it is typical to normalize the SCD. This normalization can be obtained by:

$$C_{x}^{\alpha}(k) = \frac{S_{x}^{k}(k)}{[S_{x}^{0}(k+\alpha/2)S_{x}^{0}(k-\alpha/2)]^{1/2}},$$ \hspace{1cm} (8)

where $C_{x}^{\alpha}(k)$ is the spectral autocoherece function.

Fig. 6 shows the estimation of the SCD for BPSK and QPSK modulations respectively. This example adopted a sampling frequency $f_s = 8192$ Hz, carrier frequency $K = 2048$ Hz, cyclic frequency resolution $\Delta \alpha = 20$ Hz and frequency resolution $\Delta k = 80$ Hz. It can be noticed that the SCD is three-dimensional. The features that will distinguish each modulation, that is, the cyclic domain profile (CDP), is obtained from the SCD. The CDP $I(\alpha)$ uses only the peak values in the SCD and is obtained by

$$I(\alpha) = \max_k |C_{x}^{\alpha}(k)|.$$ \hspace{1cm} (9)

The CDP for the BPSK and QPSK modulations of Fig. 6 are shown in Fig. 7.
Fig. 6. Spectral Cyclic Density. (a) BPSK. (b) QPSK

Fig. 7. Cyclic Profile. (a) BPSK. (b) QPSK

2.3 Back end: SVM classifier

Support vector machine (SVM) is a class of learning algorithms based on the statistical learning theory, which implements the principle of the structural risk minimization (Vapnik, 1998). A basic idea of SVM is to map the input space into a feature space. This mapping can be done linearly or not, according to the kernel function used for the mapping. In the literature, various possibilities for SVM kernels are presented in applications involving pattern recognition such as: linear kernel, polynomial kernel, gaussian kernel and radial basis network (Burges, 1998).

In the feature space, an SVM builds a maximum margin hyperplane \mathbf{w} to separate classes while minimizing the classification error. The hyperplane can be written as a combination of few points (training examples) in the feature space, called the support vectors of the optimal hyperplane.
Maximum margin is defined as the shortest distance that separates the training examples of different classes in relation to the hyperplane, as seen in Fig. 8. The distance of any point x_i to the hyperplane is given by Equation 10, where $||w||$ is the norm of the vector.

$$d = \frac{\langle w, x \rangle + b}{||w||}$$ \hspace{1cm} (10)

An SVM is a binary classifier given by

$$f(x) = \sum_{m=1}^{M} \gamma_m K(x, x_m) + c,$$ \hspace{1cm} (11)

where $K(x, x_m)$ is the kernel function between the test vector x and the m-th training example x_m, with $c, \gamma_m \in \mathbb{R}$. The effectively used examples have $\gamma_m \neq 0$ and are called support vectors. The number $V \leq M$ of support vectors can be large and impact the computational cost. An SVM with a linear kernel $K(x, x_m) = \langle x, x_m \rangle$ given by the inner product between x and x_m, can be converted to a perceptron $f(x) = \langle a, x \rangle + c$, where $a = \sum_{m=1}^{M} \gamma_m x_m$ is pre-computed.

Therefore, linear SVMs were adopted in this chapter due to their lower computational cost when compared to non-linear SVMs with kernels such as the Gaussian (Cristianini & Shawe-Taylor, 2000). To combine the binary SVMs $f_b(x), b = 1, \ldots, B$, to obtain $F(x)$ this work adopted the all-pairs error-correcting output code (ECOC) matrix with Hamming decoding (Allwein et al., 2000), where the winner class is the one with the majority of “votes”. Note that an alternative to all-pairs, which uses $B = 0.5 C (C - 1)$ SVMs, is the one-vs-all ECOC that uses $B = C$ SVMs (Klautau et al., 2003).

3. Results

3.1 Simulation results

Simulations were performed to compare the performance of the CSS and cyclostationarity front ends to classify the modulations BPSK, 4-PAM, 16-QAM and 8-PSK in channels with
additive white Gaussian noise (AWGN). For these simulations, linear SVM classifiers were trained using several integer SNR values in the range [-5, 15] dB. The training and test sets used in all simulations were made disjoint and each had 500 examples. All the constellations were normalized to have unitary energy. For the CSS front end, \(N = 250 \) symbols were used per training / test instance. For the cyclostationarity front end, all signals were generated with sampling frequency \(f_s = 8192 \) Hz, carrier frequency \(K = 2048 \) Hz, cyclic frequency resolution \(\Delta \alpha = 20 \) Hz and frequency resolution \(\Delta k = 80 \) Hz.

The results are shown in Fig. 9. Note that the approach based on the CSS front end considers that the received signal was properly demodulated, whereas the cyclostationarity front end does not require demodulation and, consequently, demand less knowledge about the input signal. In fact, the cyclostationary analysis itself can be used to estimate important parameters for the demodulation task, such as the carrier frequency and symbol rate. Because of these aspects, a complete AMC may use more than one complementary front ends. It is observed

![Fig. 9. Probability of correct classification of the cyclostationarity and CSS front ends.](image)

from Fig. 9 that for the adopted AMC problem, the CSS outperformed the cyclostationarity front end. This is due to the difficulty of correctly separating cyclostationarity pair of modulations [BPSK, 4PAM] and [16QAM, 8PSK]. For both pairs, the cyclical characteristics are similar, as shown by the confusion matrix in Table 1 and discussed in A. Fehske (2005). For SNR = \(-1\) dB, the performance of both techniques is similar. The confusion matrix shown in Table 2 and Table 3 illustrate that both front ends do not distinguish the same pairs of modulations. For SNR values larger than \(-1\) dB, the CSS presents better results than the cyclostationarity. Although the cyclostationarity front end has not presented good results for the set of adopted modulations (BPSK, 4PAM, 8PSK and 16QAM), it is capable of producing good results for others (A. Fehske, 2005; da Silva et al., 2007; Haykin et al., 2009). Also, the CSS is restricted to linear digital modulations while the cyclostationarity is not. In spite of
Table 1. Confusion matrix for cyclostationarity. SNR = 15 dB

<table>
<thead>
<tr>
<th>classified as</th>
<th>BPSK</th>
<th>4PAM</th>
<th>16QAM</th>
<th>8PSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPSK</td>
<td>291</td>
<td>209</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4PAM</td>
<td>157</td>
<td>344</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16QAM</td>
<td>0</td>
<td>1</td>
<td>331</td>
<td>168</td>
</tr>
<tr>
<td>8PSK</td>
<td>0</td>
<td>0</td>
<td>164</td>
<td>336</td>
</tr>
</tbody>
</table>

Table 2. Confusion matrix for cyclostationarity. SNR = −1 dB

<table>
<thead>
<tr>
<th>classified as</th>
<th>BPSK</th>
<th>4PAM</th>
<th>16QAM</th>
<th>8PSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPSK</td>
<td>391</td>
<td>109</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4PAM</td>
<td>219</td>
<td>279</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>16QAM</td>
<td>6</td>
<td>1</td>
<td>275</td>
<td>218</td>
</tr>
<tr>
<td>8PSK</td>
<td>5</td>
<td>0</td>
<td>144</td>
<td>351</td>
</tr>
</tbody>
</table>

Table 3. Confusion matrix for CSS. SNR = −1 dB

<table>
<thead>
<tr>
<th>classified as</th>
<th>BPSK</th>
<th>4PAM</th>
<th>16QAM</th>
<th>8PSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPSK</td>
<td>436</td>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4PAM</td>
<td>204</td>
<td>295</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16QAM</td>
<td>0</td>
<td>0</td>
<td>316</td>
<td>184</td>
</tr>
<tr>
<td>8PSK</td>
<td>0</td>
<td>0</td>
<td>274</td>
<td>226</td>
</tr>
</tbody>
</table>

3.2 Implementation results

Most of the AMC research is based on computer simulations and does not target the hardware implementation. In addition, there are few commercial devices aimed at detecting empty channels or classify modulations. But the available equipment is proprietary, directed generally to the military. Thus, there is great interest in academia and also in the industry to implement and test algorithms for AMC and spectrum sensing (Mishali & Eldar, 2011) to be easily embedded in devices such as FPGA or DSP (digital signal processor).

The next subsection describes the implementation of a CSS-SVM classifier for AMC starting by the classifier.

3.2.1 Architecture of the programmable SVM classifier

For the implementation of an SVM classifier in FPGA using the all-pairs ECOC, an architecture was designed in which the test instance (input parameters $x[k]$) is continuously classified and the coefficients of the SVMs can be changed on-the-fly. This is a programmable architecture proposed for multiclass classification, using binary classifiers. The training of the classifiers is performed offline.

Equation 12 represents the function for the decision problem between two classes used by the binary SVM. Where w and b are the coefficients of the classifier and x is the vector test. The sign of $f(x)$ indicates the result of the classifier, with $f(x) = 0$ the decision threshold between
the two classes for which the classifier was trained.

\[f(x) = \sum_{i=1}^{n} w_i x_i + b. \]

To combine binary SVMs it was used matrix all-pairs ECOC with decoding Hamming, where the winner class was chosen by having most of the “votes”. In other words, each one of binary SVM is trained to distinguish a pair of classes and, in the test phase, the chosen class was the one that had the largest number of binary SVMs, indicating the winner (Muller et al., 2011).

Fig. 10 shows the process of programming the FPGA with the SVM coefficients and reading the input test data. The structure uses a demultiplex followed by groups of shift registers. The value of the input \(i \) is stored in a shift register, and several registers are disposed in sequential arrangements with the information moved by the circuit until all the registers are updated. In Fig. 10, \(n \) is the number of features of the test data. Considering \(y \) classes, recall that the number \(B \) of binary classifiers for the all-pairs ECOC is \(B = \frac{y(y-1)}{2} \). The registers \(w \) and \(b \) store the coefficients of the classifiers and \(x \) stores the data for testing. After updating the coefficients, the test values are stored and classification can be started. If necessary to update the SVM coefficients, the flow of test data will be suspended for the time necessary. In these cases, the input \(i \) will be directed to the corresponding SVM register set and not to the registers that store the test data.

The proposed SVM architecture uses four steps, which are depicted in Fig. 11. The implementation uses a state machine and can be understood as:

- **The first step** makes the multiplication of elements of the vectors \(w \) and \(x \) shown in Equation 12 and stores the results in other sets with the same number of registers. However, to be able to store the multiplication results without roundoff errors, the registers that receive the results have twice the number of bits of the registers that store the vectors \(w \) and \(x \). For each SVM classifier, a new set of registers is necessary to receive the results of multiplications.

- **The second step** performs, for each classifier, the sum of all values from the first step, added to the coefficient \(b \) (the “\(y \)-intercept” of a linear SVM).
The third step checks the result of each classifier. As binary classifiers, the result of a classifier can be considered as a vote given to the one of the classes for which it was trained. At the end of the third step, we have totaled the number of votes for each of the classes.

The fourth step verifies the class that received the largest number of votes counted in the third step. The result of this step is the output of the classification.

It is important to note that this architecture is tailored to implementation in a FPGA, where it is possible to describe hardware that performs various operations on each clock cycle (clock). In this case, each of the steps to perform the calculation of the SVM should occur in one clock period. In the first step, for example, in a single clock cycle, all the multiplications needed to compute the inner product between the test vector and the coefficients of binary classifiers are performed. The disadvantage of this architecture is the large amount of FPGA resources used, which make this approach feasible only when the number of coefficients is small. This is because the architecture, as described, uses only registers and logic elements to execute several multiplications in one clock period. A better use of the FPGA resources is obtained by using its RAM memory, as will be described together with the implementation of the CSS.

3.2.2 Architecture of the CSS-SVM modulation classifier

The front end CSS proposed by Muller et al. (2011) uses the symbols represented by magnitude and phase. For a set of received symbols, an ordered vector with the magnitude is concatenated with a vector with ordered phases, generating a third vector \(x \) with twice the number of samples.

For implementing the CSS front end in a FPGA, the VHDL language (IEEE Standard VHDL Language Reference Manual, 2009) was adopted within the Altera Quartus II development platform (Altera, 2011). In order to explain the proposed architecture, first a high-level
A description will be provided, which treats the CSS-SVM as a processing block. Emphasis is placed on its inputs (symbols for being classified and SVM coefficients) and output (the classification result). Fig. 12 depicts the implemented block. The symbols can be entered in the same sequence they are received. The implementation assumes that demodulation has been performed and the CSS implementation corresponds to ordering the magnitudes and phases of the symbols. This ordering and the SVM-based classification are performed by the cited block. The signals in Fig. 12 have the following role:

Fig. 12. Representation of the implemented CSS-SVM block with its inputs and outputs signals.

- **clk** represents the clock and is the base time system.
- **ckd** indicates the arrival of a new sample for classification or a new coefficient for the classifiers.
- **i1** and **i2** are the inputs that can be used both for input symbols that will be classified and for the SVM coefficients. The symbols or coefficients values should reach the block with a rate defined by the signal **ckd**. In this implementation, the rising clock edge is used to update the signals **i1** and **i2**. For these signals it was used the two’s complement notation, with 16 bits for magnitude and 16 bits for phase for each of symbols that will be classified.
- **dok** indicates that a whole set of **N** test symbols has been informed and a new classification can begin.
- **Ctrl** is a control signal used with the inputs **i1** and **i2** that can be used to provide the symbols or the SVM coefficients. Obviously, all the SVM coefficients should be informed before symbols are received. When zero is the value given in **Ctrl**, **i1** and **i2** must contain, respectively, the magnitude and phase of a new symbol. For other values, it is understood that the value given in **i1** is a coefficient. In this case, the value of **Ctrl** tells to which classifier the coefficient corresponds and **i2** the position of the coefficient.

As explained, mapping all the processing into registers, logic elements and multipliers consume too many resources of the FPGA, because all values of samples and coefficients need to be available for accomplishing many multiplication operations in a single clock cycle. Another way to implement the CSS-SVM classifier is to direct all coefficients and symbols to be stored in RAM, which are available in FPGAs such as Altera’s Cyclone II.

In this improved architecture, the SVM coefficients are separated into different blocks in the FPGA memory. The disadvantage is that only one position of each memory block can be accessed in a clock cycle and, consequently, a greater number of clock cycles is required for
performing a classification. In the architecture described in Section 3.2.1, the rate of symbols input could be the same as the clock, but in the improved architecture, the clock rate must be higher than the rate of input symbols. For \(N = 250\), the clock rate should be approximately 130 times the symbol rate and for \(clk = 50\) MHz (1/\(clk = 20\) ns) took 627.62 us to perform the classification of a set of symbols.

Fig. 13 represents the different memory blocks used in the classifier. The upper lines (\(w\)) represent the memory blocks for the SVM coefficients and they have \(D+2\) positions due to the fact that storing the coefficient \(b\) consumes twice the number of bits used by the other coefficients. The explanation is that, during the simulations, the coefficients \(b\) were an order of magnitude larger than the other coefficients. Therefore, they are represented using two memory positions. The lower (smaller) blocks represent the memory space to store the symbols to be classified and that will compose the vector (\(x\)). As the FPGA design allows accessing memory blocks one element at a time, the set of test symbols are stored in two separate memory blocks: one for the magnitude and another block for the phase.

For supporting a steady stream of symbols, there are two sets with two memory blocks each. The classification process works on a set of previously received symbols while new symbols are received and stored. The signal \(dok\) indicates that a new classification should start. A sorting algorithm is used to sort the values of magnitude and phase before being classified through the SVM classifier. During this process, new symbols received are directed to another memory block.

The signal \(dok\) indicates that a new classification should start. A sorting algorithm is used to sort the values of magnitude and phase before being classified through the SVM classifier. During this process, new symbols received are directed to another memory block.

After sorting, the multiplication of vectors (inner product between) \(w\) and \(x\) is performed according to Equation 12, for each classifier. This stage requires \(D\) clock cycles because each
cycle is used to perform the multiplication of a value of vector \(x \) with a coefficient of each classifier, which means that each cycle makes \(B \) multiplications. There are \(B \) registers with the SVM output values \(f(x) \), one for each SVM classifier. The next step is to count the votes of the classifiers. Finally, the result of the CSS-SVM classifier is the modulation that received the majority of votes.

Table 4 shows the used resources of an Altera Cyclone II FPGA model EP2C20F484C7 to program a CSS-SVM classifier, assuming \(N = 250 \) symbols for classification.

<table>
<thead>
<tr>
<th>Resources</th>
<th>QTY</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated total logic elements</td>
<td>1,824</td>
<td>10%</td>
</tr>
<tr>
<td>Total combinational functions</td>
<td>1,586</td>
<td>8%</td>
</tr>
<tr>
<td>Dedicated logic registers</td>
<td>704</td>
<td>4%</td>
</tr>
<tr>
<td>Total memory bits (RAM)</td>
<td>64,000</td>
<td>27%</td>
</tr>
<tr>
<td>Embedded multiplier 9-bit elements</td>
<td>24</td>
<td>46%</td>
</tr>
</tbody>
</table>

Table 4. Used resources of an Altera Cyclone II FPGA model EP2C20F484C7 to implement the CSS-SVM classifier.

It is observed that the proposed architecture is relatively efficient with respect to the use of FPGA resources. It uses memory and multipliers available in the FPGA, which releases registers and logic elements to other algorithms such as demodulation and functions other than AMC. If this is not the case, the first architecture can be adopted.

4. Conclusions

This chapter discussed the AMC task in cognitive radio. Two front end techniques were contrasted: CSS and cyclostationarity. The adoption of SVMs as the base classifiers for AMC systems is showed and experimental results were presented.

The results shown in this chapter were obtained for classification of the BPSK, 4PAM, 8PSK and 16QAM modulations. The CSS front end combined with the linear kernel SVM classifier achieved good results for the set of modulations adopted, and proved to be feasible for implementation in a FPGA, processed in real time. In addition, a synthesizable CSS-SVM architecture was proposed, which presented satisfactory results for AMC with a relatively efficient use of the available FPGA resources.

5. References

Castro, M. E. (2011). *Cyclostationary detection for ofdm in cognitive radio systems*, Master’s thesis, Faculty of The Graduate College at the University of Nebraska.

The fast user growth in wireless communications has created significant demands for new wireless services in both the licensed and unlicensed frequency spectra. Since many spectra are not fully utilized most of the time, cognitive radio, as a form of spectrum reuse, can be an effective means to significantly boost communications resources. Since its introduction in late last century, cognitive radio has attracted wide attention from academics to industry. Despite the efforts from the research community, there are still many issues of applying it in practice. This book is an attempt to cover some of the open issues across the area and introduce some insight to many of the problems. It contains thirteen chapters written by experts across the globe covering topics including spectrum sensing fundamental, cooperative sensing, spectrum management, and interaction among users.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following: