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1. Introduction 

O2 arose on Earth in about 3.8 x 109 years ago due to the photosynthetic process in 
cyanobacteria hydrolyzed water. But it was only about 2.5 x 109 years ago that its levels rose to 
significant amounts. The increase in atmospheric concentrations of O2 led to a great selective 
event, the first great mass extinction, due to stress on organisms that did not adapt to the new 
conditions. It also helped in the conquest of the land with the formation of O3 (ozone) in the 
stratosphere, which filters the most harmful of the ultraviolet radiation (UV-C). In addition, 
using the O2 as a substrate, the organisms generated much more energy (about 32 times more) 
but, in doing so, they started to generate reactive species in the process.  

Reactive species (RS) are elements that react with biologically relevant organisms and 
although they act as cellular messengers, they also damage cellular components. In response to 
that, the organisms developed defences, which are now called antioxidants. The imbalance of 
the relation between RS and antioxidants is called oxidative stress. In this chapter we will 
study diseases related to oxidative stress but, in order to understand them, we first need to 
comprehend the radicals, their chemistry and the defences against such elements. 

1.1 Reactive oxygen species (ROS) and reactive nitrogen species (RNS) 

The RS are named according to the principal element in their composition, reactive oxygen 
species (ROS) and reactive nitrogen species (RNS), and are divided into radicals and non-
radicals. Radicals have at least one unpaired electron in an open shell configuration and 
non-radicals are compounds that can generate radical species. Below we will see a list of the 
most important reactive species for human health (considered to date). 

Note: Radicals are written with a dot attached to the upper right level representing the 
unpaired electron. 

1.1.1 Reactive oxygen species 

Hydroxyl radical (HO�) 

A hydroxyl radical is the most reactive radical known in vivo and the most harmful, to 
which the human body has no defence mechanism. But, because it is so reactive, it reacts 
immediately after formation (within 5 molecular diameters from its production site).  
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It can be formed mainly by the Fenton reaction, in which the hydrogen peroxide (see below) 
reacts with a transition metal (Fe2+ or Cu+) forming two hydroxides, one of them a radical 
and the other just an ion (see equation below). 

 H2O2 + Fe2+ → OH- + OH�  (1) 

The reaction is faster with Cu+ (more than 60 times faster), but since it is not as bioavailable 
as Fe2+, hydrogen peroxide reacts more with Fe2+ than with Cu+ (Halliwell & Gutteridge, 
2007). It can cause modification of DNA bases and strand breaks, inactivation of proteins 
and lipid peroxidation. As explained above, HO� is too reactive to be enzymatically 
removed (it would attack the enzymes), hence the way to control its damages is to reduce its 
formation and repair the damage. 

Superoxide (O2�-) 

Superoxide is both an anion and a radical formed when an electron is added to the O2 

molecule. It is produced mainly by the electron leakage in the mitochondrial electron 
transport chain, but there are also other sources (e.g. endoplasmatic reticulum). Superoxide 
is quite toxic and is used in the defence systems to control pathogens for being a pro-oxidant 
and precursor for other species, but this toxicity works both ways, damaging important 
cellular components, especially inactivate enzymes by oxidation or reduction of its Fe-S sites 
(Flint et al., 1993), such as in an aconitase enzyme (which converts citrate to isocitrate, in the 
Krebs cycle) with the superoxide which reduces its (Fe4S4)2+ to (Fe4S4)+. 

Hydrogen Peroxide (H2O2) 

Hydrogen peroxide is a covalent, pale-blue, viscous liquid. Mainly produced in vivo by 
superoxide dismutation (see 1.2), but other oxidases may produce it as well, it is also 
produced by the oxidation of long chain fatty acids in the peroxissome (Titorenko & 
Terlecky, 2011). It plays a part in the immune response via formation of hydroxyl radicals or 
via inactivation of the pathogens’ enzymes. However, for reacting with transition metals, 
hydrogen peroxide (see Fenton reaction above) represents a major problem to living 
organisms. 

1.1.2 Reactive nitrogen species 

Nitric Oxide (NO�) 

NO� is a colourless monomeric gas stable in pure water. In physiological conditions the half-
life of nitric oxide is only a few seconds. In mammals nitric oxide is produced by the 
oxidation of L-arginine catalyzed by nitric oxide synthase (NOS) (Mungrue et al., 2003). 
Nitric oxide has several physiological roles, especially in neural and vascular systems. In the 
neural system it works as a neurotransmitter, strengthens the most used synapses and has a 
role in long-term memory but in excess, may cause strokes and epilepsy. In the vascular 
system it controls the blood pressure (vasodilator), kills foreign organisms (e.g. Leishmania), 
in excess may cause chronic inflammation, septic shock and transplant rejection. It has a role 
in bladder control, penile erection and peristaltic movements.  

Peroxynitrite 

Peroxynitrite is formed by the reaction of the radicals superoxide and nitric oxide, the 
peroxynitrite is an unstable, short-lived, potent oxidant, non-radical.  
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 O2�– + NO� → ONOO– (2) 

Peroxynitrite causes damage to proteins (-sulfur groups), hydroxylation and nitration of 
aromatic compounds. It may damage DNA as well by strand breaks and damages 2-
deoxyribose. 

1.2 Antioxidant defences 

As we observed in the last topic, reactive species play a great role in biological systems, but 
they tend to cause much damage as well. To defend against such damage organisms 
developed defences, generically called “antioxidants”, and when such defences fail we also 
have a repair system. The antioxidants may be classified in two major groups, enzymatic 
and non-enzymatic or endogenous and diet-derived.  

1.2.1 Enzymatic 

Catalase 

Catalase is a very reactive enzyme that dismutates hydrogen peroxide (H2O2) into water 

(H2O) and O2, as seen in eq. 3. 

 2H2O2 → 2H2O + O2  (3) 

Located in intracellular organelles (mostly peroxissomes) that are known as high producers 
of hydrogen peroxide (H2O2), Catalase is a tetramer of four polypeptide chains, each over 
500 amino acids long and containing one Fe(III)-heme group that allows the enzyme to react 
with the hydrogen peroxide. As hydrogen peroxide enters the active site, it interacts with 
the amino acids causing an oxygen transfer between the heme group and the peroxide. The 
free oxygen is bound to the heme group (eq. 4), later, it reacts with a second hydrogen 
peroxide molecule and produce water and oxygen (eq. 5).  

 H2O2 + CAT-Fe(III)→ H2O + Compound I  (4) 

 H2O2 + Compound I→2H2O2 + CAT-Fe(III)+O2 (5) 

Superoxide dismutase 

Superoxide dismutases (SODs) are enzymes that dismutate superoxide in oxygen and 

hydrogen peroxide. In humans three forms of superoxide dismutase are present. SOD1 

(CuZnSOD) is located in the cytoplasm, SOD2 (MnSOD) in the mitochondria and SOD3 

(CuZnSOD) is extracellular. The CuZnSOD contains two protein subunits, each with a 

metal, a Cu in one and Zn in the other (hence the name CuZnSOD). The copper ions catalyze 

the dismutation of superoxide and the zinc only helps the stability of the enzyme. Although 

CuZnSOD, SOD1 and SOD3 are two different proteins encoded by different genes, SOD3 is 

synthesized containing a signal peptide that directs this enzyme exclusively to extracellular 

spaces (Halliwell & Gutteridge, 2007). 

 Cu2+-SOD + O2�– → Cu+-SOD + O2  (6) 

 Cu+-SOD + O2�– + 2H+ → Cu2+-SOD + H2O2  (7) 

www.intechopen.com



 
Coronary Artery Diseases 

 

6 

The MnSOD (SOD2) is quite different from CuZnSOD (not even having similar amino acid 

sequences), but performs the same reaction. It is more sensitive to denaturation (e.g. by heat) 

than the CuZnSOD. Each of its four protein subunits contains a manganese ion.  

 Mn3+-SOD + O2�– → Mn2+-SOD + O2 (8) 

 Mn2+-SOD + O2�– + 2H+ → M3+-SOD + H2O2  (9) 

Glutathione peroxidise (GPx)  

Glutathione peroxidase is the general name of an enzyme family, which consists of eight 

known human isoforms, whose main role is to protect the organism from oxidative damage. 

It is more versatile than catalase’s action (as seen above) on lipid peroxides and in addition 

to hydrogen peroxide, is not limited to organelles, but its reaction speed (km) is much 

slower. 

In order to detoxify peroxides it requires glutathione as a cofactor (eq. 9). 

 2GSH + H2O2 → GSSG + 2H2O  (10) 

Since this process oxidize glutathione another enzyme is required to reduce the oxidize 

glutathine, via NADPH spending, the glutathione reductase. This process allows the 

glutathione to be used again by the peroxidase or another process (see Glutathione). 

 GS–SG + NADPH + H+ → 2 GSH + NADP  (11) 

Heme oxygenase 

Human heme oxygenase-1 (hHO-1) is a stress protein linked to cytoprotection against 

oxidative stress. It catalyzes the reaction of heme to biliverdin, Fe2+ and carbon monoxide 

(CO). The carbon monoxide has pro- and antioxidant effects and also pro- or antiapoptotic 

effects that depend on dose (Piantadosi et al., 2006). 

Heme + 3O2 + 3½NADPH + 3½H+ + 7e- → biliverdin + Fe2+ + CO + 3½NADP+ + H2O  (12) 

The biliverdin reductase acts on biliverdin by reducing its double-bond between the pyrrole 

rings into a single-bond with NADPH+H+ generating then, biliverdin and NADP+. The 

biliverdin then takes on antioxidant properties by scavenging peroxyl radicals and limiting 

the peroxidation of membrane lipids and proteins. 

1.2.2 Non-enzymatic 

Glutathione 

Glutathione (GSH) is a tripeptide, the most ubiquitous peptide found in cells. GSH can be 

obtained from the diet or can be synthesized de novo in the liver. It is the most abundant 

intracellular antioxidant. It works as a cofactor to GPx (as seen above) and also reacts, in 

vitro, with HO�, ONOO- among others species. It can also chelate copper, reducing its 

interaction with hydrogen peroxide, decreasing the Fenton reaction, and therefore reducing 

the formation of HO�. Its reaction with ONOO- leads to the formation of nitrosothiol 

(GSNO) which can be converted to NO�. 
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Ascorbic acid (vitamin C) 

Ascorbic acid is an antioxidant produced by plants and some animals (e.g. rats, some birds) 
and one of its functions is to maintain redox homeostasis. The animals that do not 
synthesize ascorbic acid (including humans) must obtain ascorbic acid from the diet. They 
are unable to synthesize due to the lack of the enzyme gulonolactone oxidase, which 
catalyzes the final step in the synthesis of ascorbic acid (Yoshihara et al., 2010). Ascorbic acid 
has two oxidizable -OH groups. At physiological pH, it remains in the ionized form, 
ascorbate.  

Among the many roles of vitamin C, we can highlight it acting as the scavenger of 
superoxide, hydroxyl, among others, also in the absorption of iron in the intestine (eq. 13) by 
reducing it from Fe3+ to Fe2+, which works as a cofactor for several enzymes but also may be 
involved in Fenton reaction (see eq. 1) and regenerates the tocopheryl radical in tocopherol 
(very important). 

 Fe3+ + ascorbate → Fe2+ + ascorbyl  (13) 

Lower vitamin C levels found in elderly people, diabetic patients and cigarette smokers are 
most likely due to increased oxidative stress. Some studies showed that vitamin C 
supplementation decreased the level of oxidative DNA damage in mononuclear blood cells 
and also increased the LDL oxidation in patients’ hemodialysis, but failed to prevent steady-
state levels of lipid peroxidation (Yoshihara et al., 2010). There are some encouraging data to 
support vitamin C as a protective factor against cardiovascular diseases, but as a matter of 
fact there are more discouraging data (Collins et al., 2002) on this topic. 

Tocopherols (vitamin E) 

Tocopherols are a fat-soluble antioxidants (vitamin E is a name used to design several 
tocopherols) and are the most important inhibitors of lipid peroxidation. It can reduce Fe3+ 
to Fe2+ and Cu2+ to Cu+. This ability is the basis of colorimetric method for measuring 
tocopherols. At high concentrations, the tocopherols present pro-oxidant effects, promoting 
lipid peroxidation. It can also affect blood clotting by interfering with the action of vitamin 
K. Its supplementation in diet is not recommended (Yoshihara et al., 2010). 

1.3 Iron homeostasis 

Iron is by far the most abundant transition metal in the human body and essential element 
for life. It is crucial for DNA synthesis, respiration and key metabolic reactions. It is an 
important component of enzymes that are involved in oxidation or reduction of biologic 
substrates, due to its ability to exist in two redox states making it useful at the catalytic 
centre like in cytochomes. It is also an essential component of oxygen carriers hemoglobin 
and myoglobin; alternatively, iron can bind to enzymes in a form of non-heme moieties or 
iron-sulfur (Fe-S) motifs (several mitochondrial enzymes). When iron exceeds the metabolic 
needs of the cell it may form a low molecular weight pool, tentatively referred to as the 
labile iron pool, which converts normal by-products of cell respiration, like O2�- and H2O2, 
into highly damaging hydroxyl radicals or equally aggressive ferryl ions. The redox state 
that do this is ferrous iron and the reaction that produces OH�- is called Fenton Reaction. 
Therefore, iron must be chelated in very specific ways that discourage redox cycling. 
However, iron can have benign or malign effects on the cell, depending on whether it is a 
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micronutrient or a catalyst of free radical reactions. The average human adult contains 
approximately 4 g of iron, a little more than 2 g of which is in hemoglobin and 1g in body 
stores predominantly in the liver, the rest are in other iron-containing proteins, mainly in 
skeletal muscle (~300mg, most in myoglonbin) and macrophages (~600mg in total). Since 
total plasma iron turnover is some 35mg/day, iron deficiency can cause cellular growth 
arrest and death; iron excess can cause damage lipid membranes, proteins and nucleic acids. 
For example, iron deficiency represents the most common cause of anaemia worldwide and 
can cause development retardation in children as iron overload in hereditary 
hemochromatosis and thalassemias leads to potentially fatal liver or heart failure due, in the 
most part, to the amount of iron deposits.  

Iron absorption needs to be tightly controlled due its activity redox which can also lead to 

the production of ROS. Its absorption occurs in the proximal small intestine and involves 

many key molecules. Iron absorption occurs in lumen of the duodenum and can be 

modulated by the size of the body’s iron stores, by erythropoietic activity and by recent 

dietary iron intake. Iron can be absorbed from diet in two forms: as inorganic (non-heme) 

iron predominantly released from foods such as vegetables or cereals, or as heme iron from 

the breakdown of hemoglobin and myoglobin contained in red meat. Most iron in food is in 

ferric form [Fe (III) state], the most stable oxidation state for iron. Iron across is mediated by 

brush border iron transporter divalent metal transporter 1 (DMT1), which transports iron in 

the ferrous form [Fe (II))]. Hence, there are agents in gastric juice that solubilize and reduce 

Fe (III) in Fe (II), such as the ascorbate and hydrochloric acid (Frazer & Anderson, 2005), 

moreover, there are also in the epithelial surface apical ferric reductases. Heme 

(protoporphyrin ring that binds ferrous form) is more efficiently absorbed than inorganic 

iron and taken up by apical heme transporters after being released by proteolysis of 

hemeproteins in gut lumen is taken up and the iron removed from it in the mucosal cells by 

the action of heme oxygenase in ferrous form (Figure 1). 

Inside the enterocytes, iron can be stored in ferritin in the cytoplasm, utilized in 

mitochondria or exported to plasma by ferroportin on the basolateral surface. Ferroportin 

cooperates with the multicopper ferroxidase hephaestin, which converts ferrous to ferric 

iron for uptake by plasma transferrin and regulated by hepcidin, an inhibitor of iron 

absorption and releases from macrophages and other cell types. The hepcidin causes 

ferroportin internalization and degradation, decreasing the transfer of iron to the body. 

Extracellular iron is bound with high affinity by the serum iron-transport protein transferrin 

and taken into the circulation (the labile iron pool). The majority of it is destined for nascent 

erythrocytes in the bone marrow. The cellular uptake of iron occurs through receptor-

mediated endocytosis of transferrin (TfR). TfR containing transferrin binds on the cell 

membrane and is internalized by endocytosis. So, iron is used for cellular processes and 

excess iron is stored in ferritin (Dunn et al., 2007). It is important to know about these 

proteins because they have key roles in healthy processes and diseases in relation to iron 

homeostasis, for example, formation of atherosclerotic lesions, as will be discussed later. The 

excess of iron is lost by epithelial shedding in the gastrointestinal tract and the skin 

(approximately 1 to 2 g each day), through blood loss in menses of premenopausal women, 

in sweat and possibly a small amount excreted by lungs into mucus. The amount of iron 

absorbed can be affected by several mechanisms like inflammation, hypoxia, anaemia and 

iron overload. Iron can be recycled or stored as needed. Human erythrocytes undergo 
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surface alterations that mark them to be phagocyted and digested by macrophages in the 

spleen and the liver. In macrophages, iron is recovered from heme by the action of heme 

oxygenase and stored in ferritin, but the major site of iron storage is the liver, into 

hepatocytes. The capacity of readily exchanging electrons makes iron not only essential for 

fundamental cell functions, but also a potential catalyst for chemical reactions involving 

free-radical formation and subsequent oxidative stress and cell damage. Therefore, iron 

levels are carefully regulated to minimize the pool of potentially toxic “free iron”. The 

majority of proteins described above are posttranscriptional controlled by iron regulatory 

proteins (IRP-1 and IRP-2). Iron regulatory proteins recognize at the mRNA level non-

coding sequences (the iron-responsive elements [IRE]) which have been found in genes that 

control the iron homeostasis like ferritin and TfR, being that the ferritin synthesis is 

increased to sequester excess iron and TfR is downregulated in order to stop iron uptake 

(Cairo & Pietrangelo, 2000). 

 

Fig. 1. Intestinal iron absorption. Iron absorption in the proximal small intestine mucosa of 

the gut requires transport across the apical and basolateral membranes of duodenal 

enterocytes. The dietary non-heme iron in the duodenal lumen is reduced by a ferric 

reductases and thus made available for divalent metal transporter 1 (DMT1), which 

transports ferrous iron across the apical brush border membrane and heme iron is 

transported by heme transporters. The amount of iron not retained by the cell inside the iron 

storage protein ferritin (Ft) is transferred to the bloodstream. The basolateral release of non-

heme iron (which is also derived from heme catabolized by heme oxygenase [HO]) is 

mediated by ferroportin (FPN) which transports the metal across the membrane and 

hephaestin (Hp), which re-oxidizes iron as a necessary step for binding to the plasma carrier 

protein transferrin (Tf). The hepcidin causes ferroportin internalization and degradation, 

decreasing the transfer of iron to the body. The main proteins involved in iron absorption 

are controlled by iron regulatory proteins (IRPs), whose activity is regulated by the levels of 

the metal in the labile iron pool.  
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1.4 Oxidative damage 

Oxidative stress describes the damage that occurs when oxidants overwhelm the 
antioxidants’ defences; this can cause oxidative damage in macromolecules like DNA and 
proteins. The progressive and irreversible accumulation of oxidative damage may 
contribute to impaired physiological function and increased incidence of disease. Oxidative 
damage to lipids, proteins and DNA occurs primarily via the action of ROS. ROS can be 
generated by several mechanisms, but the principal source in aerobic cells is mitochondria. 
In an electron transport chain, oxygen can be reduced in superoxide (O2�-). Superoxide itself 
does not appear to damage all macromolecules at physiologically relevant concentrations; 
redox reactions involving O2�- , however, generate other reactive species that damage 
nucleic acids, proteins and lipids. This process generates the reactive intermediates 
encompassing a wide spectrum of oxygen-, carbon- or sulfur-centred radicals, originated 
from oxygen, hydrogen peroxide and lipid peroxides. Such damage is detectable under 
normal physiological conditions even in young animals, suggesting that endogenous 
protective mechanisms cannot suppress all oxidative damage even during basal levels of 
ROS generation (Halliwell & Gutteridge, 2007).  

1.4.1 DNA damage 

Damage to various macromolecules may not accumulate and therefore may not be critical. 
DNA, on the other hand, is the prime information molecule of the cell and nuclear DNA, in 
particular, must last the lifetime of the cell, therefore, DNA damage represents a critical 
threat to cell function. If DNA damage is severe or its accumulation exceeds its elimination 
by DNA repair mechanisms, cellular senescence or apoptosis will occur. Oxidative damage 
to nuclear DNA causes strand breakage that may lead to cell death. Additionally, oxidative 
damage to DNA causes mutations that can impair protein synthesis and lead to cell 
dysfunction. The hydroxyl radical (OH�) reacts with DNA by addition to double bonds of 
DNA bases and by hydrogen atom from abstraction the methyl group of thymine and each 
of the C-H bonds of 2’-deoxyribose. One of the DNA base products of interaction with 
reactive oxygen and other free radical species is 8-oxo-7,8-dihydro-2’-deoxuguanosine (8-
OHdG). This is the oxidative lesion major and its level in DNA has, therefore, been 
consistently used as a measure of oxidative damage to DNA (Cooke et al., 2003). In addition, 
with OH�, it is important to note that hydrogen peroxide (H2O2) can cause massive acute 
DNA double-strand breaks and is involved in signalling cell stress (Chen et al., 2007). 

1.4.2 Protein damage 

Damage to proteins can occur by direct attack of reactive species or by secondary damage 
involving attack by end-products, like lipid peroxidation (Halliwell & Gutteridge, 2007). The 
importance of protein oxidation towards cellular homeostasis derives from the fact that 
proteins serve vital roles in regulating cell structure, cell signalling and the various 
enzymatic processes of the cell. Therefore, protein oxidation can rapidly contribute to 
oxidative stress by directly affecting cellular functions. Oxidation of proteins can lead to the 
formation of oxidized amino acids, such as dityrosine, 3-nitrotyrosine, 3-chlorotyrosine, 
oxohistidine and altered amino acid side-chains containing reactive carbonyls, and result in 
the loss of catalytic function, increased sensitivity to denaturation and increased 
susceptibility to proteolysis. One major pathway believed to generate protein carbonyls in 
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vivo is the metal-catalyzed protein oxidation pathway. In addition, there are others modes of 
inducing protein oxidation, among them are oxidation induced cleavage, amino acid 
oxidation and the conjugation of lipid peroxidation products. It is important to know that 
the accumulation of oxidized proteins is often measured by the content of reactive 
carbonyls. Some protein damage is reversible, such as methionine sulphoxide formation and 
destruction of Fe-S clusters by O2�-. Other damage, for example of side-chains to carbonyl 
residues, appears irreversible and the protein is destroyed and replaced. Several 
mechanisms are activated when a protein undergoes damage by reactive species. This is 
necessary because accumulation of proteins with incorrect conformation can lead to cell 
death. When oxidized proteins resist proteolytic attack, they form aggregates which 
decrease their toxicity by sequestering them in insoluble clumps (Halliwell & Gutteridge, 
2007). 

1.4.3 Lipid peroxidation 

Lipid peroxidation is involved in various and numerous pathological states including 
inflammation, atherosclerosis, neurodegenerative diseases and cancer. It has been know that 
lipid peroxidation induces disturbance of fine structures, alteration of integrity, fluidity and 
permeability, causes functional loss of biomembranes, modifies low density lipoprotein 
(LDL) to proatherogenic and proinflammatory forms and generates potentially toxic 
products. However, recently products of lipid peroxidation have been shown to exert 
various biological functions in vivo, such as regulators of gene expression, signalling 
messengers, activators of receptors and nuclear transcription factors, and inducers of 
adaptive responses, as well as ROS and RNS. Initiation of lipid peroxidation can be caused 
by addition of reactive species or, more usually, by hydrogen atom abstraction from a 
methylene group by reactive species (Halliwell & Gutteridge, 2007). The process of lipid 
peroxidation occurs by three distinct mechanisms, that is, (1) free radical-mediated 
oxidation, (2) free radical-independent, non-enzymatic oxidation, and (3) enzymatic 
oxidation. There are specific antioxidants to inhibit each type of lipid peroxide formed by 
mechanisms. For example, in the first situation O2�- and NO� do not activate per se lipid 
peroxidation directly, but they react quite rapidly at the diffusion-controlled rate to give 
peroxynitrite (ONOO-), which may initiate lipid peroxidation chain reactions. Both 
molecules are important to control muscular contraction in endothelium. A non-enzymatic 
oxidation example is the lipid oxidation by singlet oxygen, which can cause deleterious 
damage, such as a disease porphyria on the skin for oxidizing unsaturated lipids mainly. 
The thirst mechanism is another important type. It has been shown that lipoxygenase and 
ciclooxigenase oxidize arachidonic acid to prostaglandins, prostacyclin, thromboxane and 
leukotrienes, moreover, lipoxygenase directly oxidizes phospholipids and cholesteryl esters 
in LDL particles. It is important to cite that cholesterol is oxidized by three mechanisms 
noted above (Niki, 2009). Various molecular weight aldehydes, such as acrolein, 
malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE) are formed during lipid 
peroxidation as secondary or decomposition products, and they are highly reactive and 
readily react with proteins, DNA and phospholipids to cause deleterious effects. MDA and 
HNE are considered good biomarkers of lipid peroxidation in vivo. Lipid peroxide alters 
chemical characteristics and the physical organization of cellular membranes to induce 
functional loss and modifies lipoproteins to proatherogenic and proinflammatory forms. It 
is assumed to be pathogenic and contribute to the etiology of various diseases (Niki, 2009). 
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Carbon radicals often stabilize by molecular rearrangement to form conjugated dienes, but if 
two radicals collide within a membrane they cross-link the fatty acid side-chain. When the 
formation of peroxy radical (by O2 action) occurs, this can abstract a hydrogen atom from an 
adjacent fatty-acid side-chain. Thus happen the propagation stage of lipid peroxidation, 
mainly in membranes. 

2. Atherosclerosis 

Cardiovascular diseases are the leading cause of death and disability in the Western world. 

The majority of cardiovascular diseases result from complications of atherosclerosis. 

Atherosclerosis is a progressive disease that is generally characterized by the accumulation 

of lipids, fibrous elements and inflammatory cells and molecules within the arterial wall. 

The lesions of atherosclerosis occur principally in large and medium-sized elastic and 

muscular arteries and can lead to ischemia of heart, brain or extremities, resulting in 

infarction.  

2.1 Formation and progression 

The initiation of atherosclerosis begins with endothelial injury or dysfunction that is 

characterized by enhanced endothelial permeability and LDL deposition in the intima. LDL 
is accumulated in the preferred sites for lesion formation and undergoes oxidative 

modification as a result of its interaction with ROS. The endothelial injury likely is caused by 
ox-LDL itself, as well as physical or chemical forces and infection. This lesion induces the 

expression of a number of proinflammatory molecules, like adhesion molecules such as P-
selectin, chemotactic and growth factors. These lead to the tethering, activation and 

attachment of monocytes and T lymphocytes to the endothelial cells. Monocytes ingest 
lipoproteins and morph into macrophages; macrophages generate ROS, which convert ox-

LDL into highly oxidized LDL, which is, in turn, taken up by macrophages to form foam 
cells. Foam cells combine with leukocytes to become the fatty streak and as the process 

continues foam cells secrete growth factors that induce smooth muscle cells’ migration into 
the intima. Endothelial cells, macrophages and smooth muscle cells highly oxidize LDL by 

the action of ROS produced. The foam cells secrete more growth factors that induce smooth 
muscle cells’ migration into the intima and proliferation forming the fibrous plaques. Later, 

calcification can occur and cause plaque stabilization. In plaques that are not calcified the 
fibrous plaques may rupture and form thrombi that may ultimately occlude vessels, for 

example in the case of acute coronary syndromes that lead to myocardial infarction. Possible 
causes of endothelial dysfunction leading to atherosclerosis include elevated and modified 

LDL; free radicals caused by cigarette smoking, hypertension and diabetes mellitus; genetic 
alterations; elevated plasma homocysteine concentrations (toxic to endothelium and 

prothrombotic); infections microorganisms; and combinations of these or other factors. The 
process of atherosclerosis occurs primarily in certain arteries, such as coronary and carotid 

arteries (Ross, 1999). 

2.2 Oxidative stress and inflammation 

Oxidative stress plays an important role in the formation of atherosclerosis plaque. The 
oxidation hypothesis suggests multiple mechanism(s) by which oxidation of LDL might 
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promote atherosclerosis. LDL retained within the artery can be oxidized by a number of cell 
types present within arteries, including endothelial cells, smooth muscle cells, monocytes 
and macrophages, and lymphocytes. HDL can also be oxidized by endothelial cells and by 
chemical means. Oxidation of these lipoproteins can be blocked by antioxidants. Ox-LDL 
also has potentially atherogenic affects, inhibits the mobility of tissue macrophages, 
enhances production of chemotatic factors and adhesion molecules, induces smooth muscle 
cells’ migration and both proliferation and apoptosis in endothelial cells, smooth muscle 
cells and macrophages (Schwenke, 1998). In the vasculature, production of reactive species 
occurs that are used to control physiological functions. Oxygen undergoes reduction to O2�- 
by means of enzymes, such as the nicotinamine adenine dinucleotide (phosphate) 
(NADH/NAD(P)H) oxidases and xantine oxidases (XO). The O2�- is used to promote 
vasoconstriction and can form H2O2 that can react with other radicals, such as transition 
metal Fe2+ to produce OH� (Fenton reaction). Myeloperoxidase, a heme protein secreted by 
phagocytes, can amplify the oxidative potential of H2O2 by production of hypoclorous acid 
(HOCl) that can react with O2�- to produce OH�. Other sources of ROS in the vessel wall 
include mitochondria, ciclooxygenase (COX), lipoxygenase and uncoupled endothelial nitric 
oxide synthase (eNOS). This last, in normal conditions, generates nitric oxide (NO�), but if 
there is availability of precursors, eNOS become uncoupled generating O2�-. Although NO� 

is a reactive species, it is thought be antiatherosclerotic because it is a vasodilator potent and 
inhibits LDL peroxidation by scavenging peroxil radicals. These reactive species (O2�- , H2O2 
and NO�) cannot oxidize LDL, but form other reactive species that can do this, like OH� and 
ONOO- (described above) (Madamanchi et al., 2005, Halliwell & Gutteridge, 2007). But how 
can free ferrous iron in the body be a catalyst for the formation of OH�, powerful pro-
oxidants and promote lipid oxidation (increased formation of ox-LDL)? In 1981 Sullivan 
created The Iron Heart Hypothesis suggesting that increased body iron stores are a risk 
factor for coronary heart disease and thus that iron depletion though phlebotomy or other 
means can reduce risk (Sullivan, 1981). In addition to enhancing oxidative stress, increased 
iron stores are believed to adversely affect cardiovascular disease through other 
mechanisms, including alteration of endothelial function, decreased vascular reactivity and 
reperfusion injury by iron-induced free radicals (Hu, 2007). Furthermore, iron can contribute 
to the signalling in inflammatory pathways and hypoxia response. Atherosclerosis is an 
inflammatory disease and inflammatory mechanisms have emerged as playing a pivotal 
role in all stages of atherosclerotic plaque formation. Systemic inflammation occurs in the 
vasculature as a response to injury, lipid peroxidation and perhaps infection. A number of 
inflammatory mediators are released by cells involved in the lesion, including tumour 
necrosis factor α (TNFα) or interleukin 1 (IL-1), chemokines, such as IL-8 or monocyte 
chemoattractant protein-1 and adhesion molecules, such as intercellular adhesion molecule 
1 (ICAM-1) or selectins. In particular, smooth muscle cells also release IL-6 which is the 
main hepatic stimulus for the acute phase reactant, C-reactive protein (CRP), which causes 
expression of adhesion molecules and also stimulates hepcidin. The ferritin also has 
synthesis regulated by cytokines, such as TNFα and IL-1, at various levels (transcriptional, 
posttranscriptional and translational) (You & Wang, 2005).  

Abnormal ferritin levels or iron homeostasis have been linked to atherosclerosis. To prove 
the iron hypothesis, many epidemiological studies have been performed. Most studies 
testing the hypothesis of iron measured levels of ferritin. The ferritin level rises with iron 
loading and declines with depletion of tissue iron stores. Salonen et al. first reported a 
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significant association between the serum ferritin levels and the risk of myocardial infarction 
of 1,931 middle-aged men during an average follow-up of three years (2.2 higher risk of 
myocardial infarction in men with higher serum ferritin levels) (Salonen et al., 1992). A 
study from our laboratory compared patients with coronary heart disease and sleep apnea 
(also inflammation disease) showing that serum ferritin levels increased in coronary heart 
disease patients and positively correlated with sleep apnea. These studies are supported by 
the evidences that show iron deposition in human atherosclerotic lesions, suggesting that 
iron may play a role in the development of atherosclerosis (Hower et al., 2009). 

With regard to sleep apnea, studies have demonstrated sleep disordered breathing to be 

associated with cardiovascular disease, include coronary artery disease, heart failure, 

hypertension, cardiac arrhythmias and stroke, which further increase morbidity and 

mortality in the sleep disordered breathing population (Flemons et al., 1999). Hypoxia 

events, endothelial dysfunction, coagulopathy, impaired sympathetic drive, oxidative and 

inflammatory stress are the pathophysiological pathways suggested for the development of 

cardiovascular disease in sleep disordered breathing (Butt et al., 2010). Increase in ROS in 

endothelial cells exposed to hypoxia has been evidenced. Among the possible sources of 

ROS by hypoxia are the mitochondria, leukocytes (NADPH oxidase pathway) and epithelial 

tissue enzymes, such as xanthine oxidase, cyclooxygenase, lipooxygenase, NO-synthase and 

hemeoxygenases (Lavie, 2003). As discussed above, hepcidin is a peptide also involved in 

iron homeostasis and has impact in inflammatory hypoferrimia because inflammation is 

mediated by citokine-driven increase in hepcidin production, causing release and recycled 

iron from macrophages and and blocking the passage of iron from enterocytes to plasma. 

Hepcidin production is controlled by inflammatory citokines like ferritin. The main 

citokines are IL-6 and TNFα. In addition to cytokines, hepcidin is downregulated under 

hypoxia conditions and little is known of the involvement of ROS in this mechanism. A 

study suggested that ROS (produced by hypoxia) repress the hepcidin gene (Choi et al., 

2007).  

The same recent study in our lab that verified the serum ferritin levels in coronary heart 

disease (CHD) and sleep apnea patients also verified the serum prohepcidin levels (the 

precursor of hepcidin). The study was performed in 56 patients with stable coronary heart 

disease referred for angiography (male gender 54%). Exclusion criteria, to avoid potent 

oxidative stress factors, were: smoking, age older than 65 years, morbid obesity, diabetes. 

Patients underwent a portable polysomnography to verify the apnea-hypopnea index (AHI) 

and determination of hemoglobin, hematocrit, ferritin, prohepcidin and high-sensitivity C-

reactive protein (hs-CRP) levels. Patients were divided into controls and cases at the median 

AHI, 28 controls with an AHI low and 28 cases with moderate to severe AHI. The mean 

ferritin levels are significantly higher in cases than the control and this is the first report of 

such findings in sleep apnea (170±140.1 vs. 285±194.5; p < 0.05). There were a significantly 

greater percentage of subjects with CHD in the group with moderate to severe sleep apnea 

(72%; p 0.001). The Pearson’s correlation coefficients showed positive significance between 

ferritin and AHI (r = 0.398, P = 0.002), prohepcidin and ferritin (r = 0.432, P = 0.001) and iron 

and ferritin (r = 0.346; P = 0.009); between AHI and prohepicidin was r= -0.15 (P = 0.3) 

(figure 2). How hypoxia could be affecting the ferritin and hepcidin levels is not known. In a 

multivariate regression, however, controlling for age, sex, body mass index and coronary 

heart disease, the AHI and ferritin explain 30.4% of the variance of prohepcidin. Thus, it is 
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suggested that hypoxia-reoxygenation in obstructive sleep apnea may influence prohepcidin 

in human and, consequently, iron homeostasis, aggravating oxidative stress and 

contributing to the emergence of coronary heart disease (increased ferritin levels).  

 

Fig. 2. Scheme of regressions and correlations found among studied parameters. The sleep 

apnea through intermittent hypoxia (IH) events activates some unknown route (?) 

generating decreased prohepcidin levels and increased ferritin levels. The hypoxia interferes 

positively in the ferritin levels and negatively in prohepcidin levels. Prohepcidin already 

induces the ferritin synthesis. It is suggested that the hypoxia induction by ferritin levels 

overlaps the prohepcidin inhibition by hypoxia, because there was increased ferritin levels, 

as well as increased AHI. A relationship was found between OSAS and CHD, as well as 

ferritin and CHD corroborating with literature data. 

2.3 Oxidative stress biomarkers 

Many experimental and observational studies showed the relationship between oxidative 

stress biomarkers and cardiovascular disease. Among the most used are ox-LDL, 

myeloperoxidase, lipid peroxidation products and protein oxidation. The ability of oxidative 

stress biomarkers to predict cardiovascular disease has yet to be established. Some of them 

have already been examined, now we will look in more detail at these and comment about 

new markers. As described above, ox-LDL is believed to play an intrinsic role within 

atherosclerosis plaque formation and progression of atherosclerosis. In the same study that 

showed a relationship between ferritin and hepcidin with coronary heart disease, the levels 

of ox-LDL and paraoxanase-1 (enzyme present in HDL that reduces ox-LDL accumulation) 

were also analyzed, indicating that they are important predictors of coronary heart disease 

(intern communication). Paraoxanase-1 possess antioxidant and anti-inflammatory 

properties and protect against atherogenesis, and for this, can be associated with the  

action of HDL (Jayakumari & Thejaseebai, 2009). The measurement of F2-isoprostanes (a 

prostaglandin-like compound formed from radical catalyzed peroxidation of fatty acids, like 

arachidonic acid, without the direct action of enzymes) has emerged as one of most sensitive 

and reliable biomarkers of lipid peroxidation in vivo (Davies & Roberts, 2011). As previously 

indicated, damage to proteins by ROS produces carbonyls and other amino acid 

modifications. Some studies used protein oxidation as a predictor of cardiovascular disease 

endpoints (Strobel et al., 2011). For example, the study that analyzed the cardiovascular 

disease linked to sleep apnea verify that the carbonylation of erythrocytic proteins 

associated with sleep apnea is a predictor of cardiovascular disease (Klein et al., 2010). 
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The 8-OHdG is typical biomarker of oxidative stress. Increased 8-OHdG levels are 
frequently related to cardiovascular disease. The level of 8-OHdG has been demonstrated to 
be very high in aorta fragments taken at surgery from patients suffering from severe 
atherosclerosis lesion. An increase 8-OHdG levels in DNA isolated from lymphocytes are 
related to cardiovascular disease (Gackowski et al., 2001). 

3. Hypercholesterolemia 

Cardiovascular disease is a complex and multifactorial disease; there can be no doubt now 
that elevated plasma cholesterol levels play a dominant role. Hypercholesterolemia is 
associated with an increased risk of atherosclerosis. Fatty streaks can even be found in the 
foetus, to an extent increasing with maternal plasma cholesterol levels. There are genetic 
disorders that may have a relationship with hypercholesterolemia, such as a disease familial 
hypercholesterolemia, in which the LDL receptors are defective or absent, so that blood LDL 
(and hence cholesterol) levels become very high and these people have high atherosclerosis 
incidence (Halliwell & Gutteridge, 2007). 

3.1 Hypercholesterolemia and oxidative stress 

There are many possible factors involved in the atherosclerosis process; the oxidation 
hypothesis has been the central focus on the pathogenesis of atherosclerosis for almost 30 
years. This hypothesis states that the oxidative modification of LDL, or other lipoproteins 
and polyunsaturated fatty acids, is central, if not obligatory to the atherogenic process. The 
important issue is that inhibition of such oxidation should reduce the progression of 
atherosclerosis, independent of reduction of other risk factors, such as elevated LDL levels. 
The interest in ox-LDL is based on the fact that ox-LDL is cytotoxic to endothelial and other 
cells, and thus, could directly cause damage to arterials cells and, in addition it can activate 
an immune and proinflammatory response. There are many potential mechanisms by which 
oxidized forms of LDL may influence atherogenesis, these include uptake of ox-LDL by 
macrophages leading to foam cell formation; ox-LDL products are chemotactic for 
monocytes and T-cells, they can inhibit the motility of tissue macrophages and induce 
apoptosis; ox-LDL or its products are mitogenic for smooth muscle cells and macrophages, 
for example, they can induce proinflammatory genes and macrophage scavenger receptors, 
thereby enhancing its own uptake; ox-LDL is immunogenic and elicits autoantibody 
formation and activated T-cells; ox-LDL may enhance procoagulant pathways (induction of 
tissue factor and platelet aggregation, and can adversely impact arterial vasomotor 
properties (Witztum & Steinberg, 2001). We already know that ox-LDL is proatherogenic, 
but how is it generated in vivo? There are lingering uncertainties about the mechanism of 
LDL oxidation in vivo. The LDL is not necessarily oxidized within the plasma compartment, 
the LDL could undergo oxidative modification on the artery wall or in fact in any 
extravascular, extracellular site and then return to the plasma compartment (Chisolm & 
Steinberg, 2000). Oxidation of LDL results in the generation of a variety of modifications to 
the lipid and protein moieties, including the covalent modification of apolipoprotein B 
(ApoB) with reactive products of the decomposition of oxidized lipids, yielding MDA and 
HNE. Remembering that core lipid particles are composed of cholesterol ester and 
triglyceride, an outer monolayer is composed of free cholesterol and phospholipid including 
phosphatidilcholine, and on molecule of ApoB surrounds LDL particles (Yoshida & Kisugi, 
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2010). In addition, the residual oxidized phospholipid containing aldehyde terminate fatty 
acids. These, and presumably many other changes, generate immunogenic neo-epitopes on 
the modified LDL and are important to the atherosclerotic process. A variety of oxidized 
lipids’ products, with similar characteristics of ox-LDL, are found in human plasma, 
atherosclerotic tissue and urine. Although some of these may indeed arise from oxidation of 
LDL, they could equally derive from oxidation of lipids at other sites and that oxidation 
may or may not parallel the rate at which LDL itself is undergoing oxidative modification 
(Witztum & Steinberg, 2001). Some of these proatherogenic effects of ox-LDL could also be 
induced by organic phase extracts of ox-LDL, suggesting that oxidized lipids themselves 
were proatherogenics, in addition to oxidatively modified ApoB (Davies & Roberts, 2011).  

Still addressing LDL, it can be oxidized non-enzymatically by transition metal ions, heme 

and other catalysis. On the other hand, there are many postulated mechanisms by which 

LDL could become oxidized via several enzymes within the artery wall. Transitions metals 

are important to lipid oxidation. Most cells present in the arterial intima can promote LDL 

oxidation by its enzymes that mediated LDL oxidation, but it arguably requires the presence 

of transitions metals, iron or copper microconcentration. Elevated levels of metal ions are 

present in the advanced atherosclerotic lesions. Tissue homogenates prepared from 

atherosclerotic lesions contain catalytically active metal ions, indicating that these metals 

may stimulate LDL oxidation in the artery wall. One mechanism that has now gained strong 

support is the enzimatic. Lypoxygenase is one intracellular enzyme that directly oxygenates 

polyunsaturated fatty acids. The enzyme initiates the seeding of LDL with hydroperoxides, 

leading to the subsequent initiation of lipid peroxidation. These lipid peroxides could be 

released from cells and might translocate to LDL. Leucocytes-released myeloperoxidase 

catalyzes the formation of reactive substance species (HOCl) and generates a series of 

secondary radical or non-radical oxidants that may provide lipid peroxidation, oxidized 

LDL, advanced glycation end products and nitrating species. Among the mechanisms 

protein glycation is included. The last mechanism cited refers to NO� (which has already 

been mentioned here). Although NO� is a stable radical that fails to oxidized LDL at 

physiological pH, it is rapidly inactivated by O2�- to form peroxynitrite, a potent oxidant, 

implicating in LDL oxidation. This mechanism should be important in vivo since endothelial 

cells, smooth muscle cells and macrophages generate O2�- (Yoshida & Kisugi, 2010). There 

are lipid peroxidation products in the vasculature that do not arise directly from LDL and 

could contribute to atherogenesis. These oxidation products create proinflammatory 

mediators that drive a chronic inflammatory state, such as isoprostanes. It is important to 

know that well-established risk factors as causes of cardiovascular disease may have lipid 

peroxidation as part of its mechanism, such as smoking and diabetes (Davies and Roberts, 

2011). Therefore, the evidence shows us clearly that hypercholesterolemia plus other risk 

factors increase the disease process and progression. 

The oxidant hypothesis makes us question whether or not administration of antioxidants 

significantly slows the formation of atherosclerotic lesion. In a large number of 

epidemiologic studies, the dietary intake or plasma levels of antioxidant nutrients correlates 

negatively with risk of clinical cardiovascular disease. The user in clinical trials is 

tocopherols and beta-carotene because they are naturally occurring nutrients which would 

pose no toxicological problems. The relevance of vitamin C is as a potent trap for singlet 

oxygen, but much less effective in terminating free radical chain reactions and the vitamin E 
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is an excellent terminating free radical chain reaction. The protect effect against LDL 

oxidation is more effective with use of vitamin E than C. This difference may be because 

vitamin C is distributed exclusively in the aqueous phase, whereas vitamin E takes up 

residence predominantly in lipoprotein (Witztum and Steinberg, 2001).   

HDL normally plays an anti-atherogenic role, unlike LDL. The protective capacity of HDL 

has been ascribed primarily to its ability to remove excess cholesterol from peripheral 

tissues in the reverse cholesterol transport pathway. However, recent studies have 

suggested more mechanisms. For example, HDL can inhibit LDL oxidation and this may 

contribute to inverse association between plasma HDL levels and risk of developing 

atherosclerosis. These protective effects of HDL have been attributed to the various proteins 

associated with HDL. Paraoxonase-1 is an enzyme associated with HDL in blood and has 

been reported to posse antioxidant and anti-inflammatory properties. This enzyme is able to 

hydrolyze oxidized phospholipids and to destroy the biologically active lipids in ox-LDL. 

There is growing evidence that reduced activity of HDL-associated paraoxonase-1 is 

predictive of vascular disease (Jayakumari & Thejaseebai, 2009). 

4. Hypertension 

Previous studies have indicated that hypertension and hypercholesterolemia frequently co-

exist, causing what is known as “dyslipidemic hypertension”. The combination of these 

factors more than additively increases the risk of cardiovascular disease events compared 

with the occurrence of one alone (Wong et al., 2006). The resultant oxidative stress is 

considered a unifying mechanism for hypertension and atherosclerosis.  

Hypertension development is intrinsically linked with vascular function and structural 

changes, including endothelial dysfunction, altered contractility and vascular remodelling. 

One of the key characteristics of hypertension is increased peripheral resistance, due largely 

to a reduced lumen diameter of the resistance vessel, and a small change in diameter can 

significantly impact on vascular resistance. The small arteries and arterioles that determine 

peripheral resistance undergo both structural and functional changes in hypertension. 

Examples of these changes include endothelial function, vascular smooth muscle growth, 

extracellular matrix deposition and vascular inflammation, altering contractility and 

vascular remodelling (Paravicini & Touyz, 2006). 

4.1 Hypertension and oxidative stress 

Within the cardiovascular system the ROS have a key role including regulation of cell 

growth and differentiation, modulation of extracellular matrix production and breakdown, 

NO� inactivation and stimulation of many kinases. Many of this effects are associated with 

pathological changes observed in hypertension (Madamanchi et al., 2005). 

Patients with hypertension demonstrate increased levels of oxidative stress by-products 
together with decreased activity of endogenous antioxidants enzymes, oxidative DNA 
damage and higher levels of O2�- production. ROS are produced by all vascular types of 
cells and can be formed by numerous enzymes, such as xanthine oxidase, uncoupled 
endothelial NO synthase and NAD(P)H oxidase, that are the most relevant in vascular 
disease and hypertension. It is worth keeping in mind the function of this enzymes, the 
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xanthine oxidase catalyses the oxidation of hypoxanthine and xanthine to form O2�-, and is 
known to be present in vascular endothelium. Although xanthine oxidase-derived O2�- has 
been primarily studied in the context of ischemia-reperfusion injury and heart failure, there 
is also some evidence to suggest involvement in the endothelial dysfunction seen in 
hypertension. Nitric oxide synthase (NOS) can also contribute to ROS production, as all 
three NOS isoforms have been shown to be susceptible to the uncoupling that leads to the 
formation of O2�- (rather than NO�) under certain conditions. Many studies have shown that 
the major source of ROS in the vascular wall is nonphagocytic NAD(P)H oxidase, which 
utilizes NADH/NADPH as the electron donor to reduce molecular oxygen and produce 
O2�-. Activation of this enzyme is regulated by many vasoactive hormones, growth factors 
and mechanical stimuli (shear stress and stretch) (Higashi et al., 2009). 

The biomechanical forces influence the redox signalling. Two main forces acting on the 
blood vessel wall are shear stress (movement of blood) and stretch (luminal pressure). Shear 
stress and cyclic mechanical stretch influence vascular function and structure, in part, by 
stimulating production of NO� and ROS. Summarizing, the biomechanical forces increase 
activation and expression of endothelial NOS and stimulate production of O2�- and H2O2 

(Paravicini & Touyz, 2006). Again, remembering that O2�- and NO� can form ONOO-; 
increased vascular pressure in hypertension is associated with stretch of endothelial and 
vascular smooth muscle cells, which can directly activate NAD(P)H oxidase to generate 
ROS. This effect may be amplified by activation of the rennin-angiotensin system. Increased 
oxidative stress in response to stretch contributes to activation of pro-inflammatory 
transcription factors, activation of growth-promoting MAP kinases, upregulation of 
profibrogenic mediators and altered vascular tone, important processes contributing to the 
vascular phenotype associated with hypertension (Paravicini & Touyz, 2006).  

As discussed before, the excessive ROS have a central common pathway by which disparate 
influences may induce and exacerbate hypertension. Furthermore, a significant number of 
epidemiological and clinical trial data suggest that diets known to contain significant 
concentrations of naturally occurring antioxidants appear to reduce blood pressure and may 
reduce cardiovascular risk. Because of this, there is much interest in identifying key, 
naturally occurring antioxidants to both prevent and treat hypertension (Madamanchi et al., 
2005). As in hypercholesterolemia, the focus is on vitamins E and C, and also vitamin A. The 
interest in vitamin A derivates has turned to lycopene, a potent antioxidant found in 
tomatoes. One small study has shown a reduction in blood pressure with tomato extract-
based intervention. Vitamin C antihypertensive efficacy has been evaluated in small studies, 
showing modest reductions in blood pressure in both normotensive and hypertensive 
populations. With regard to vitamin E, small studies show either no effect or a pressor effect 
from supplementation. It is important to take care with the use of higher doses of 
supplements, since there is the risk of an antioxidant becoming pro-oxidant when used at 
high doses, for example, the ascorbate increase the risk of forming oxalate renal calculi 
(Kizhakekuttu & Widlansky, 2010). The addition of vitamins, the L-arginine, flavonoids and 
mitochondria-targeted agents are part of a target group of studies. L-arginine is an amino 
acid and the main substrate for the production of NO� from NOS, and reduced levels lead to 
uncoupling of NOS resulting in the generation O2�- (low levels could contribute to 
hypertension). L-arginine supplementation could reduce blood pressure allowing for a 
restoration of normal NO� bioavailability. There are studies demonstrating that flavonoids 
can inhibit NADPH oxidase and increase NOS-specific NO� production, but investigation 
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into the antihypertensive effects of flavonoids are inconclusive. The mitochondria-target 
agents include mainly coenzyme Q10 (CoQ) and lipoic acid. CoQ levels have been shown to 
be lower in hypertensive patients. CoQ may reduce mitochondrial O2�- production and 
reduce lipid peroxidation in plasma; CoQ supplementation was also demonstrated to 
reduce blood pressure. The potential beneficial effects of lipoic acid supplementation is 
given because it may improve coupling of NOS and has anti-inflammatory actions 
(Kizhakekuttu & Widlansky, 2010).   

5. Conclusion 

Throughout this chapter we have seen the numerous connections between heart disease, 
associated diseases and oxidative. Therefore, we cannot talk of homeostasis or change it 
without talking about redox balance. Any event that alters the delicate balance between 
defences and ROS moves the scales and triggers oxidative stress. Luckily our bodies are 
adapted to these constant changes, but only to a limited extent. Minor damage accumulates 
over the years. The fittest survive and we must be aware that not escaping natural selection, 
it continues to act upon us. 

An alert on the evaluation of data involving oxidative stress: strict criteria are needed. For 
example, studies of ascorbic acid supplementation in rats and mice should be evaluated 
very carefully since these species synthesize vitamin C, while humans do not. Extrapolation 
of this data type for the human species must be carefully evaluated if it is to have any value. 
In the case of human data it must not be forgotten that the effect of an antioxidant that 
shows promise for a patient group cannot be extrapolated to healthy humans for example. 
In addition, dietary supplements that may be beneficial for the chronically ill should not be 
recommended for healthy people. What may be an antioxidant to one group can be pro-
oxidant to another. A simple explanation of why: chemical reactions are reversible. The 
direction of the reaction in one group may be different from the direction of the reaction in 
the other group. The inclusion of a reactant or product may mean the reactions favouring or 
inhibiting the reactions that follow. 

As we have learned over the past years for various diseases that afflict humanity, coronary 
heart disease can be triggered by many environmental and genetic factors. The disease in 
itself can trigger numerous other changes altering the homeostasis of the organism. Where is 
oxidative stress involved? Is it a cause or consequence? These questions are difficult to 
answer as we cannot address this issue without being aware of the chemistry of reactive 
species; we only know them with a solid knowledge of basic chemistry, which leads us to 
basic biochemistry, a deep knowledge of cell biology, physiology and so on. Molecular 
biology and genetics will help us with information no less important. Therefore, we need 
many more research groups than in the past century and in the clinical area, 
multidisciplinary cooperation. Maybe this is the biggest challenge for the 21st century. 
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