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1. Introduction 

Esophageal cancer is the eighth common cancers in the world and the sixth most common 
cause of cancer-related death throughout the world [1, 2]. Histologically, esophageal cancer 
can be divided into adenocarcinoma and squamous cell carcinoma (SCCE). Esophageal 
cancer is among the most malignant type of cancers which rapidly invade into the 
surrounding tissues, metastases to the surrounding lymph nodes, and distant organs. Since 
clinical symptoms of esophagus cancer appear in the advanced stages of carcinogenesis, the 
majority of patients are diagnosed and receive medical attention only when the tumor has 
already gained substantial volume, spread into surrounding tissues, and cause obstruction 
when food is swallowed. Despite large improvements in the detection of cancers, surgical 
procedures and treatments, the prognosis of esophageal cancer remains poor and the 5-year 
survival rate is still low [3]. Therefore, early detection, seeking new strategies for treatment, 
comprehensive understanding of the molecular and genetic alterations of esophageal 
carcinogenesis are essential. 

In addition to molecular alterations environmental and nutritional factors, as well as 
cultural habits are thought to be contributing factors in the development of esophageal 
cancer. The two major habitual risk factors are tobacco smoking and alcohol consumption. 
Chronic irritation and inflammation of the esophageal mucosa, which might be caused by 
substantial alcohol intake, achalasia, and frequent consumption of extremely hot beverages, 
increases the incidence rate of squamous cell carcinoma of the esophagus. In addition, a 
clear link between squamous cell carcinoma of esophagus and low socioeconomic status has 
also been established.  
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While the major risk factors for esophageal adenocarcinoma are the two altered 
physiological conditions: gastroesophageal reflux disease (GERD) and  Barrett's esophagus 
[3], such association have not been proposed for squamous cell carcinoma of esophagus. In 
turn, a large number of molecular events were found to be involved in the development and 
progression of squamous cell carcinoma of esophagus. These events include genetic and 
epigenetic alterations in oncogenes, tumor suppressor genes, cell adhesion molecules, DNA 
repair genes, cell cycle regulatory genes, genetic instability as well as telomerase activation, 
and aberrant regulation of growth factors and their receptors. Recent studies have indicated 
that activation of cyclin D1, erbB-2, and c-myc oncogenes and inactivation of p53, Rb, APC, 
and p16 tumor suppressor genes are frequently involved in esophageal cancers [3-6].  

2. Growth factors 

The significant role of growth factors and growth factor-mediated signaling pathways in the 
tumorigenesis of esophagus has been well established and similar to many other types of 
cancers as a preferred target for esophageal cancer therapy [4]. 

Growth factors regulate growth and development of cells. They might be supplied by 
distant glands and tissues, neighboring cells, or in situ by tumor cells themselves. Thus 
growth factors might be provided by endocrine, paracrine or autocrine mechanisms among 
which autocrine mechanism is thought to play a significant role in the growth of cancer cells  
[7, 8]. Most growth factors are polypeptides that regulate numerous cellular responses, 
notably cell proliferation. They exert their effects by binding to specific receptor on the cell 
surface; which most often is associated with an intrinsic tyrosine kinase activity, or by 
forming a complex with an intracellular tyrosine kinase  [9]. Following to binding of growth 
factors to their corresponding receptors the tyrosine kinase activity is induced and 
phosphorylation of specific residue(s) in the intracellular domain of receptors occurs. Such 
phosphorylated cytoplasmic domains serve as docking sites for downstream signal 
transduction molecules and trigger signaling pathways that induce expression of cyclin D1, 
promoting cellular proliferation and survival (Fig 1, Fig 2) [10]. Aberrant regulation of 
growth factors and their corresponding receptors in addition to structural alterations in 
receptors play important role in tumorigenesis of esophageal cancer [4]. 

2.1 Epidermal Growth Factor Receptor (EGFR) 

The epidermal growth factor receptor (EGFR) family and their ligands including epidermal 
growth factor (EGF) and transforming growth factor-┙ (TGF-┙) are implicated in the 
development of esophageal  cancer [7, 11-17]. The EGFR family composes of four members: 
EGFR (HER-1, erbB-1), HER2 (erbB-2, Neu), HER3 (erbB-3) and HER4 (erbB-4) [4, 18], all of 
which are tyrosine kinase receptors that are activated by ligand-induced homo or hetero 
dimerization. Overexpression of EGFRs is common in esophageal cancer and has been 
reported in several cell lines of SCCE, 29-92% of tumor samples of SCCE [19, 20] and 80% of 
patients with adeno and squamous cell carcinoma [21, 22]. EGFR upregulation correlates 
with poor prognosis, low survival rate and minimal response to chemotherapy [20, 23-25]. 
Amplification of EGFR gene has been found approximately in 8-30% of esophageal 
adenocarcinomas [21, 26]. Additionally, expression of EGF or TGF-┙ ligands along with 
overexpression of EGFR is correlated with esophageal cancer [7, 11, 12, 14-17]. EGF 
overexpression has also been detected in Barrett's-associated adenocarcinomas [13, 27, 28]. 
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Fig. 1. Schematic presentation of growth factor–mediated signaling pathways. The picture 
illustrates signaling pathways downstream of PDGF receptors, activated by ligand-induced 
dimerization. Other tyrosine kinase receptors induce similar pathways. Arrows indicate 
activation; inhibitory interactions are indicated by blunted lines [4]. 

EGF may also serve growth inhibitory effect that shown to be mediated by STAT-1 (signal 
transducer and activator of transcription1) pathway and its mediation in the upregulation of 
p21 cyclin dependent kinase inhibitor [4, 29, 30]. 

EGFR activation is associated with metastasis as it modulates cell adhesion, angiogenesis, 
invasion and migration. Since EGFR activation increases expression of matrix 
metaloproteases (MMPs) it causes degradation of extracellular matrix and promotes 
invasion and metastasis in esophageal cancer [31, 32]. In addition, it has also been shown 
that EGF is implicated in relocalization of E-cadherin from the lateral adherent sides to cell 
surface, resulting in cell morphology change and increased invasiveness [33]. 
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Fig. 2. Growth factors, Ras signaling and cell cycle regulation. Binding of growth factors 
TGF-┙ and EGF with EGFR (a tyrosine kinase receptor) promotes cell cycle progression by 
activating Ras and MAPK. MAPK signaling induces the expression of cyclins which bind 
CDKs and inactivate Rb. Activation of Ras also induces growth inhibitory effectors 
including p16 and p15. Similar to p53, p16 and p15 induce G1 arrest by inhibiting the 
function of cyclins and CDKs, thereby preventing cell cycle progression through the R-point 
[27]. By definition restriction point (R-point) is a point or event in G1 of a cell cycle at which 
cell becomes committed to progress cell cycle without requirement to extracellular 
proliferation stimulant.  

2.2 Human Epidermal Growth Factor Receptor 2 (HER2) 

Activation of certain tyrosine kinase receptors, such as EGF receptors and HER2 (erbB-2) 
results in phosphorylation of catenins and prevention of their binding to cadherins [34-36]. 
Regarding to this notion, overexpression of EGFR and HER2 (erbB-2) in esophageal cancer 
could possibly lead to sequestration of ┚-catenin, which result in the altered cell adhesion 
and increased tumor aggressiveness [27]. 

The role of HER-2 overexpression in esophageal cancer has been reported in 9%-60% of 
cases; depending on the stage of disease, tumor histology, or the applied methodology [4, 8, 
11, 37-41]. There is no known ligand for HER-2, as it does its function by forming 
heterodimer with other tyrosine kinase receptors. In fact, HER-2 (erbB-2) is an oncogenic 
form of the normal receptor tyrosine kinase and overexpression of erbB-2 by tumor cells is 
associated with hyperproliferation [4, 42]. Moreover, HER-2 expression may change during 
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tumor progression [4, 43-45]. Although some studies demonstrate that HER-2 
overexpression correlates with invasion, lymph node metastasis, and chemoresistance in 
esophageal cancer [46-48], others have shown that its expression is associated with favorable 
response to chemo or radiotherapy in esophagus cancer [49]. 

2.3 Insulin-like Growth Factor-1 (IGF-1) and IGF-1 receptor (IGF-1R) 

Insulin-like growth factor-1 (IGF-1) and its tyrosine kinase receptor: IGF-1R, contribute to 
esophageal cancer. Tumor growth upon overexpression of IGF-1R, prevention of apoptosis 
via IGF-1 autocrine loop, and mitogenic effects of IGF-1 and IGF-2 has been reported in 
esophageal cancer as well as Barrett’s-associated neoplasia [7, 50-52]. In addition, IGF 
binding protein-3 (IGFBP3); the major regulator of IGF-1 or IGF-2, is frequently 
overexpressed in SCCE in parallel with EGFR overexpression [53]. IGFBP3 has been shown 
to promote transforming growth factor ┚1-mediated epithelial to mesenchymal transition 
and motility in esophageal cancer [54]. Furthermore, the level of serum IGF-1 and IGFBP3 
significantly increases in esophageal cancer patients, which correlates with tumor invasion, 
poor prognosis, and low survival rate of patients [55] . 

Platelet-derived growth factor (PDGF) comprise a family of dimeric isoforms including the 
related A, B, C, and D polypeptides chains which bind to ┙- and ┚-tyrosine kinase receptors 
[56]. The significance of PDGF and its receptors in esophageal cancer is unclear. In 
physiological condition, normally, there is no expression of PDGF receptors in epithelial 
cells, while a number of studies have indicated the expression of different PDGF isoforms in 
esophageal cancer. It was found that PDGF-BB isoform promotes the growth of human 
esophageal carcinoma cell line and prevents apoptosis of cancer cells [57]. Additionally, 
overexpression of PDGFR-┚  receptor has been shown in tumor tissues of esophageal cancer 
[23, 58]. 

2.4 Vascular Endothelial Growth Factor (VEGF) and other angiogenesis factors 

Vascular endothelial growth factor (VEGF) is composed of a family of closely related 
members, including VEGF-A, VEGF-B, VEGF-C, and VEGF-D as well as placental growth 
factor, among which VEGF-A is usually known as VEGF which is the main growth factor of 
endothelial cells. VEGF contributes to the vascular permeability, proliferation, as well as 
prevention of endothelial cell apoptosis. VEGFs utilize tyrosine kinase receptors of VEGFR 
family, including VEGFR-1 and VEGFR-2, and VEGFR-3, in which VEGFR-1 and VEGFR-2 
transmit growth signals for blood vascular endothelial cells while, VEGFR-3 is involved in 
the regulation of lymphatic endothelial cells [59-61].  

Overexpression of VEGF has been found in 30-60% of esophagus cancer cases. It is 
significantly correlated with advanced stage of disease, extent of microvessel density, 
distant metastasis, and poor survival rate in patients [62-64]. Upregulation of VEGF along 
with fibroblast growth factor has been shown in Barrett’s esophagus and  adenocarcinomas 
of esophagus as well as  gastroesophageal junction tumor [65]. Since VEGF overexpression 
is associated with malignant potential of esophageal carcinoma and a higher level of which 
could be observed in serum (S-VEGF) of esophageal cancer patients; it could be considered 
as a significant and independent prognostic factor and a useful clinical biomarker for 
evaluation of patient’s prognosis [66]. 
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The major role of VEGF is in the process of angiogenesis where it plays an essential role in 
growth and metastasis of esophageal carcinoma. Among VEGF family, VEGF-C has shown 
to be correlated with the process of lymphangiogenesis leading to lymph node 
micrometastasis (LMN). It is considered as one of the most important prognostic factors of 
esophagus squamous cell carcinoma [67-69]. The association between VEGF-C expression 
with angiolymphatic invasion, lymph node metastasis and lower survival rate has been 
shown in esophageal adenocarcinoma as well [70]. Moreover, bone marrow 
micrometastases in esophageal cancer correlates with an increased level of plasma VEGF 
[71]. It has been shown that VEGF-C, and VEGF-D are involved in the early stages of 
esophageal carcinogenesis since they are also expressed in dysplastic lesions of both types of 
esophageal carcinomas [72, 73]. 

In addition to VEGF, other factors such as heparin-binding growth factor (midkine), 
fibroblast growth factor, thymidine phosphorylase, and hepatocyte growth factor contribute 
to tumor angiogenesis as well [66]. 

Overexpression and release of fibroblast growth factor (FGF-2) by stromal fibroblasts 
correlates with tumor recurrence and short survival in esophageal cancer patients [66, 74]. 
Stromal fibroblasts are also involved in tumor progression through degradation of 
extracellular matrix, secretion of growth factors, and regulation of epithelial cell behavior. It 
has also been shown that FGF receptor 2-positive fibroblasts provide a suitable 
microenvironment for tumor development and progression through stimulation of cancer 
cell proliferation, induction of angiogenesis, cell mobility, inhibition of cell adhesion, and 
promotion of epithelial-mesenchymal transition [75]. 

While many studies indicate an anti angiogenesis role for TGF-┚, one study by using 3D in 
vitro model, has shown the role of fibroblasts and TGF-┚ in VEGF-induced angiogenesis in 
esophageal cancer, in which the paracrine TGF-┚ secretion by SCCE cells leads to the 
activation of stromal fibroblasts, which undergo a myofibroblastic transdifferentiation and 
expression of VEGF. Secretion of VEGF from activated fibroblasts, known as carcinoma-
associated fibroblasts (CAFs), subsequently stimulate endothelial cells migration and 
vascular network formation (Fig 3) [76]. 

Midkine (MK) is a heparin-binding growth factor which overexpresses in esophageal 
carcinoma and plays a role in tumor angiogenesis and invasion [77]. Serum MK (S-MK) is an 
independent prognostic factor and may be a useful tumor marker for esophageal carcinoma, 
since the level of S-MK is increased in patients with esophageal carcinoma. It is also 
associated with tumor size, immunoreactivity, and poor survival of patients [66, 78, 79]. 

Hepatocyte growth factor (HGF), also known as scatter factor, is another factor that derives 
from specialized cancer-associated fibroblasts (CAFs) in the extracellular matrix that acts in 
a paracrine way to promote SCCE invasion via activation of VEGF and IL8 expression [80, 
81]. It has been found that HGF and its tyrosine kinase receptor, c-Met, play significant role 
in esophageal carcinogenesis. Increased levels of HGF in serum, correlates positively with 
VEGF of serum, and significantly associates with the advanced stage of metastasis and low 
survival; provide an independent prognostic factor as well [66, 80]. Moreover, increased 
expression of c-Met tyrosine kinase receptor is significantly correlated with the reduced 
survival rate, distant metastasis, and local recurrence of cancer in esophageal cancer patients 
[80, 82, 83]. Grugan et al. have shown activation of HGF/Met signaling in human SCCE 
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Fig. 3. Schematic illustration of SCCE cells and fibroblasts involvement in the vascular 
network formation. Esophageal cancer cells produce TGF-┚ to activate stromal normal 
fibroblasts. Tumor stromal fibroblasts become transdifferentiated into myofibroblasts that 
secrete VEGF, which in turn induce endothelial cell migration and the formation of a 
microcapillary network [76].  

tissues and SCCE cell lines upon EGFR and p53 overexpression. Secretion of HGF by 
stromal fibroblasts induces the transformed esophageal epithelial cells to invade 
extracellular matrix; however, other unidentified factors may also cooperate with HGF in 
this process, which further highlight the significance of this pathway in esophageal 
carcinoma invasion and progression [84]. 

Recently another growth factor: connective tissue growth factor (CTGF, CCN2), has been 
introduced by Li and colleagues to be involved in the development and progression of 
SCCE in addition to poor survival of SCCE patients. It is suggested to be an independent 
factor for SCCE patients’ prognosis as well as diagnosis of the precancerous lesions; as a 
result early detection of SCCE [85]. 

3. Signal transduction pathways 

3.1 Ras signaling 

Activation of the Ras pathway takes place upon a wide range of stimuli that could initiate its 
signaling. Ras activation begins with a vast array of upstream activated receptors including 
receptor tyrosine kinases, serpentine receptors, heterotrimeric G-proteins, integrins and 
cytokine receptors [86]. Among these activators, the best described mean of Ras stimulation 
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is via receptor tyrosine kinases such as EGF receptor (Fig 4). Binding of growth factors to 
their cognate receptors promote cellular proliferation through signal transduction cascades, 
initiated by the activation of membrane associated Ras proteins. Ras/Raf/mitogen activated 
protein kinase (MAPK) is one of the key Ras dependent growth-stimulating signaling 
cascade activated when growth factors bind their tyrosine kinase receptors, which 
ultimately leads to the induction of cyclin D1 [87, 88].  

 
Fig. 4. A simplified overview of Ras activation and signaling cascade. Activation of a 
receptor tyrosine kinase (RTK) by an appropriate growth factor stimulates 
autophosphorylation of SH2 domains that recruit Grb2. Guanine nucleotide exchange 
factors (GEF) such as SOS are localized to the membrane by Grb2, which then stimulate Ras 
to exchange GDP for GTP. The activated Ras interacts with multiple signaling pathways, 
including phosphoinositide 3Vkinase (PI3-K), MEKKI, Raf kinase, RalGEFs and 
phospholipase C (PLC) to induce cellular responses. Ras signaling is terminated when 
GTPase activating proteins such as p120 and NF-1 stimulate Ras to hydrolyze GTP to GDP 
[86].  

Ras pathway can also inhibit proliferation by inducing expression of p16 and p15 that are 
members of the INK4 family (Fig 2). These proteins block the Rb phosphorylation induced 
by cyclin D1/CDK complex, which results in cell cycle arrest in G1 [88]. Several lines of 
evidence have addressed the importance of Ras effectory pathways in the carcinogenesis of 
esophagus cancer; most notably through contribution of growth factors and their tyrosine 
kinase receptors, and in particular EGF and EGFR which are commonly deregulated and/or 
found at high level of expression in esophageal cancer [4, 5, 21, and 89]. 

In addition, mitogen activated protein kinase (MAPK) signal transduction pathway 
including Ras-Raf-MEK-ERK, PI3K/Akt, and JNK were found to be hyperactivated in 
esophageal cancer. This pathway modulates cell proliferation, invasion and metastasis, and 
resistance to chemotherapeutic agents, and ionizing radiation in esophageal cancer cells [24, 
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91-93]; in which, inhibition of MAPK signaling could enhance sensitivity of esophageal 
cancer cells to chemotherapeutic agents [94-96].  

Lawler et al. [97] have also shown that mobility and invasiveness of metastatic esophageal 
cancer cells are potentiated by shear stress through the Rho kinase (ROCK) and Ras- 
signaling pathways, suggesting a novel physiological role for Rock and Ras in metastatic 
behavior of cancer cells [97].  

The contribution of Ras/ERK signaling has been demonstrated by Senmaru et al. They have 
shown a dominant negative H-ras mutant (N116Y) inhibits EGF-stimulated activation of 
Erk2 in esophageal cancer cells. Furthermore, using adenoviral vectors and increased 
expression of this mutant significantly reduces the growth of human squamous cell 
carcinoma of esophagus cells in vitro and in vivo [98]. 

Furthermore, the significance of Ras signaling and its downstream pathways has also been 
recently indicated in tumorigenesis of esophageal cancer. Since, it was found that activation 
of MEK/ERK and PI3K/Akt effectory pathways play important role in downregulation of 
tropomyosin-1, which is a member of tropomyosin family and actin cytoskeleton-related 
proteins, in squamous cell carcinoma of esophagus [99]. 

Due to the importance of Ras dependent signaling drugs blocking these pathways were 
used in chemotherapy. Among such drugs are statins; a type of popular cholesterol-
lowering agents including drugs such as Lipitor, were shown to inhibit tumor growth and 
proliferation of cancer cells as well as stimulation of apoptosis in esophageal cancer cell 
lines. These effects are achieved by inhibiting the Ras, ERK and protein kinase B (Akt) 
signaling pathways [90]. 

3.2 Wnt signaling 

Wnt/┚-catenin pathway initiates a signaling cascade critical for the normal development. 
The aberrant activity of this signaling pathway is associated with several forms of human 
carcinomas [100, 101]. Wnt ligands begin intracellular signaling pathways by binding to the 
G-protein -coupled receptors frizzleds (Fzs) [102]. In the absence of Wnt signals, GSK-3 
phosphorylates cytosolic ┚-catenin within a destruction complex comprised of adenomatous 
polyposis coli (APC), Axin-1, casein kinase-1 (CK-1), and other proteins, the end result of 
which is targeting ┚-catenin for ubiquitin-mediated degradation (Fig 5a). 

Upon Wnt binding to the Frizzled receptor and low-density lipoprotein receptor-related 
protein (LRP) co-receptors, the cytoplasmic Dishevelled (Dsh) protein becomes activated 
which in turn antagonizes the effects of GSK-3 through prevention of destruction complex 
formation and thus ┚-catenin phosphorylation. This in turn leads to the stabilization and 
accumulation of cytoplasmic ┚-catenin. GSK-3 could also be inactivated through 
phosphorylation by PI3-K (Fig 5c). As a result, accumulated cytoplasmic ┚-catenin enters into 
the nucleus where it binds to the T cell factor/TCF/LEF (T-cell factor/lymphoid enhancer-
binding factor 1) transcription factor family and stimulates transcription of target genes 
including c-myc, cyclin D1, c-jun, and fra-1 (Fig 5b), which plays critical roles in cell growth, 
proliferation, and differentiation [101-104]. Aberrant expression and function of Wnt signaling 
components result in aberrant nuclear accumulation of ┚-catenin which in turn contributes to 
the tumorigenesis of esophageal cancer through increased expression of cyclin D1 [105].  
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In addition to its role in Wnt signaling, ┚-catenin is also involved in cell adhesion, providing 
a link between actin cytoskeleton and cadherin(s) cell adhesion molecules [106, 107]. E-
cadherin and ┚-catenin are primarily found in the cell membrane of the normal squamous 
mucosa of esophagus and the nondysplastic, specialized intestinal metaplasia of Barrett's 
esophagus [108, 109]. Immunohistochemical studies of dysplastic Barrett's esophagus has 
shown that membrane E-cadherin and ┚-catenin are decreased, while their level is increased 
in cytoplasm and nucleus [110].  

Loss of APC tumor suppressor gene plays important role in the development of esophageal 
cancer, since loss of heterozygosity (LOH) of 5q21, the APC locus, occurs commonly in 
adenocarcinomas of esophagus [111-113]. Mutations in ┚-catenin and/or APC gene also 
alter degradation of ┚-catenin, as a result, its aberrant accumulation leads to the increased 
transcription of target genes. However, it has been shown that mutations of APC and ┚-
catenin genes, unlike in colorectal carcinoma, involve in only a small subset of esophageal 
and esophagogastric junction carcinomas [114], or somehow are rare in esophageal cancer 
[115]. However some studies have confirmed that mutations of APC gene occur in human 
esophageal cancer [116, 117]. 

 
Fig. 5. The role of Wnt signaling in the activation of gene expression through mediation of  
┚-catenin induced transcription.  The non-phosphorylated form of ┚-catenin is active while 
the phosphorylated form of which is doomed to the inactivation and proteasomal 
degradation (a). Dishevelled antigonises ┚-catenin phosphorylation by GSK-3  
(b) and PI3K does the same function by phosphorylating GSK-3 and thus inhibition GSK-3 
mediated phosphorylation of ┚-catenin (c) [118].  
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Although mutations in APC or β-catenin are rare in esophageal cancer, alterations of 
upstream components, such as overexpression of Wnt2 ligand and Frizzled receptors or 
downregulation of Wnt antagonists and inactivation of secreted frizzeled-related protein 
(SFRP) genes by promoter methylation have been reported to play a dominant role in the 
activation of the Wnt pathway during esophageal carcinogenesis [119, 120]. 

Nonetheless, inactivation of APC by promoter methylation is involved in esophageal cancer, 
where it occurs in 83-92% of Barrett's high grade dysplasia and esophageal adenocarcinoma 
as well as 40-50% of Barrett's metaplasia without dysplasia [121, 122]. Higher level of 
promoter methylation of APC was also found by Clement, et al. in 100% of barrett’s 
esophagus samples and in 95% of esophageal adenocarcinomas as well [119]. Several lines of 
evidence have also shown the role of APC promoter hypermethylation in squamous cell 
carcinoma of esophagus, as it was observed in about 50% of cases, to contribute in the 
progression of dysplasia to carcinoma in SCCE carcinogenesis along with low survival rate 
of patients [122-124]. Moreover, methylated APC DNA has been detected in the plasma of 
patients with esophageal adenocarcinoma and squamous cell carcinoma. Methylated APC 
promoter has shown to be associated with a significantly low patient survival [122], 
suggesting the capability of hypermethylated APC tumor suppressor gene to be a potential 
biomarker in esophageal cancer.  

Wang et al. have recently shown a prominent role of Wnt signaling in SCCE carcinogenesis. 
They identified that Wnt2/┚-catenin signaling pathway is activated in SCCE cells, as 
sodium nitroprusside (SNP) and siRNA against ┚-catenin not only inhibit expression of ┚-
catenin and its major downstream effectors including c-myc and cyclin D1, but also induce 
cell cycle arrest and apoptosis, suggesting that Wnt2/┚-catenin pathway may be a potential 
molecular target for SCCE therapy [125]. Inactivation of GSK3┚, observed by higher 
phosphorylation of Ser9 GSK3┚, has been found in most cancers with epithelial origin, 
including esophagus cancer [126, 127]. 

3.3 Dopamine and cyclic-AMP-regulated phosphoprotein 

Recently, the role of t-DARPP (Dopamine and cyclic-AMP-regulated phosphoprotein) in the 
regulation of ┚-catenin has been investigated in esophageal cancer. DARPP-32 is a major 
regulator of dopaminergic neurotransmission in brain. It is the key factor for the functioning 
of the dopaminoceptive neurons [128]. DARPP-32 and t-DARPP, a truncated isoform of 
DARPP-32, are suggested as novel cancer-related genes [129].  

Overexpression of t-DARPP has been reported in gastrointestinal malignancies as well as 
esophageal adenocarcinomas [130, 131], which leads to activation of Wnt signaling and 
increased cell proliferation through phosphorylation of GSK-3┚, nuclear accumulation of ┚-
catenin, and upregulation of cyclin D1 and c-myc target genes. It has also been shown that t-
DARPP mediated GSK-3┚ phosphorylation is AKT-dependent [132]. 

3.4 PI3K signaling 

The involvement of phosphatidylinositol 3-kinase (PI3K)/AKT pathway in esophageal 
tumorigenesis was also subject of investigations. Phosphatidylinositol 3-kinases (PI3Ks) are a 
ubiquitous family of lipid kinases that catalyse the phosphorylation of phosphatidylinositol 
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(PI), PI(4)P and PI(4,5)P2 that leads to formation of PI(3)P, PI(3,4)P2 and PI(3,4,5)P3, 
respectively [133]. These phosphorylated lipid products are then able to activate a variety of 
downstream targets, such as protein kinase B (PKB/AKT), that regulate a wide range of 
important cellular processes, including cell proliferation, survival, migration, apoptosis, 
oncogenic transformation and intracellular trafficking of proteins [134]. 

Constitutive activation of PI3K and AKT is common in cancers including esophageal cancer  
[135-137]. Amplification of the PIK3CA, the gene coding for the p110┙ catalytic subunit of 
PI3K, has been reported in SCCE [136] and in a low percentage of adenocarcinoma [138]. In 
addition, mutation of PIK3CA has been found to be an important event in the etiology of 
esophageal cancer [139].  

Recent studies have indicated that inhibition of PI3K reduces proliferation and enhances 
radiosensitivity of esophageal cancer cells [92, 140]. In addition, the level of p-AKT 
expression in SCCE increases during chemotherapy, and a high expression of p-AKT 
correlates with poor prognosis [141]. 

3.5 Hedgehog signaling 

The Hh (Hedgehog) signaling is critical for embryonic development which initiates 
following to binding of Hh to patched (Ptch) receptor, which releases smoothened (Smo), a 
potential G protein-coupled receptor (GPCR), from Ptch mediated repression. Smo signal 
transduction eventually leads to increased expression and activation of Gli, a transcription 
factor that regulates corresponding target genes [142-144]. Deregulation of this pathway 
leads to abnormal proliferation and transformation of cells in different tumors, such as small 
cell lung cancer, pancreatic cancer, prostate cancer and digestive tract cancer, including 
esophageal cancer [145-149] Hyperactive Hh signaling has been reported to be implicated in 
esophageal cancer [146, 147]. It has also been shown that PI3K/AKT pathway plays a critical 
role in epidermal growth factor (EGF), G┚┛ and Shh-induced Hh signaling. Conversely, 
PI3K/AKT and MAPK signaling cooperate with the Shh pathway to promote esophageal 
cancer cell survival and proliferation [150]. 

3.6 Role of Id-1 

Overexpression of Id-1, the inhibitor of differentiation or DNA binding, has also been 
shown in esophageal squamous cell carcinoma. Id-1 promotes proliferation [151], 
tumorigenicity and metastasis of human esophageal cancer cells through activation of 
PI3K/AKT signaling pathway [152-154]. Id-1 is a helix-loop-helix protein, which 
heterodimerizes with the basic helix-loop-helix transcription factors and inhibits them from 
DNA binding, therefore regulating gene transcription [155]. 

4. Tumor suppressor genes 

4.1 P53 

Tumor suppressor genes’ inactivation occur by the genetic or epigenetic events such as 
mutations, allele deletions (LOH), promoter hypermethylation, abnormal splicing, and 
posttrancriptional silencing by microRNAs [156] in cancers. Alterations in multiple tumor 
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suppressor genes including Rb, p53, APC, p16, and MCC implicated in carcinogenesis of 
esophageal cancer. The majority of tumor suppressor genes are involved in the regulation of 
cell cycle. Cell cycle is controlled precisely through two major regulatory mechanisms, the 
p53 (p14–MDM2–p53–p21) and pRb (p16–cyclinD1–pRb). Deregulation of both mechanisms 
play critical role in the development of most human cancers including esophageal cancer. 

The p53 tumor suppressor gene regulates cell cycle progression, apoptosis and DNA repair. 
It also inhibits vascular endothelial growth factor. p53 is the most frequent mutated gene in 
all human malignancies. P53 is normally expressed at low level but accumulates in the 
nucleus of the damaged cell and transactivates target genes including genes involved in G1 
cell-cycle arrest (p21/WAF1) and apoptosis (BAX) [157-161]. In fact, it plays a role as a 
genomic policeman to prevent replication of damaged DNA; either by arresting cells in G1 
and facilitating DNA repair or by apoptotic elimination of damaged cells [162]. p53 
mutations are common in esophageal cancer which occur in approximately 50-80% of 
esophageal cancers. More than 92% of these mutations occur in the four conserved domains 
of the p53 gene; exon 5 to exon 8, with hot spots at Arg175, Cys176, Arg248, Arg273,  and 
Arg282, 80% of which are point mutations including 46% transition and 36% transversion 
[5]. Several studies have indicated that alteration of p53 gene in esophageal cancer occurs in 
the early stage of carcinogenesis and is associated with tumor progression; suggesting that 
loss of p53 function is critical for the development of this type of cancer [5, 156].  

Although the presence of mutant p53 have shown to be correlated with the poor prognosis 
[163, 164], other studies have not found such correlation [165, 166]. It has also been shown 
that measurement of circulating anti p53 antibody in serum of patients with SCCE is useful 
for detection of p53 mutations, and as a tumor marker or prognostic marker [167-169]. 

4.2 p21/WAF1 

The p21/WAF1 gene is located on chromosome 6p21.2 and encodes a cyclin-dependent 
kinase inhibitor. Induced by wild-type p53, it mediates G1 arrest following to DNA damage 
[170]. Mutations and deletions of the p21/WAF1 gene are less common in human cancers 
[171]. However, polymorphisms in exon 2 of the p21/WAF1 gene has been documented to 
play important role in esophageal tumorigenesis [172]. Moreover, induction of p21/WAF1 

may occur via p73 [173], a transcription factor that also regulates p21/WAF1 expression [174] 
in esophageal cancer. The role of p21/waf1/CIP1 expression in SCCE prognosis seems to be 
controversial. Several studies have indicated reduced expression of p21 as an indicator of 
poor esophageal cancer prognosis [175, 176], while others have found no significant 
correlation [173, 177]. Conversly others have claimed that p21 overexpression is correlated 
with a poorer prognosis [165, 178].  

4.3 p16/INK4a and p15/INK4b 

p16/INK4a, which is located on chromosome 9p21 is another member of cyclin dependent 
kinase inhibitors and is involved in p53 independent G1 arrest through inhibition of D type 
cyclin dependent kinases (CDK4/CDK6) in the Rb phosphorylation [179, 180] and 
inacivation. Inactivation of p16/INK4a is a common event in esophageal cancer and occurs 
through homozygous deletion, point mutation and/or hypermethylation [181-184]. In 
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SCCE, homozygous deletion and promoter methylation are the major causes of p16/INK4a 

gene silencing, while somatic mutation is a rare event [185]. p16/INK4a methylation or loss of 
heterozygosity (LOH) occurs in the early stages of SCCE tumor progression [186, 187], while 
homozygous deletion of its locus is a late event [188]. The two common mechanisms of 
p16/INK4a inactivation in esophageal adenocarcinoma were found to be promoter 
hypermethylation, which occurs in the early stages of carcinogenesis and loss of 
heterozygosity [189, 190]; while homozygous deletion have not been documented to play 
significant role. In addition, loss of p16/INK4a expression together with overexpression of 
cyclin D1 may also be correlated with poor prognosis [191]. Detection of hypermethylated 
p16/INK4a could provide an appropriate biomarker for esophageal cancer screening as it 
could be observed in the early stages of carcinogenesis [192-194]. 

p15/INK4b, a homolog of INK4 family whose locus is close to INK4a locus could be subject 
of stimulation by TGF-┚ and activate G1 arrest [195]. Changes in p15/INK4b has been studied 
less often in esophageal cancer; however it has been found that inactivation of p15/INK4b 
occurs through homozygous deletion or abnormal methylation at the same time as 
p16/INK4a, which leads to the loss of Rb-regulated restriction point and plays an essential 
role in esophageal carcinogenesis [188]. 

4.4 Retinoblastoma (Rb) 

The retinoblastoma protein (pRb or commonly known as Rb) is a nuclear phosphoprotein 
that plays essential role in the regulation of cell cycle. It negatively regulates transcription 
by forming complex with E2F transcription factor. Phosphorylation of Rb by the 
cyclin/CDK complex, results in E2Fs release, expression of target genes and cell division 
[196-198]. While deletions or mutations of Rb or inactivation by HPV infection are rare in 
SCCE, however several studies have indicated that alteration in p16 and p53 lead to the 
blockage of Rb function [199-201]. However, loss of heterozygosity of the retinoblastoma 
locus plays essential role in the inactivation of Rb gene and is associated with p53 
alterations in esophageal cancer. It is suggested that association of Rb with p53 
inactivation may be the major event in the development and progression of esophageal 
cancer [199, 202]. 

5. Other novel tumor suppressor genes 

In addition to the well established role of well-known tumor suppressor genes such as p53, 
Rb, APC, p21, and p16 in the carcinogenesis of esophagus cancer; there are other novel tumor 
suppressor genes which also play role in the development of esophageal cancer.  

ECRG4 (esophageal cancer related gene 4) is a novel candidate tumor suppressor gene for 
SCCE, which is downregulated through promoter hypermethylation. ECRG4 is significantly 
associated with lymph node metastasis, tumor size, and tumor stage in SCCE, providing a 
candidate prognostic marker for SCCE [203].  

ING (Inhibitor of growth gene) family, ING1 to ING5, are new class of candidate tumor 
suppressor genes that are implicated in the cell cycle control, senescence, apoptosis, DNA 
repair, and chromatin remodeling. Downregulation of ING1 was observed to be implicated 
in esophagus cancer [204]. 
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The tetraspanin cell surface receptor uroplakin 1A (UPK1A) has been identified as another 
candidate tumor suppressor gene, which is downregulated by promoter hypermethylation 
in SCCE cells. UPK1A downregulation correlates with lymph node metastasis, tumor stage, 
and overall survival of patients, as well [205].  

Expression of MAL (T-lymphocyte maturation associated protein), which is a component of 
protein machinery for apical transport in epithelial polarized cells, remarkably reduces in 
esophageal cancer. In addition, DNA methylation has shown to be associated with its 
downregulation [206]. 

DLC1 (deleted in lung cancer 1) is a putative tumor suppressor gene located on chromosome 
3 (3p21.3) is supposed to act as a downstream gene in the serine/threonine kinase pathway. 
Its aberrant splicing was found in one third of esophageal, lung and renal cancers which 
plays a critical role in the carcinogenesis of these tissues [207].  

The WWOX (WW domain containing oxireductase) gene located on chromosome 16 
(16q23.3–24.1) is a candidate tumor suppressor gene for esophageal carcinoma. Both of 
WWOX alleles were seen to become inactivated in squamous carcinoma of the esophagus 
through combination of events among which mutations and LOH [208]. 

Annexin1, a member of annexin family which are calcium and phospholipid-binding 
proteins have also been shown to be lost or downregulated in esophageal cancer [209]. 
Additionally, its translocation from plasma membrane in normal cells to the nuclear 
membrane in malignant cells has proposed to be correlated with the tumorigenesis of 
esophageal cancer [210]. 

APC and MCC are the two tumor suppressor genes located on chromosome 5 (5q21) 
which are involved in the development of esophageal cancers through LOH of their 
corresponding genetic loci [111-113]. It has also been shown that mutations in APC and 
MCC genes take place in esophageal cancer as well as promoter hypermethylation [116, 
122, and 124]. 

DCC (deleted in colorectal cancer) is a putative tumor suppressor gene whose loss has been 
implicated in colorectal tumorigenesis. Decreased or loss of DCC expression through 
promoter hypermethylation [211] as well as point mutations and LOH which are correlated 
with the degree of lymph node metastasis and differentiation [212], have been shown in 
esophageal cancer. 

The involvement of tropomyosins (TMs) which are a family of cytoskeletal proteins and 
stabilizers of the actin microfilaments have been indicated in carcinogenesis of esophageal 
cancer; in which downregulation of ┚-TM (TM1), was described as a novel tumor 
suppressor gene [213]. The same role were also observed for TM2 and TM3 in esophageal 
squamous cell carcinoma [99, 214].  

E-cadherin (CDH1), one of the most important molecules in cell to cell adhesion in epithelial 
tissues, localized on the surfaces of epithelial cells was reported to be lost in several cancers 
including esophageal tumors. Promoter hypermethylation was suggested to be involved in 
its inactivation as well. Loss of E-cadherin expression correlates with the high grade and 
advanced stages of disease along with poor prognosis [215, 216]. 
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Downregulation of periplakin (a cell adhesion protein) [217] as well as loss of clusterin (a 
secreted glycoprotein) both in serum and tissue of esophageal squamous cell carcinoma 
[218] are among other events that have been correlated to the esophageal tumorigenesis. 
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