
1. Introduction

The automatic modulation classification (AMC) problem aims at identifying the modulation
scheme of a given communication system with a high probability of success and in a short
period of time. AMC has been used for decades in military applications in which friendly
signals should be securely transmitted and received, whereas hostile signals must be located,
identified and jammed (Gardner, 1988). More recently, the interest for AMC has been renewed
by the research on cognitive radios (Haring et al., 2010; Wang & Wang, 2010; Xu et al., 2011),
where AMC plays an important role in spectrum sensing (Haykin et al., 2009).

The AMC approaches are typically organized in likelihood and feature-based methods (Dobre
et al., 2007). Alternatively, the AMC methods are distinguished in this chapter
by the corresponding learning algorithm: generative (also called informative) or
discriminative (Rubinstein & Hastie, 1997). One advantage of this nomenclature is to
benefit from the insights accumulated in the machine learning community with respect to the
generative and discriminative approaches (Long & Servedio, 2006).

Generative algorithms perform the classification based on probabilistic models that are
typically constructed by estimating probability distributions for each class separately.
Examples are Naïve Bayes (Tan et al., 2006), hidden Markov models obtained with maximum
likelihood estimation (Bremaud, 2010) and methods that uses likelihood ratio tests such as
the average likelihood ratio test (ALRT) (Su et al., 2008), generalized likelihood ratio test
(GLRT) (Xu et al., 2011) and the hybrid likelihood ratio test (HLRT) (Polydoros, 2000).

Discriminative algorithms are used to learn classifiers that focuses in class boundaries, not on
modeling distributions. Examples include support vector machines (SVM) (Cortes & Vapnik,
1995) and neural networks (Krose & van der Smagt, 1996).

There are research of AMC (Dobre et al., 2007; Xu et al., 2011) and spectrum sensing (Haykin
et al., 2009; Yucek & Arslan, 2009). Instead of providing an overview of alternatives, this
chapter compares two AMC methods: one that uses the well-established features based on
cyclostationary analysis (Gardner & Spooner, 1992; Haykin et al., 2009) and the recently
proposed CSS (concatenated sorted symbols) front end (Muller et al., 2011). The idea is
to contrast the characteristics of these methods and emphasize practical aspects. In the
experiments, SVM is adopted as the learning algorithm given its performance in many
classification tasks. Moreover, the implementation on a field-programmable gate array

  

Modulation Classification in Cognitive Radio 

Adalbery R. Castro, Lilian C. Freitas, Claudomir C. Cardoso,  
João C. W. A. Costa and Aldebaro B. R. Klautau 

Signal Processing Laboratory (LaPS) and Applied Electromagnetism Laboratory (LEA) –
Federal University of Pará (UFPA), Belém – PA  

Brazil 

3

www.intechopen.com



2 Cognitive Radio Systems

(FPGA) of an AMC system using CSS and SVM is discussed and suggested the hardware
requirements of an AMC module.

2. The modulation classification problem

An AMC system consists of a front end and a back end or classifier. The front end converts
the received signal r(t) to a vector x[k], k = 1, . . . , N composed of N elements. Having x[k]
as input, the classifier decides the class y ∈ {1, . . . , C} among C pre-determined modulation
schemes. The process is depicted in the diagram below:

r(t) (signal)→ front end →x[k] (parameters)→ classifier →y (class)

There are several options to implement the front end (Mishali & Eldar, 2011), but in order to
be concrete, the following alternative will be assumed:

r(t)→ FILT/DOWN →c(t)→ A/D →c[n]→ DSP →s[n]→ parameter extraction →x[k]

where FILT/DOWN denotes operations such as filtering, down-conversion and signal
conditioning, c(t) is the input to the analog-to-digital (A/D) converter, s[n] is obtained from
c[n] via digital signal processing (DSP) and the last block converts the time-domain signal s[n]
into the parameters of interest.

A classifier in a likelihood-based AMC (Su et al., 2008) assumes that s[n] is a sequence of N
received symbols (Proakis, 2001) and x[k] = s[n]. Hence, these classifiers are considered here to
be a special case of feature-based classifiers. The adoption of symbols as features is restricted
to the case where the modulation is digital and linear, such as QAM, PSK, etc. (Proakis, 2001).
Hence, the likelihood-based AMC can be implemented as

r(t)→ FILT/DOWN →c(t)→ A/D →c[n]→ DSP →x[k],

where c[n] is the complex envelope (Proakis, 2001). In this case, the DSP block samples the
complex envelope according to the signaling rate. This kind of model is widely adopted in
the AMC literature (Mak et al., 2007).

In practice, several impairments must be mitigated to have x[k] as a reasonable approximation
of the transmitted symbols, such as lack of synchronism, carrier frequency offset and channel
noise. The front end that perfectly recovers the transmitted symbols in a digital modulation
is called here canonical. Several works assume such front end and then contaminate x[k] by
additive white Gaussian noise (AWGN) and other impairments. Alternatively, a front end
based on cyclostationarity can extract features other than the symbols. This chapter focuses
on the two distinct front ends for AMC and one classification technique, which are discussed
in the sequel.

2.1 Front end: CSS

The CSS front end has been recently proposed by Muller et al. (2011) and uses the symbols
of the constellations (Proakis, 2001) as input parameters for the classifier. The CSS front end
takes the magnitude and the phase of the received symbols, normalizes them and sorts them
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separately. The two ordered vectors (magnitude and phase) are concatenated, generating
a new vector with length D = 2N, which should reflect an individual signature of the
corresponding constellation. Recall that N is the number of symbols.

For example, Fig. 1(a) and Fig. 1(b) represent the constellations of noise-free (ideal) 16QAM
and 8PSK modulations, respectively. An example of two possible vectors of parameters
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Fig. 1. Examples of vector of parameters with D = 2N = 500 for a 16QAM and 8PSK
modulation, without noise. (a) A constellation diagram for 16QAM. (b) A constellation
diagram for 8PSK. (c) Samples sorted and not sorted for 16QAM. (d) Samples sorted and not
sorted for 8PSK.

representing a 16QAM and 8PSK modulations is also illustrated. There is no noise and both
curves of received symbols, before and after ordering, are shown in Fig. 1(c) and Fig. 1(d).
Each vector is composed of D = 2N = 500 features (corresponding to 250 magnitudes and
250 phases). It is observed that ordering creates a pattern that can be used to identify the
type of modulation used in the generation of the received signal. For example, one can note
from Fig. 1(d) that all first N = 250 normalized and ordered symbols corresponding to the
magnitude of the 8PSK modulation are equal to one. For improved clarity, Fig. 2 summarizes
the information in Fig. 1 by showing the comparison between the signatures of the 16QAM
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4 Cognitive Radio Systems

and 8PSK modulations provided by the CSS front end. For obtaining Fig. 3 and Fig. 4, white
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Fig. 2. Examples of vector of parameters with D = 2N = 500 for comparison between
16QAM and 8PSK under ideal conditions.

Gaussian noise was added to achieve signals with SNR = 15 dB. It can be observed that the
signatures are modified with respect to the ideal case and their differences are less visible.
However, in Muller et al. (2011) it was shown that even with noise, it is possible to distinguish
these two modulations when the SNR is large enough by using, for example, an SVM classifier.

The next subsection presents an alternative front end, which will be used for performance
comparisons.
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Fig. 3. 16QAM and 8PSK modulation, with SNR = 15 dB. (a) A constellation diagram for
16QAM. (b) A constellation diagram for 8PSK.
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Fig. 4. Examples of vector of parameters with D = 2N = 500 for comparison between
16QAM and 8PSK. SNR = 15 dB.

2.2 Front end: Cyclostationarity

Cyclostationary analysis has been increasingly considered for use in a large range of
applications, including signal detection, classification, synchronization and equalization.
In Gardner & Spooner (1992), a large number of advantages of cyclostationary analysis are
identified when compared to radiometric approaches (which are based in the measured
energy of the received signal). Among its advantages are the reduced sensibility to noise
and interfering signals, and also its ability to extract signal parameters such as the carrier
frequency and the symbol rate.

In spite of its robustness, it is well-known that the computational cost of a cyclostationary
analysis is high. According to the work of Lin & He (2008), a discrete-time signal x[n] is
defined to be cyclostationary if its autocorrelation function is invariant in relation to time
shifts to all integer m multiple of To, that is

Rx(n + mT0, l) = Rx(l). (1)

Two mathematical functions are used to characterize cyclostationary signals. The first is the
cyclic autocorrelation function (CAF) (Castro, 2011), defined by

Rα
x(l) = lim

N→∞

1

2N + 1

N

∑
n=−N

{x[n + l]e−j2πα(n+l)}{x[n]e−j2παn}∗ (2)

where Rα
x denotes the CAF for a discrete-time signal x(n) and α is referred to as the cyclic

frequency. When the signal x(n) is cyclostationary, its CAF is nonzero at some time delay l
and cyclic frequency α �= 0 (Wang et al., 2010).
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6 Cognitive Radio Systems

The second function, the spectral correlation density (SCD), or cyclic spectral density, is
calculated from the Fourier transform of the CAF:

Sα
x(k) =

∞

∑
l=−∞

Rα
x(l)e

−j2πkl, (3)

where k is the frequency. When α = 0, the CAF and SCD represent the autocorrelation and
power spectral density functions, respectively.

2.2.1 Estimation of the SCD

When the AMC is based on cyclostationary features, estimating the SCD is fundamental to
extract features that should distinguish modulated signals. Two algorithms to estimate the
SCD were proposed in Schnur (2009): FFT Accumulation Method (FAM) and Strip Spectral
Correlation Algorithm (SSCA). The FAM algorithm is considered to be more computationally
efficient than the SSCA and is adopted in the sequel.

Assuming discrete-time processing, the FAM algorithm calculates

Sα
x(k) ≈ Sα

x(n, k) =
1

N

N−1

∑
n=0

[

1

N
′ XN ′ (n, k +

α

2
)X∗

N ′ (n, k −
α

2
)

]

(4)

where N is the number of time samples within the range of observation of the signal, k and α

are the frequency and cyclic frequency, respectively. The parcels XN ′ (n, k ± α

2 ) represent the
complex envelope of the spectral component of x[n and can be computed in the following
way:

XN ′ (n, k) =
N ′/2

∑
r=−N ′/2

a[r]x[n − r]e−j2πk(n−r)Ts, (5)

where a[r] is the data taper window (for instance Hamming window) and Ts is sampling
period. In this method, the complex envelopes are estimated by means of sliding N′ FFT
points, followed by a downshift in frequency to baseband. For improved clarity, Fig. 5
represents the diagram implementation of this method. Fig. 5 pictorially represents the steps
for estimating the SCD, which are:

• The input sample sequence x[n] of length N is divided into P blocks, where each block
containing N′ samples, and L is the overlap factor;

• A Hamming window is applied across each block;

• The FFT of each block is computed;

• The complex envelopes XN ′ (n, k) are downshift in frequency to baseband;

• The SCD function is estimated by multiplying XN ′ (n, k) by its complex conjugate;

• The smoothing operation of the product sequences is executed by means of P-points FFT.

The value of L is configured to be equal to N′/4, because this value is a good trade off between
computational efficiency and minimizing cycle leakage and cycle aliasing. The value of N′ is
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Modulation Classification in Cognitive Radio 7

Fig. 5. Implementation of the method FAM.

computed according to the desired resolution ∆k, and is defined by:

N′ =
fs

∆k
. (6)

The value of P is determined according to the desired cyclic frequency resolution ∆α, and is
given by:

P =
fs

L∆α
. (7)

To perform AMC by means of cyclostationarity features it is typical to normalize the SCD.
This normalization can be obtained by:

Cα
x(k) =

Sα
x(k)

[S0
x(k + α/2)S0

x(k − α/2)]1/2
, (8)

where Cα
x(k) is the spectral autocoherence function.

Fig. 6 shows the estimation of the SCD for BPSK and QPSK modulations respectively. This
example adopted a sampling frequency fs = 8192 Hz, carrier frequency K = 2048 Hz, cyclic
frequency resolution ∆α = 20 Hz and frequency resolution ∆k = 80 Hz. It can be noticed
that the SCD is three-dimensional. The features that will distinguish each modulation, that is,
the cyclic domain profile (CDP), is obtained from the SCD. The CDP I(α) uses only the peak
values in the SCD and is obtained by

I(α) = max
k

|Cα
x(k)|. (9)

The CDP for the BPSK and QPSK modulations of Fig. 6 are shown in Fig. 7.
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8 Cognitive Radio Systems

(a) (b)

Fig. 6. Spetral Cyclic Density. (a) BPSK. (b) QPSK
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Fig. 7. Cyclic Perfil. (a) BPSK. (b) QPSK

2.3 Back end: SVM classifier

Support vector machine (SVM) is a class of learning algorithms based on the statistical
learning theory, which implements the principle of the structural risk minimization (Vapnik,
1998). A basic idea of SVM is to map the input space into a feature space. This mapping
can be done linearly or not, according to the kernel function used for the mapping. In
the literature, various possibilities for SVM kernels are presented in applications involving
pattern recognition such as: linear kernel, polynomial kernel, gaussian kernel and radial basis
network (Burges, 1998).

In the feature space, an SVM builds a maximum margin hyperplane w to separate classes
while minimizing the classification error. The hyperplane can be written as a combination
of few points (training examples) in the feature space, called the support vectors of the optimal
hyperplane.
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Maximum margin is defined as the shortest distance that separates the training examples of
different classes in relation to the hyperplane, as seen in Fig. 8. The distance of any point xi to
the hyperplane is given by Equation 10, where ||w|| is the norm of the vector.

d = 〈w,x〉+b
||w||

(10)

An SVM is a binary classifier given by

Fig. 8. Examples of the margin and support vectors.

f (x) =
M

∑
m=1

γmK(x, xm) + c, (11)

where K(x, xm) is the kernel function between the test vector x and the m-th training example
xm, with c, γm ∈ ℜ. The effectively used examples have γm �= 0 and are called support vectors.
The number V ≤ M of support vectors can be large and impact the computational cost. An
SVM with a linear kernel K(x, xm) = 〈x, xm〉 given by the inner product between x and xm,
can be converted to a perceptron f (x) = 〈a, x〉+ c, where a = ∑

M
m=1 γmxm is pre-computed.

Therefore, linear SVMs were adopted in this chapter due to their lower computational
cost when compared to non-linear SVMs with kernels such as the Gaussian (Cristianini
& Shawe-Taylor, 2000). To combine the binary SVMs fb(x), b = 1, . . . , B, to obtain F(x)
this work adopted the all-pairs error-correcting output code (ECOC) matrix with Hamming
decoding (Allwein et al., 2000), where the winner class is the one with the majority of “votes”.
Note that an alternative to all-pairs, which uses B = 0.5C(C− 1) SVMs, is the one-vs-all ECOC
that uses B = C SVMs (Klautau et al., 2003).

3. Results

3.1 Simulation results

Simulations were performed to compare the performance of the CSS and cyclostationarity
front ends to classify the modulations BPSK, 4-PAM, 16-QAM and 8-PSK in channels with
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10 Cognitive Radio Systems

additive white Gaussian noise (AWGN). For these simulations, linear SVM classifiers were
trained using several integer SNR values in the range [-5, 15] dB. The training and test sets
used in all simulations were made disjoint and each had 500 examples. All the constellations
were normalized to have unitary energy. For the CSS front end, N = 250 symbols were used
per training / test instance. For the cyclostationarity front end, all signals were generated with
sampling frequency fs = 8192 Hz, carrier frequency K = 2048 Hz, cyclic frequency resolution
∆α = 20 Hz and frequency resolution ∆k = 80 Hz.

The results are shown in Fig. 9. Note that the approach based on the CSS front end considers
that the received signal was properly demodulated, whereas the cyclostationarity front end
does not require demodulation and, consequently, demand less knowledge about the input
signal. In fact, the cyclostationary analysis itself can be used to estimate important parameters
for the demodulation task, such as the carrier frequency and symbol rate. Because of these
aspects, a complete AMC may use more than one complementary front ends. It is observed
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Fig. 9. Probability of correct classification of the cyclostationarity and CSS front ends.

from Fig. 9 that for the adopted AMC problem, the CSS outperformed the cyclostationarity
front end. This is due to the difficulty of correctly separating cyclostationarity pair of
modulations [BPSK, 4PAM] and [16QAM, 8PSK]. For both pairs, the cyclical characteristics
are similar, as shown by the confusion matrix in Table 1 and discussed in A. Fehske (2005).
For SNR = −1 dB, the performance of both techniques is similar. The confusion matrix shown
in Table 2 and Table 3 illustrate that both front ends do not distinguish the same pairs of
modulations. For SNR values larger than −1 dB, the CSS presents better results than the
cyclostationarity. Although the cyclostationarity front end has not presented good results for
the set of adopted modulations (BPSK, 4PAM, 8PSK and 16QAM), it is capable of producing
good results for others (A. Fehske, 2005; da Silva et al., 2007; Haykin et al., 2009). Also, the
CSS is restricted to linear digital modulations while the cyclostationarity is not. In spite of
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classified as -> BPSK 4PAM 16QAM 8PSK
BPSK 291 209 0 0
4PAM 157 344 0 0
16QAM 0 1 331 168
8PSK 0 0 164 336

Table 1. Confusion matrix for cyclostationarity. SNR = 15 dB

classified as -> BPSK 4PAM 16QAM 8PSK
BPSK 391 109 0 0
4PAM 219 279 2 0
16QAM 6 1 275 218
8PSK 5 0 144 351

Table 2. Confusion matrix for cyclostationarity. SNR = −1 dB

classified as -> BPSK 4PAM 16QAM 8PSK
BPSK 436 64 0 0
4PAM 204 295 0 1
16QAM 0 0 316 184
8PSK 0 0 274 226

Table 3. Confusion matrix for CSS. SNR = −1 dB

these two aspects, the presented results confirm that CSS is a competitive technique for AMC.
Thus, the CSS front end was implemented in a FPGA for investigating its real-time processing
capabilities, as described in the sequel.

3.2 Implementation results

Most of the AMC research is based on computer simulations and does not target the hardware
implementation. In addition, there are few commercial devices aimed at detecting empty
channels or classify modulations. But the available equipment is proprietary, directed
generally to the military. Thus, there is great interest in academia and also in the industry
to implement and test algorithms for AMC and spectrum sensing (Mishali & Eldar, 2011) to
be easily embedded in devices such as FPGA or DSP (digital signal processor).

The next subsection describes the implementation of a CSS-SVM classifier for AMC starting
by the classifier.

3.2.1 Architecture of the programmable SVM classifier

For the implementation of an SVM classifier in FPGA using the all-pairs ECOC, an architecture
was designed in which the test instance (input parameters x[k]) is continuously classified and
the coefficients of the SVMs can be changed on-the-fly. This is a programmable architecture
proposed for multiclass classification, using binary classifiers. The training of the classifiers is
performed offline.

Equation 12 represents the function for the decision problem between two classes used by the
binary SVM. Where w and b are the coefficients of the classifier and x is the vector test. The
sign of f(x) indicates the result of the classifier, with f(x) = 0 the decision threshold between
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12 Cognitive Radio Systems

the two classes for which the classifier was trained.

f(x) =
n

∑
i=1

wixi + b. (12)

To combine binary SVMs it was used matrix all-pairs ECOC with decoding Hamming, where
the winner class was chosen by having most of the “votes”. In other words, each one of binary
SVM is trained to distinguish a pair of classes and, in the test phase, the chosen class was the
one that had the largest number of binary SVMs, indicating the winner (Muller et al., 2011).

Fig. 10 shows the process of programming the FPGA with the SVM coefficients and reading
the input test data. The structure uses a demultiplex followed by groups of shift registers. The
value of the input i is stored in a shift register, and several registers are disposed in sequential
arrangements with the information moved by the circuit until all the registers are updated.
In Fig. 10, n is the number of features of the test data. Considering y classes, recall that the
number B of binary classifiers for the all-pairs ECOC is B = (y(y − 1))/2. The registers w

and b store the coefficients of the classifiers and x stores the data for testing. After updating
the coefficients, the test values are stored and classification can be started. If necessary to
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Fig. 10. Diagram representing the on-the-fly programming of SVM coefficients and input
data. The row at the bottom corresponds to the input data and the other rows to SVM
coefficients. The ctrl input controls the demultiplexer.

update the SVM coefficients, the flow of test data will be suspended for the time necessary. In
these cases, the input i will be directed to the corresponding SVM register set and not to the
registers that store the test data.

The proposed SVM architecture uses four steps, which are depicted in Fig. 11. The
implementation uses a state machine and can be understood as:

• The first step makes the multiplication of elements of the vectors w and x shown in
Equation 12 and stores the results in other sets with the same number of registers.
However, to be able to store the multiplication results without roundoff errors, the registers
that receive the results have twice the number of bits of the registers that store the vectors
w and x. For each SVM classifier, a new set of registers is necessary to receive the results
of multiplications.

• The second step performs, for each classifier, the sum of all values from the first step,
added to the coefficient b (the “y-intercept” of a linear SVM).
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Fig. 11. Diagram that performs the classification.

• The third step checks the result of each classifier. As binary classifiers, the result of a
classifier can be considered as a vote given to the one of the classes for which it was trained.
At the end of the third step, we have totaled the number of votes for each of the classes.

• The fourth step verifies the class that received the largest number of votes counted in the
third step. The result of this step is the output of the classification.

It is important to note that this architecture is tailored to implementation in a FPGA, where it
is possible to describe hardware that performs various operations on each clock cycle (clock).
In this case, each of the steps to perform the calculation of the SVM should occur in one clock
period. In the first step, for example, in a single clock cycle, all the multiplications needed
to compute the inner product between the test vector and the coefficients of binary classifiers
are performed. The disadvantage of this architecture is the large amount of FPGA resources
used, which make this approach feasible only when the number of coefficients is small. This
is because the architecture, as described, uses only registers and logic elements to execute
several multiplications in one clock period. A better use of the FPGA resources is obtained by
using its RAM memory, as will be described together with the implementation of the CSS.

3.2.2 Architecture of the CSS-SVM modulation classifier

The front end CSS proposed by Muller et al. (2011) uses the symbols represented by
magnitude and phase. For a set of received symbols, an ordered vector with the magnitude
is concatenated with a vector with ordered phases, generating a third vector x with twice the
number of samples.

For implementing the CSS front end in a FPGA, the VHDL language (IEEE Standard VHDL
Language Reference Manual, 2009) was adopted within the Altera Quartus II development
platform (Altera, 2011). In order to explain the proposed architecture, first a high-level
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description will be provided, which treats the CSS-SVM as a processing block. Emphasis
is placed on its inputs (symbols for being classified and SVM coefficients) and output (the
classification result). Fig. 12 depicts the implemented block. The symbols can be entered in
the same sequence they are received. The implementation assumes that demodulation has
been performed and the CSS implementation corresponds to ordering the magnitudes and
phases of the symbols. This ordering and the SVM-based classification are performed by the
cited block. The signals in Fig. 12 have the following role:

Fig. 12. Representation of the implemented CSS-SVM block with its inputs and outputs
signals.

• clk represents the clock and is the base time system.

• ckd indicates the arrival of a new sample for classification or a new coefficient for the
classifiers.

• i1 and i2 are the inputs that can be used both for input symbols that will be classified and
for the SVM coefficients. The symbols or coefficients values should reach the block with
a rate defined by the signal ckd. In this implementation, the rising clock edge is used to
update the signals i1 and i2. For these signals it was used the two’s complement notation,
with 16 bits for magnitude and 16 bits for phase for each of symbols that will be classified.

• dok indicates that a whole set of N test symbols has been informed and a new classification
can begin.

• Ctrl is a control signal used with the inputs i1 and i2 that can be used to provide the
symbols or the SVM coefficients. Obviously, all the SVM coefficients should be informed
before symbols are received. When zero is the value given in Ctrl, i1 and i2 must contain,
respectively, the magnitude and phase of a new symbol. For other values, it is understood
that the value given in i1 is a coefficient. In this case, the value of Ctrl tells to which
classifier the coefficient corresponds and i2 the position of the coefficient.

As explained, mapping all the processing into registers, logic elements and multipliers
consume too many resources of the FPGA, because all values of samples and coefficients
need to be available for accomplishing many multiplication operations in a single clock cycle.
Another way to implement the CSS-SVM classifier is to direct all coefficients and symbols to
be stored in RAM, which are available in FPGAs such as Altera’s Cyclone II.

In this improved architecture, the SVM coefficients are separated into different blocks in the
FPGA memory. The disadvantage is that only one position of each memory block can be
accessed in a clock cycle and, consequently, a greater number of clock cycles is required for

56 Foundation of Cognitive Radio Systems

www.intechopen.com



Modulation Classification in Cognitive Radio 15

performing a classification. In the architecture described in Section 3.2.1, the rate of symbols
input could be the same as the clock, but in the improved architecture, the clock rate must be
higher than the rate of input symbols. For N = 250, the clock rate should be approximately
130 times the symbol rate and for clk = 50 MHz (1/clk = 20 ns) took 627.62 us to perform the
classification of a set of symbols.

Fig. 13 represents the different memory blocks used in the classifier. The upper lines (w)
represent the memory blocks for the SVM coefficients and they have D + 2 positions due
to the fact that storing the coefficient b consumes twice the number of bits used by the
other coefficients. The explanation is that, during the simulations, the coefficients b were an
order of magnitude larger than the other coefficients. Therefore, they are represented using
two memory positions. The lower (smaller) blocks represent the memory space to store the
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Fig. 13. Representation of the memory blocks.

symbols to be classified and that will compose the vector (x). As the FPGA design allows
accessing memory blocks one element at a time, the set of test symbols are stored in two
separate memory blocks: one for the magnitude and another block for the phase.

For supporting a steady stream of symbols, there are two sets with two memory blocks each.
The classification process works on a set of previously received symbols while new symbols
are received and stored.

The signal dok indicates that a new classification should start. A sorting algorithm is used
to sort the values of magnitude and phase before being classified through the SVM classifier.
During this process, new symbols received are directed to another memory block.

After sorting, the multiplication of vectors (inner product between) w and x is performed
according to Equation 12, for each classifier. This stage requires D clock cycles because each
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cycle is used to perform the multiplication of a value of vector x with a coefficient of each
classifier, which means that each cycle makes B multiplications. There are B registers with the
SVM output values f(x), one for each SVM classifier. The next step is to count the votes of
the classifiers. Finally, the result of the CSS-SVM classifier is the modulation that received the
majority of votes.

Table 4 shows the used resources of an Altera Cyclone II FPGA model EP2C20F484C7 to
program a CSS-SVM classifier, assuming N = 250 symbols for classification.

Resources QTY %
Estimated total logic elements 1,824 10%
Total combinational functions 1,586 8%
Dedicated logic registers 704 4%
Total memory bits (RAM) 64,000 27%
Embedded multiplier 9-bit elements 24 46%

Table 4. Used resources of an Altera Cyclone II FPGA model EP2C20F484C7 to implement
the CSS-SVM classifier.

It is observed that the proposed architecture is relatively efficient with respect to the use
of FPGA resources. It uses memory and multipliers available in the FPGA, which releases
registers and logic elements to other algorithms such as demodulation and functions other
than AMC. If this is not the case, the first architecture can be adopted.

4. Conclusions

This chapter discussed the AMC task in cognitive radio. Two front end techniques were
contrasted: CSS and cyclostationarity. The adoption of SVMs as the base classifiers for AMC
systems is showed and experimental results were presented.

The results shown in this chapter were obtained for classification of the BPSK, 4PAM, 8PSK
and 16QAM modulations. The CSS front end combined with the linear kernel SVM classifier
achieved good results for the set of modulations adopted, and proved to be feasible for
implementation in a FPGA, processed in real time. In addition, a synthesizable CSS-SVM
architecture was proposed, which presented satisfactory results for AMC with a relatively
efficient use of the available FPGA resources.

5. References

A. Fehske, J. Gaeddert, J. R. (2005). A new approach to signal classification using spectral
correlation and neural networks, DySPAN pp. 144–150.

Allwein, E., Schapire, R. & Singer, Y. (2000). Reducing multiclass to binary: A unifying
approach for margin classifiers, Journal of Machine Learning Research pp. 113–141.

Altera (2011). Altera corporation. http://www.altera.com/.
Bremaud, P. (2010). Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues, Springer.
Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition, Data Mining

and Knowledge Discovery 2(2): 1–43.
Castro, M. E. (2011). Cyclostationary detection for ofdm in cognitive radio systems, Master’s thesis,

Faculty of The Graduate College at the University of Nebraska.

58 Foundation of Cognitive Radio Systems

www.intechopen.com



Modulation Classification in Cognitive Radio 17

Cortes, C. & Vapnik, V. (1995). Support-vector networks, Machine Learning 20(3): 273–297.
URL: citeseer.nj.nec.com/cortes95supportvector.html

Cristianini, N. & Shawe-Taylor, J. (2000). An introduction to support vector machines and other
kernel-based learning methods, Cambridge Univ. Press.

da Silva, C. R. C., Choi, B. & Kim, K. (2007). Distributed spectrum sensing for cognitive radio
systems, Information Theory and Applications Workshop, pp. 120–123.

Dobre, O. A., Abdi, A., Bar-Ness, Y. & Su, W. (2007). Survey of automatic modulation
classification techniques: Classical approaches and new trends, IET Commun.
pp. 137–156.

Gardner, W. (1988). Signal interception: a unifying theoretical framework for feature detection,
IEEE Transactions on Communications 36, Issue 8: 897 – 906.

Gardner, W. A. & Spooner, C. M. (1992). Signal interception: Performance advantages of
cyclic-feature detectors, IEEE Transactions on Communications 40: 149–159.

Haring, L., Chen, Y. & Czylwik, A. (2010). Automatic modulation classification methods for
wireless OFDM systems in TDD mode, IEEE Transactions on Communications 58: 2480
– 2485.

Haykin, S., Thomson, D. & Reed, J. (2009). Spectrum sensing for cognitive radio, Proceedings
of the IEEE 97: 849–877.

IEEE Standard VHDL Language Reference Manual (2009). IEEE Std 1076-2008 (Revision of IEEE
Std 1076-2002) pp. c1 –626.
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