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1. Introduction  
 

Nowadays, energy security and sustainable development are two major challenges 
encountered by the world. Renewable energy should be studied extensively to explore new 
technologies and in order to maintain secure energy sources for sustainable development, 
considering the fact that the energy demand is increasing, depleting fossil fuel reserves, with 
increasing populations and economic development.  
 
Biomass is one of the most important renewable energy sources and is considered an 
alternative to fossil fuels. Biomass thermo chemical conversion processes including 
pyrolysis, combustion, gasification and liquefaction are employed for power generation and 
production of liquid biofuels, chemicals and charcoal, which can be used as activated 
carbon. Biomass is mainly composed of carbon; recently this property has been very 
attractive for the purpose of producing functional carbon materials, which have relevant 
economic and environmental implications.  
 
Biomass resources include wood from plantation forests, residues from agricultural or forest 
production, and organic waste by-products from industry, domesticated animals, and 
human activities. The chemical energy contained in the biomass is derived from solar 
energy using the process of photosynthesis. This is the process by which plants take in 
carbon dioxide and water, using energy from sunlight, convert them into sugars, starches, 
cellulose, lignin etc., and finally oxygen is produced and released. 
 
Pyrolysis of biomass is a promising method for simultaneous production of activated 
carbon, bio-oil and gaseous fuels and other valuable chemicals, while the almost 
simultaneous pyrolysis and gasification of the fuel result in formation of solid product with 
high surface area and well-developed porous structure (Nickolov & Mehandjiev, 1995; 
Mehandjiev et al., 1997). Pyrolysis is the thermal destruction of organic macromolecules in 
the absence of oxygen in small molecules. The destructed portion comprises a high energy 
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content and significant organic content, which leads to the possibility of energy extraction as 
well as the production of activated carbon and chemicals from biomass (Prakash & 
Karunanithi, 2008). 
 
As stated in previous chapters, activated carbons are carbonaceous materials with a high 
surface area and porous structure, sometimes described as solid sponges (Abdel-Nasser & 
El-Hendawy, 2005). The large surface area results in a high capacity for adsorbing chemicals 
from gases or liquids. Activated carbons are versatile adsorbents with a wide range of 
applications such as adsorbents for treatment and purification of water, air as well as 
various chemical and natural products (Abdel-Nasser & El-Hendawy, 2005; Budinova et al., 
2006). The increasing use of activated carbon is due to the necessity of environmentally 
friendly processes and also for material recovery purposes. 
 
Chapter 1 shows that different types of biomass materials and waste products have been 
studied for activated carbon production. These precursors include wood (Ahmad et al., 
2006), coal (Lozano-Castello et al., 2005), nut shells (Lua et al., 2004), husks (Baquero et 
al.,2003), and agricultural by-products (Abdel-Nasser & El-Hendawy, 2005; Durán-Valle et 
al., 2005; Budinova et al., 2006). In addition to the use as an adsorbent, high porosity carbons 
have been recently applied in the manufacture of high-performance layer capacitors. 
Because of the introduction of rigorous environmental regulations and the development of 
new applications, the demand for porous carbons is expected to increase progressively 
(Sircar et al., 1996). Applications of pyrolysis products have some disadvantages due to the 
high degree of heterogeneity in their form and composition. Characteristics of these 
products depend on the operating conditions and the type of biomass used, so it requires 
more knowledge of the conversion process.  
 
Pyrolysis is discussed here to improve the valorisation of two Mexican typical agricultural 
wastes for energy and carbon activated production. The product characteristics, their 
relative proportions in the gas/liquid/solid phases and the process energy requirements 
depend upon the input material and the process conditions. Therefore, the goal of this 
chapter is to describe the conversion of waste biomass into activated carbon. Waste biomass 
like orange peel and pecan nut shell is converted thermally in one step. First, the biomass 
undergoes a pyrolysis process at 600 °C in nitrogen atmosphere. The gaseous and liquid 
pyrolysis products were collected as bio-oil, and then they can be used as fuel either for 
heating the facilities or for electricity production.  

 
2. Experimental method for biomass pyrolysis 
 

Bench scale experiments were carried out in a pyrolysis system with controlled temperature 
and a semi-batch stainless steel reactor. The schematic diagram of the process is illustrated in 
Figure 1. The reactor has a volume of three litters, and is externally heated by an electrical 
furnace. Pyrolysis experiments are normally performed with approximately 400 g of feedstock. 
The sample was placed inside the reactor and heated at 600 °C for one hour. The gases and 
vapours generated during pyrolysis pass through a condensation train, which consists of four 
Pyrex traps. The remaining non-condensable gases are collected and stored in a plastic 
sampling bag with a valve for future chromatography analysis. Pyrolysis product yields are 

determined by weighing the char and bio-oil. Non-condensable gases yield is calculated by the 
mass difference. Pyrolysis end temperatures were fixed at 600, 700 and 750 °C. All experiments 
were performed under nitrogen atmosphere using a flow of 60 ml/min.  
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Figure. 1. The schematic diagram of the pyrolysis batch system. T—Thermocouple and P-
Pressure transductor. 

 
2.1 Raw material 
Two types of biomass were used in the present study. Specifically, pecan nut shell was used 
as feedstock, obtained from a trading industry of nut located in the city of Torreon, Coahuila 
in the northeast of México. The orange peel sample was was obtained from a juice 
processing factory in Monterrey, N.L., México. For easy storage and management, the 
samples were cut into small pieces of an average area of 2 cm2 and dried in an air-tunnel at 
room temperature for the orange peel and in a stove for the case of nut shell. 
  
The elemental analysis of the major components was carried out in a Perkin-Elmer 2400. 
Moisture was determined by the weight loss at 105 °C for 12 h and is expressed as a weight 
percentage of the dry matter. The calorific value was obtained in a calorimetric bomb from 
Parr (model 1341) and it can be expressed in two forms: the gross or higher heating value 
(HHV) and the net calorific value or lower heating value (LHV). HHV was determined 
using the calorimeter bomb, through the determination of the temperature difference before 
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content and significant organic content, which leads to the possibility of energy extraction as 
well as the production of activated carbon and chemicals from biomass (Prakash & 
Karunanithi, 2008). 
 
As stated in previous chapters, activated carbons are carbonaceous materials with a high 
surface area and porous structure, sometimes described as solid sponges (Abdel-Nasser & 
El-Hendawy, 2005). The large surface area results in a high capacity for adsorbing chemicals 
from gases or liquids. Activated carbons are versatile adsorbents with a wide range of 
applications such as adsorbents for treatment and purification of water, air as well as 
various chemical and natural products (Abdel-Nasser & El-Hendawy, 2005; Budinova et al., 
2006). The increasing use of activated carbon is due to the necessity of environmentally 
friendly processes and also for material recovery purposes. 
 
Chapter 1 shows that different types of biomass materials and waste products have been 
studied for activated carbon production. These precursors include wood (Ahmad et al., 
2006), coal (Lozano-Castello et al., 2005), nut shells (Lua et al., 2004), husks (Baquero et 
al.,2003), and agricultural by-products (Abdel-Nasser & El-Hendawy, 2005; Durán-Valle et 
al., 2005; Budinova et al., 2006). In addition to the use as an adsorbent, high porosity carbons 
have been recently applied in the manufacture of high-performance layer capacitors. 
Because of the introduction of rigorous environmental regulations and the development of 
new applications, the demand for porous carbons is expected to increase progressively 
(Sircar et al., 1996). Applications of pyrolysis products have some disadvantages due to the 
high degree of heterogeneity in their form and composition. Characteristics of these 
products depend on the operating conditions and the type of biomass used, so it requires 
more knowledge of the conversion process.  
 
Pyrolysis is discussed here to improve the valorisation of two Mexican typical agricultural 
wastes for energy and carbon activated production. The product characteristics, their 
relative proportions in the gas/liquid/solid phases and the process energy requirements 
depend upon the input material and the process conditions. Therefore, the goal of this 
chapter is to describe the conversion of waste biomass into activated carbon. Waste biomass 
like orange peel and pecan nut shell is converted thermally in one step. First, the biomass 
undergoes a pyrolysis process at 600 °C in nitrogen atmosphere. The gaseous and liquid 
pyrolysis products were collected as bio-oil, and then they can be used as fuel either for 
heating the facilities or for electricity production.  

 
2. Experimental method for biomass pyrolysis 
 

Bench scale experiments were carried out in a pyrolysis system with controlled temperature 
and a semi-batch stainless steel reactor. The schematic diagram of the process is illustrated in 
Figure 1. The reactor has a volume of three litters, and is externally heated by an electrical 
furnace. Pyrolysis experiments are normally performed with approximately 400 g of feedstock. 
The sample was placed inside the reactor and heated at 600 °C for one hour. The gases and 
vapours generated during pyrolysis pass through a condensation train, which consists of four 
Pyrex traps. The remaining non-condensable gases are collected and stored in a plastic 
sampling bag with a valve for future chromatography analysis. Pyrolysis product yields are 

determined by weighing the char and bio-oil. Non-condensable gases yield is calculated by the 
mass difference. Pyrolysis end temperatures were fixed at 600, 700 and 750 °C. All experiments 
were performed under nitrogen atmosphere using a flow of 60 ml/min.  
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Figure. 1. The schematic diagram of the pyrolysis batch system. T—Thermocouple and P-
Pressure transductor. 

 
2.1 Raw material 
Two types of biomass were used in the present study. Specifically, pecan nut shell was used 
as feedstock, obtained from a trading industry of nut located in the city of Torreon, Coahuila 
in the northeast of México. The orange peel sample was was obtained from a juice 
processing factory in Monterrey, N.L., México. For easy storage and management, the 
samples were cut into small pieces of an average area of 2 cm2 and dried in an air-tunnel at 
room temperature for the orange peel and in a stove for the case of nut shell. 
  
The elemental analysis of the major components was carried out in a Perkin-Elmer 2400. 
Moisture was determined by the weight loss at 105 °C for 12 h and is expressed as a weight 
percentage of the dry matter. The calorific value was obtained in a calorimetric bomb from 
Parr (model 1341) and it can be expressed in two forms: the gross or higher heating value 
(HHV) and the net calorific value or lower heating value (LHV). HHV was determined 
using the calorimeter bomb, through the determination of the temperature difference before 
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and after the occurrence of the sample combustion. LHV is obtained by subtracting the 
latent heat of vaporization of the water vapor formed by the combustion from the gross or 
higher heating value. 
 
Ash residue was obtained by thermogravimetry (ASTM D5630 method). Proximate analysis 
was performed using a thermogravimetric analyzer. The sample was heated under an inert 
atmosphere at 850 °C and the weight loss during this step is the volatile matter (VM). The 
gas atmosphere is then switched to air to burn off fixed carbon (FC), while the temperature 
is reduced to 800 °C. Finally, any residue left after the system is cooled to room temperature 
and is considered ash.  

 
2.2 Product Characterization 
All the collected liquid fractions were characterized by GC/MS using an Agilent 
Technologies 6890 GC coupled to a 5973 MS. The capillary column was a HP-1, 30 m large, 
0.025 mm ID, and helium UHP as the carrier gas. A NIST library in the GC–MS chemstation 
is used as reference to identify the components of the bio-oil. The last solid residue from the 
different pyrolysis runs was analysed by elemental analysis. Figure 1 illustrates the 
schematic diagram of the process, as well as the places where the temperature and pressure 
were measured and recorded every 30 seconds by means of a data acquisition system. 

 
3. Results of biomass pyrolysis  
 

3.1 Biomass Properties 
Biomass is a complex solid material constructed from oxygen-containing organic polymers 
produced by natural process. The major structural chemical components with high molar 
masses are carbohydrate polymers and oligomers (65-75%) and lignin (18-35%). The major 
constituents consist of cellulose (a polymer glucosan), hemicelluloses (which are also called 
polyose), lignin, organic extractives and inorganic minerals.  
 
The weight percent of cellulose, hemicellulose, and lignin varies in different biomass 
species. Other biomass compounds are lipids, proteins, simple sugars and water. The 
pyrolytic chemistry differs sharply between plant carbohydrate polymers from fossil feeds 
due to the presence of large amounts of oxygen (Mohan et al., 2006). The elemental analysis 
information of the sweet orange dry peel and pecan nut shell in comparison with other 
results reported in literature are given in Table 1. The contents of C, H, O and N vary 
significantly for different types of biomass. The sulphur content in the orange peel is lower 
than the corresponding to fossil fuels like bituminous coal (4.7 %, wt.) and could be 
considered as a renewable fuel with lower emission of SOx, which causes pollution and 
climate change (Sudiro & Bertucco, 2007). Biomass has higher contents of O and H and a 
lower C content than those reported for fossil fuels. 
 
 
 
 
 
 

Biomass C H O N S H/C ratio O/C 
ratio Reference 

Almond shell 47.63 5.71 44.48 a a 1.44 0.700 Balci et al. (1993) 
Coconut shell 47.97 5.88 45.57 0.30 a 1.47 0.712 Fagbemi et al. (2001) 
Corn cob 43.04 6.32 49.26 1.02 a 1.76 0.858 Ren et al. (2009) 
Corn Cob 42.90 6.40 49.22 0.60 a 1.79 0.860 Yanik et al. (2007) 
Cottonseed 
cake 49.29 5.59 38.67 1.23 a 1.36 0.588 Özbay et al. (2001) 

Groundnut 
shell 48.27 5.70 39.40 0.80 a 1.42 0.612 Raveendran et al. 

(1996) 
Hazelnut shell 49.94 5.65 42.81 0.27 a 1.36 0.643 Balci et al. (1993) 
Hazelnut shell 50.08 5.13 41.99 1.38 a 1.23 0.629 Demirbas (2006) 
Hazelnut shell 50.34 5.84 42.33 0.40 a 1.39 0.631 Bonelli et al. (2003) 
Orange peel 39.7 6.20 53.0 0.46 0.60 1.87 1.001 Miranda et al. (2009) 
Peanut shell 46.59 6.00 43.65 2.06 a 1.55 0.703 Bonelli et al. (2003) 
Pecan nutshell 47.3 6.40 45.5 0.70 a 1.62 0.721 Present work 
Pine needles 45.81 5.38 46.11 0.98 a 1.41 0.755 Safi et al. (2004) 
Rice Straw 45.14 5.85 47.73 0.62 a 1.56 0.793 Ren et al. (2009) 
Rice Straw 43.68 5.70 39.72 0.97 a 1.57 0.682 Xiao et al. (2010) 
Sunflower shell 47.40 5.80 41.40 1.40 a 1.47 0.655 Demirbas (2006) 
Walnut shell 50.58 6.41 41.21 0.39 a 1.52 0.611 Onay et al. (2004) 
Wheat Straw 48.32 2.54 48.21 0.82 a 0.63 0.748 Ren et al. (2009) 
Xylan from 
oat spelts 43.55 5.77 46.33 4.00 0.24 1.59 0.798 Miranda et al. (2009) 

Sigmacell 35.45 5.54 57.87 0.82 0.32 1.88 1.224 Miranda et al. (2009) 
Kraft lignin 41.06 6.88 50.98 0.65 0.43 2.01 0.931 Miranda et al. (2009) 

a This data is not available 

Table 1. Elemental Analysis of different type of biomass wastes reported in literature. 
 
On the other hand, biomass contains between 36-52 %, wt. carbon while the coal carbon 
content is about 75-90 %, wt. This means that the heating value of biomass is lower due to 
the lower energy contained in carbon–oxygen and carbon–hydrogen bonds than those 
reported for carbon–carbon bonds (Baxter, 1993). 
 
An essential parameter to compare biomaterials or products derived from thermal processes 
is the elemental composition. The signicance of the O:C and H:C ratios of a material on the 
caloric value can be illustrated using a Van Krevelen diagram, see Figure 2 (Van-Krevelen, 
1950). The values for H/C and O/C depend on feedstock, operating conditions, any further 
treatment methods and water content. Figure 2 shows these ratios for various biomasses and 
products. For example, these parameters may vary significantly for different biomasses and 
they include: methanol (H/C, O/C) = (4, 1), methane (4, 0), to various biomass sources (1.2-
1.7, 0.6-0.8), pyrolysis oils (1.6, 0.35), pyrolytic carbon (0.13, 0.2) (Miranda et al., 2009), 
anthracite (0.4, 0.01), lignite (1.14, 0.24) and activated carbon (0.30, 0.04). A typical data for 
diesel/gasoline is oxygen content close to zero and H/C ratio of 1.5 to 2. 
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and after the occurrence of the sample combustion. LHV is obtained by subtracting the 
latent heat of vaporization of the water vapor formed by the combustion from the gross or 
higher heating value. 
 
Ash residue was obtained by thermogravimetry (ASTM D5630 method). Proximate analysis 
was performed using a thermogravimetric analyzer. The sample was heated under an inert 
atmosphere at 850 °C and the weight loss during this step is the volatile matter (VM). The 
gas atmosphere is then switched to air to burn off fixed carbon (FC), while the temperature 
is reduced to 800 °C. Finally, any residue left after the system is cooled to room temperature 
and is considered ash.  

 
2.2 Product Characterization 
All the collected liquid fractions were characterized by GC/MS using an Agilent 
Technologies 6890 GC coupled to a 5973 MS. The capillary column was a HP-1, 30 m large, 
0.025 mm ID, and helium UHP as the carrier gas. A NIST library in the GC–MS chemstation 
is used as reference to identify the components of the bio-oil. The last solid residue from the 
different pyrolysis runs was analysed by elemental analysis. Figure 1 illustrates the 
schematic diagram of the process, as well as the places where the temperature and pressure 
were measured and recorded every 30 seconds by means of a data acquisition system. 

 
3. Results of biomass pyrolysis  
 

3.1 Biomass Properties 
Biomass is a complex solid material constructed from oxygen-containing organic polymers 
produced by natural process. The major structural chemical components with high molar 
masses are carbohydrate polymers and oligomers (65-75%) and lignin (18-35%). The major 
constituents consist of cellulose (a polymer glucosan), hemicelluloses (which are also called 
polyose), lignin, organic extractives and inorganic minerals.  
 
The weight percent of cellulose, hemicellulose, and lignin varies in different biomass 
species. Other biomass compounds are lipids, proteins, simple sugars and water. The 
pyrolytic chemistry differs sharply between plant carbohydrate polymers from fossil feeds 
due to the presence of large amounts of oxygen (Mohan et al., 2006). The elemental analysis 
information of the sweet orange dry peel and pecan nut shell in comparison with other 
results reported in literature are given in Table 1. The contents of C, H, O and N vary 
significantly for different types of biomass. The sulphur content in the orange peel is lower 
than the corresponding to fossil fuels like bituminous coal (4.7 %, wt.) and could be 
considered as a renewable fuel with lower emission of SOx, which causes pollution and 
climate change (Sudiro & Bertucco, 2007). Biomass has higher contents of O and H and a 
lower C content than those reported for fossil fuels. 
 
 
 
 
 
 

Biomass C H O N S H/C ratio O/C 
ratio Reference 

Almond shell 47.63 5.71 44.48 a a 1.44 0.700 Balci et al. (1993) 
Coconut shell 47.97 5.88 45.57 0.30 a 1.47 0.712 Fagbemi et al. (2001) 
Corn cob 43.04 6.32 49.26 1.02 a 1.76 0.858 Ren et al. (2009) 
Corn Cob 42.90 6.40 49.22 0.60 a 1.79 0.860 Yanik et al. (2007) 
Cottonseed 
cake 49.29 5.59 38.67 1.23 a 1.36 0.588 Özbay et al. (2001) 

Groundnut 
shell 48.27 5.70 39.40 0.80 a 1.42 0.612 Raveendran et al. 

(1996) 
Hazelnut shell 49.94 5.65 42.81 0.27 a 1.36 0.643 Balci et al. (1993) 
Hazelnut shell 50.08 5.13 41.99 1.38 a 1.23 0.629 Demirbas (2006) 
Hazelnut shell 50.34 5.84 42.33 0.40 a 1.39 0.631 Bonelli et al. (2003) 
Orange peel 39.7 6.20 53.0 0.46 0.60 1.87 1.001 Miranda et al. (2009) 
Peanut shell 46.59 6.00 43.65 2.06 a 1.55 0.703 Bonelli et al. (2003) 
Pecan nutshell 47.3 6.40 45.5 0.70 a 1.62 0.721 Present work 
Pine needles 45.81 5.38 46.11 0.98 a 1.41 0.755 Safi et al. (2004) 
Rice Straw 45.14 5.85 47.73 0.62 a 1.56 0.793 Ren et al. (2009) 
Rice Straw 43.68 5.70 39.72 0.97 a 1.57 0.682 Xiao et al. (2010) 
Sunflower shell 47.40 5.80 41.40 1.40 a 1.47 0.655 Demirbas (2006) 
Walnut shell 50.58 6.41 41.21 0.39 a 1.52 0.611 Onay et al. (2004) 
Wheat Straw 48.32 2.54 48.21 0.82 a 0.63 0.748 Ren et al. (2009) 
Xylan from 
oat spelts 43.55 5.77 46.33 4.00 0.24 1.59 0.798 Miranda et al. (2009) 

Sigmacell 35.45 5.54 57.87 0.82 0.32 1.88 1.224 Miranda et al. (2009) 
Kraft lignin 41.06 6.88 50.98 0.65 0.43 2.01 0.931 Miranda et al. (2009) 

a This data is not available 

Table 1. Elemental Analysis of different type of biomass wastes reported in literature. 
 
On the other hand, biomass contains between 36-52 %, wt. carbon while the coal carbon 
content is about 75-90 %, wt. This means that the heating value of biomass is lower due to 
the lower energy contained in carbon–oxygen and carbon–hydrogen bonds than those 
reported for carbon–carbon bonds (Baxter, 1993). 
 
An essential parameter to compare biomaterials or products derived from thermal processes 
is the elemental composition. The signicance of the O:C and H:C ratios of a material on the 
caloric value can be illustrated using a Van Krevelen diagram, see Figure 2 (Van-Krevelen, 
1950). The values for H/C and O/C depend on feedstock, operating conditions, any further 
treatment methods and water content. Figure 2 shows these ratios for various biomasses and 
products. For example, these parameters may vary significantly for different biomasses and 
they include: methanol (H/C, O/C) = (4, 1), methane (4, 0), to various biomass sources (1.2-
1.7, 0.6-0.8), pyrolysis oils (1.6, 0.35), pyrolytic carbon (0.13, 0.2) (Miranda et al., 2009), 
anthracite (0.4, 0.01), lignite (1.14, 0.24) and activated carbon (0.30, 0.04). A typical data for 
diesel/gasoline is oxygen content close to zero and H/C ratio of 1.5 to 2. 
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Figure 2. Van-Krevelen diagram of various materials. 
 

Biomass Volatile   
%, wt. 

Moisture    
%, wt. 

HHV       
kJ/kg 

FC              
%, wt. 

Ash        
%, wt. Reference 

Orange peel 77.73 9.20 16829 13.07 2.94 Miranda et al. 
(2009) 

Pecan nutshell 60.00 10.28 N.D. 29.72 0.93 Guevara (2009) 
P. yezoensis 36.8 9.20 10600 22.10 31.30 Li et al. (2011) 

Wheat Straw 76.00 8.10 18910 16.40 7.60 Giuntoli et al. 
(2009) 

Rice husk 62.43 7.16 13620 14.98 15.43 Pütün et al. (2004) 
Sugarcane bagasse 84.83 a 20000 13.30 1.89 Das et al. (2004) 

Lemon peel 69.84 9.09 17734 17.22 3.85 Heikkinen et al. 
(2004) 

Rice Straw 71.70 a 17100 18.58 9.72 Xiao et al. (2010) 

Pine Wood 78.54 6.34 18600 14.66 0.46 Hassan et al. 
(2009) 

Rice Hull 61.00 1.90 a 24.00 13.00 Teng et al. (1998) 
Oat Straw 75.90 6.70 17000 0.10 17.30 Ates et al. (20089 

Beech 73.62 7.03 a 19.11 0.24 Gómez et al. 
(2009) 

Pine sawdust 80.20 7.90 a 10.80 1.10 Guoxin et al. 
(2009) 

Corn Cob 71.80 8.64 16190 17.50 2.41 Zhang et al. (2009) 
White Pine 83.00 2.40 a 14.30 0.30 Lin et al. (2010) 
White Oak 85.90 a 8313 13.60 0.50 Gaston (2011) 

a Data is not available 

Table 2. Proximate analysis of different type of biomass. 

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

0,00 0,20 0,40 0,60 0,80 1,00 1,20 1,40

A
to

m
ic

 ra
tio

, H
:C

Atomic ratio, O:C

Biomass
Lignite
Coal
Anthracite
Cellulose
Activated Carbon
Pecan nutshell oil
Orange peel char

Table 2 shows the proximate analysis and the calorific value of different materials. This set 
of analysis gives information on volatile matter (VM), ash and fixed carbon (FC) of a solid 
biofuels. VM and ash were experimentally quantified, while FC is determined by difference 
excluding the ash and moisture contents. The volatile content of a solid fuel is that portion 
released as a gas including moisture by thermogravimetry. VM and FC content provide the 
measure of chemical energy stored in a solid fuel. 
 
Calorific value is a measure of heating power and is dependent on the composition of the 
biomass. CV refers to the amount of energy released when a known volume of gas is 
completely combusted under specified conditions. The significance of the calorific value is 
that the value provides the total energy content released when the fuel is burning in air. 
Therefore, CV represents the amount of energy potentially recovered from a given biomass. 

 
3.2 Yield of pyrolysis products 
As stated, pyrolysis is the process of the thermal decomposition of organic components in 
biomass in the absence of oxygen at various temperatures. Biomass can be converted to 
biochar and bio-oil (carbon rich solid residue and light gases), which can be used to supply 
the energy requirement of pyrolysis process operations (Bridgwater, 2004; Garcia-Perez et 
al., 2008a; 2008b). Biomass pyrolysis products are a complex combination of the products 
from the individual pyrolysis of cellulose, hemicellulose, lignin and extractives; each 
component has its own kinetic characteristics. In addition, secondary reaction products 
result from cross-reactions of primary pyrolysis products and reactions between pyrolysis 
products and the original feedstock molecules (Mohan et al., 2006).  
 
Pyrolysis is one of the most thermally efficient processes to obtain liquid. The material 
balances of the pyrolysis products of different biomasses are given in Table 3.  
 
At around 700 °C, the weight loss of the orange peel pyrolysis was 78 %, wt., of which 20 %, 
wt. are light liquid hydrocarbons and 33.90 %, wt. is the heavy fraction, with 24.1 %, wt. as 
final residue and 22 %, wt. as non-condensable gases. Pyrolysis carried out at 750 °C results 
in the decrement of the char yield when the pyrolysis temperature increases, while the 
volatile content increases. From these results, it is evident that an appropriate selection of 
the heating rate, pyrolysis atmosphere and temperature will lead to more desirable end 
products. There is a good agreement between thermogravimetric weight loss data 
previously reported (Guevara, 2009; Miranda et al., 2009) and the data from the fixed bed 
reactor set-up. Therefore, these results will be helpful for designing and operating a 
pyrolysis plant of biomass. Bio-oil production converts up to 50-90 %, wt. of biomass energy 
into the liquid (Huber et al., 2006), which is favorable for fuel handling and transport. 
 
Table 3 shows that yield and composition of pyrolysis products may vary depending on 
feedstock (Chiaramonti et al., 2007), reactor configurations and pyrolysis conditions (Lou et 
al., 2004; Bridgwater et al., 2007; Garcia-Perez et al., 2007a, 2007b). Low temperature and 
long volatiles residence time promote the production of biochar. A high temperature and 
long residence time increase the cracking of volatiles and, hence gas yield, while a moderate 
temperature and a short volatiles residence time are optimum for producing bio-oil 
(Bridgwater et al., 2007). On the other hand, biochar is a good alternative solid fuel for 
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bioenergy production. Higher temperatures lead to lower char yield in all pyrolysis 
reactions, where the temperature is the main controlling variable of pyrolysis reaction 
kinetics (Antal & Grønli, 2003). 
 

Biomass Reactor Temperature   
°C 

Yield %, wt.  Reference 
solid Liquid Gas 

Orange 
peel 

Semi-
continuous 

700 
750 

22.0 
20.4 

53.9 
55.3 

24.1 Present work  
24.3 

Pecan 
nutshell 

Semi-
continuous 

600 
700 
750 

28.0 
25.8 
20.7 

49.2 
50.4 
54.5 

22.8 
23.8 
22.8 

Present work 

Corn cob Tubular 600 24.0 34.0 42.0 Cao et  al. (2004) 
Rice husk Fluidized bed 400 

450 
500 
550 
600 

33.0 
32.0 
29.0 
26.8 
25.5 

46.5 
43.5 
37.0 
28.5 
21.5 

6.5 
10.0 
17.5 
25.4 
34.5 

Williams & 
Nugranad 
(2000) 

Olive pit Batch 600 29.0 18.0 53.0 Zabaniotou et  
al. (2000) 

Rice 
straw 

Free-fall  800 84.3 1.0 14.7 Zanzi et al. 
(2002) 

Rice husk Fluidized bed 420 
450 
480 
510 
540 

35.0 
29.0 
24.0 
21.0 
18.0 

53.0 
56.0 
56.0 
33.0 
49.0 

12.0 
15.0 
20.0 
26.0 
33.0 

Zheng et  al. 
(2006) 

Almond 
shell 

Fixed bed 300 
400 
500 
600 
700 
800 

47.3 
30.6 
26.0 
23.5 
21.7 
21.5 

41.3 
53.1 
49.3 
44.3 
36.3 
31.0 

11.4 
16.3 
24.7 
32.2 
42.0 
47.5 

González et al. 
(2005) 

Rice 
straw 

Fluidized bed 400 
412 

23.0 
32.0 

57.0 
50.0 

20.0 
18.0 

Lee et al. (2005) 

Pecan 
nutshell 

Not available 480 
400 

17.0 
33.0 

23.0 
44.0 

50.0 
23.0 

Manurung et al. 
(2009) 

Physic 
nutshell 

Fixed bed 500 
600 
700 
800 

45.0 
42.0 
42.0 
41.0 

30.0 
29.0 
27.0 
26.0 

25.0 
29.0 
31.0 
33.0 

Sricharoenchaik
ul et al. (2008) 

Table 3. Pyrolysis yields for various biomasses at different conditions. 
 
 

 

3.3 Characterization of bio-oils 
Bio-oil is clean, cost-effective, CO2-neutral, and easy to transport and has low sulfur content, 
making biomass a dominant choice for the replacement of fossil fuels (Nader et al., 2009). 
Pyrolysis oils are composed of differently sized molecules, which are derived primarily 
from the de-polymerization and de-fragmentation reactions of the components of the 
original biomass, mainly cellulose, hemicellulose and lignin (Mohan et al., 2006; Neves et al., 
2011). A chromatogram of the bio-oil orange dry peel pyrolysis is shown in Figure 3, where 
the main peak is located at a retention time of 16.3 min, which is identified as -limonene. 
Table 4 and 5 show the composition of the liquid fractions obtained from the pyrolysis of 
orange peel and pecan nut shell by GC/MS (see Figures 3 and 4). Nearly, all the components 
are aromatic compounds. The molecular chains of complex compounds in the orange peel 
have been broken, generating compounds with a carbon number range of 6–16, see Table 4. 
 

 
Figure 3. GC–MS spectrum of the bio-oil from dry orange peel pyrolysis bio-oil.  
 

Peak Retention time, min Identified Compound 
1 4.00 Benzene 
2 5.53 Toluene 
3 9.43 2-methyl- 2-Hexanol 
4 10.01 Ethylbenzene 
5 10.25 p -Xylene 
6 11.18 Styrene 
7 11.74 2-Cyclopenten-1-one,2-methyl- 
8 12.35 1R-Pinene 
9 13.57 Benzene 1-ethyl-3-methyl- 
10 14.68 Phenol 
11 14.83 -Pinene  
12 16.30 -limonene  
13 16.96 Phenol, 2-methyl- 
14 36.51 n-Hexadecanoic acid 

Table 4. Main components of bio-oil from orange peel pyrolysis identified by GC–MS. 
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bioenergy production. Higher temperatures lead to lower char yield in all pyrolysis 
reactions, where the temperature is the main controlling variable of pyrolysis reaction 
kinetics (Antal & Grønli, 2003). 
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Figure 4. GC–MS spectrum of the bio-oil from dry nut shell pyrolysis bio-oil.  
 
Pyrolysis oil from biomass is a red-brown liquid with pH 3 and 4. Table 7 reports the 
properties of the pyrolitic oil from both biomasses under study. The oil contains the de-
fragmented parts of the oxygenated components of the original biomass structure (mainly 
cellulose, hemicellulose and lignin). The bio-oil contains oxygen in the range of of 28-40%, 
wt. oxygen on a dry basis. The bio-oil (i.e., organic phase) has 32 to 42 heating value (MJ/kg) 
HHV, which is low heating value with respect to fossil fuels. Similar results are reported by 
literature (Diebold, 2000; Czernik & Bridgwater, 2004; Oasmaa & Meier, 2005; Oasmaa et al., 
2005). 
 

Peak Retention Time, min Identified compound 
1 3.144 Benzene, 1,3-bis(3-phenoxyphenoxy)- 
2 5.124 Toluene 
3 5.953 2-Pentanone, 3-methylene- 
4 9.221 Benzene, (1-methylethyl)- 
5 11.487 Limonene 
6 12.677 Phenol, 2-methoxy- 
7 14.422 Phenol, 2-methoxy-4-methyl- 
8 15.732 Phenol, 4-ethyl-2-methoxy- 
9 16.264 2-Methoxy-4-vinylphenol 
10 16.762 Phenol, 2,6-dimethoxy- 
11 18.095 Phenol, 2-methoxy-4-(1-propenyl)- 
12 18.799 Phenol, 2,4-bis(1,1-dimethylethyl)- 
13 21.088 Phenol, 2,6-dimethoxy-4-(2-propenyl)- 

Table  5. Main components of bio-oil from nut shell pyrolysis identified by GC–MS. 
 
 
 

Properties of pyrolytic oil Nut shell Orange peel 
Water content (%-wt.) 30 35 
Acidity (pH) 3 4 
Elemental composition (%,wt.)  
C 
H 
O 
N 

 
62.40 
8.42 
28.72 
0.30 

 
53.90 
6.00 
40.0 
0.10 

Ash content (%, wt.) 0.10 0.10 
Heating value (MJ/kg) HHVa 32.98 42.70 

a HHV from organic fraction 

Table 6. Properties of pyrolysis bio-oils from nutshell and orange peel. 
 
Pyrolysis liquids are formed by rapidly and simultaneously depolymerizing and 
fragmenting cellulose, hemicellulose, and lignin with a rapid increase in temperature 
followed by a condensation system in order to collect all condensable volatiles. If the 
residence time at high temperature was extended, many products would further react 
(degrade, cleave, or condensate with other molecules). Bio-oils contain many reactive 
species, which contribute to unusual attributes (Mohan et al., 2006). Chemically, bio-oil is a 
complex mixture of components and is difficult to analyze and characterize. Different 
classes of chemicals are reported in literature such as: water, guaiacols, catecols, syringols, 
vanillins, furancarboxaldehydes, isoeugenol, pyrones, acetic acid, formic acid, and other 
carboxylic acids. Bio-oil also contains other major groups of compounds, including 
hydroxyaldehydes, hydroxyketones, sugars, carboxylic acids, and phenolics. Oligomeric 
species in bio-oil are derived mainly from lignin, but also from cellulose (Mohan et al., 2006; 
Oasmaa et al., 2005). 
 
Due to the presence of large amounts of (potentially) highly reactive components, the bio-oil 
is unstable and tends to separate and forms solids upon storage. Phase separation is 
promoted by higher temperatures and appears to be faster when the amount of water in the 
oil is low. Severe polymerization of the oil will result in the formation of char. Distillation 
also causes undesirable chemical changes leading to the formation of large amounts of solid 
material. The non- condensable gas products obtained by biomass under study are a 
mixture of carbon dioxide, carbon monoxide, hydrogen, methane and small amounts of 
other lighter hydrocarbons, similar to those reported in literature (Bridgwater et al., 1999; 
Bridgwater & Peacocke, 2000). 

 
4. Conclusion  
 

Pecan nut shell and orange peel are excellent feedstocks for production of energy and  
value-added products. Biomass residues store a large amount of energy, which can be 
converted to several forms of usable energy through a number of commercially available 
processes. Pyrolysis is believed to be the reasonable choice to convert orange peel and pecan 
nut shell residues to liquid fuels, biocha, and activated carbons. The biomass solid waste in 
the form of pecan nut shell and orange peel is successfully converted into liquid, char and 
gas by fixed bed pyrolysis system. The heating value of the pyrolysis oil is found to be 32.98 
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MJ/kg for pecan nut shell and 42.70 MJ/kg for orange peel bio-oil, which is higher than 
other biomass-derived pyrolysis oils and also significantly higher than that obtained for the 
original waste. The maximum liquid yield is found to be 55.3 %, wt. and 54.5 wt% of dry 
biomass feedstock at the temperature range of 700-750°C and 600-750°C for orange peel and 
pecan nut shell, respectively. The oil from the biomass under study may be considered as an 
important important potential potential source of alternative fuel. A lot of research and 
development process will be necessary in this topic. However, this will occur with greater 
economic incentive and the climate change regulation will promote research activities in this 
direction.  
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MJ/kg for pecan nut shell and 42.70 MJ/kg for orange peel bio-oil, which is higher than 
other biomass-derived pyrolysis oils and also significantly higher than that obtained for the 
original waste. The maximum liquid yield is found to be 55.3 %, wt. and 54.5 wt% of dry 
biomass feedstock at the temperature range of 700-750°C and 600-750°C for orange peel and 
pecan nut shell, respectively. The oil from the biomass under study may be considered as an 
important important potential potential source of alternative fuel. A lot of research and 
development process will be necessary in this topic. However, this will occur with greater 
economic incentive and the climate change regulation will promote research activities in this 
direction.  
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