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1. Introduction 

The field of measurement technology in the sensors domain is rapidly changing due to the 
availability of statistical tools to handle many variables simultaneously. The phenomenon 
has led to a change in the approach of generating dataset from sensors. Nowadays, multiple 
sensors, or more specifically multi sensor data fusion (MSDF) are more favourable than a 
single sensor due to significant advantages over single source data and has better 
presentation of real cases. MSDF is an evolving technique related to the problem for 
combining data systematically from one or multiple (and possibly diverse) sensors in order 
to make inferences about a physical event, activity or situation. Mitchell (2007) defined 
MSDF as the theory, techniques, and tools which are used for combining sensor data, or 
data derived from sensory data into a common representational format. The definition also 
includes multiple measurements produced at different time instants by a single sensor as 
described by (Smith & Erickson, 1991).  

Although the concept of MSDF was first introduced in the 1960s and implemented in the 
1970s in the robotic and defense application, today, the application of MSDF has proliferated 
into various nonmilitary applications. However the method is still disparate, where it is 
impossible to create a one-fits-all data fusion framework. The applications of MSDF are now 
multidisciplinary in nature. Some specific applications of MSDF include multimodal 
biometric systems using face and palm-print (Raghavendra et al., 2011); renewable energy 
system (Li et al., 2010); color texture analysis (Wu et al., 2007); face and voice outdoor multi-
biometric system (Vajaria et al., 2007); medical decision making (Harper, 2005); image 
recognition (Sun et al., 2005), road traffic accidents (Sohn et al., 2003); and personal 
authentication (Duc et al., 1997; Kumar et al., 2006). 

MSDF technique has become as a prominent tool in food quality assessment. Quality 
assessment in food processing industries aims to guarantee the standard and safety control 
of food products. Traditional approach of exploiting trained human panels to evaluate 
quality parameters can be replaced by artificial sensors. An example of artificial sensor 
receiving great interest from researcher in these industries is the electronic nose (i.e. e-nose) 
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sensor that mimics the function of human smell. In the context of MSDF, usually e-nose is 
applied with another sensor called electronic tongue (i.e. e-tongue) which imitates the 
human taste function. Several applications of e-nose and e-tongue in food research include 
flavor sensing system (Cole et al., 2011); honey classification (Zakaria et al., 2011); 
classification of orthosiphon stamineus (Zakaria et al., 2010); detection of polluted food 
(Maciejak et al., 2003); discrimination of standard fruit solutions (Boilot et al., 2003); quality 
control of yoghurt fermentation (Cimander et al., 2002); and discrimination of several types 
of fruit juices (Winquist et al., 1999).  

It is believed that the application of MSDF such as the fusion of e-nose and e-tongue, may 

overcome some drawbacks of using trained human panels especially for on-line food 

production. The use of artificial sensors is capable of overcoming human exhaustion and 

stress, minimize between-panels variability, and obviously human panels are not suitable for 

online measurements. Thus, this chapter focuses on the application of Principal Component 

Analysis (PCA) and Linear Discriminant Analysis (LDA) in MSDF. Two models of MSDF 

proposed by Hall (1992) namely low level data fusion and intermediate level data fusion are 

proposed in order to identify and classify different types of pure honey, beet sugar, cane sugar 

and adulterated samples (i.e. mixtures of pure honey with cane sugar and beet sugar). This 

chapter also aim to provide a concept to the constructive and lists some advantageousness of 

PCA in the application of MSDF especially in the analysis of multivariate data. 

1.1 The fusion of artificial sensors  

The appreciation of food is basically based on the combination of many human senses 

including sight, touch, sound, taste and smell. However, due to the expensive cost of having 

panels of trained expert to evaluate food quality parameters, a more rapid technique for 

objective measurement of food products in a consistent and cost-effective manner is highly 

needed in the food industry (Winquist et al., 2003). Two human senses that are believed to 

be closely correlated in the perception of flavour are the sense of smell and taste. The e-nose 

and e-tongue have been defined as the artificial sensing systems capable of producing a 

digital fingerprint of a given chemical ambient (D’Amico, 2000). Both devices consist of 

chemical sensor arrays coupled with an appropriate pattern recognition system capable of 

extracting information from complex signals (Buratti et al., 2004).  

Basically, an e-nose is formed by having an array of gas sensors with different selectivity, a 

signal collecting unit and suitable pattern recognition software, all controlled and executed 

by a computer. The principle of e-tongue is similar to that of the e-nose, except for the array 

of sensors designed for liquids (Cosio et al., 2007). The ultimate task of these sensors is to 

collect the digital fingerprint or signals that would be further interpreted using multivariate 

statistical tools before the objective of the fusion approach is attained. One of the most 

popular exploratory data analyses in chemical sensors is PCA (Di Natale et al., 2006). PCA is 

a procedure that permits to extract useful information from the data, to explore the data 

structure, the relationship between the objects and features, and the global correlation of the 

features. Further details of PCA are described in Section 2. The selected principal 

components based on certain criteria will be used as an input for classification procedure 

using linear discriminant analaysis (LDA). Further descriptions of this technique are 

illustrated in section 3 of this chapter.  
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The selected architecture of MSDF in this research focuses on the approach of identity 
fusion. Identity fusion is a fusion of parametric data to determine the identity of an observed 
object. Our interest is to convert multiple sensor observations of a target attributes (such as 
e-nose and e-tongue responses) to a joint declaration of target identity. One of the key issues 
in developing an MSDF system is to determine the stage or phase in the data flow to 
combine or fuse the data (Hall & Llinas, 1997). In an identity fusion, Hall (1992) suggested 
three frameworks to be applied; (i) low level data fusion (or data level fusion); (ii) 
intermediate level data fusion (or feature level fusion); and (iii) high level data fusion (or 
decision level fusion). However, for the purpose of this discussion only data level and 
feature level fusion are discussed.   

1.1.1 Low level data fusion 

In low level data fusion, the e-nose and e-tongue sensors observe the target objects 

independently, and later the raw sensor data (i.e. original data collected from each sensor) 

are combined. In order to fuse raw sensor data, the original sensor data must be 

commensurate i.e. must be observations of similar physical quantities (Hall et al., 1997). 

Sometimes, the number of features recorded by the e-nose and e-tongue are different, but 

the raw sensor data can still be fused if both datasets are of  the same sample size (equal n). 

It is important to ensure the new dataset is formed from the original non-normalized data. A 

framework of low level data fusion is illustrated in Fig. 1.  

 

Fig. 1. Framework of low level data fusion by Hall (1992) 

It is believed that the low level data fusion in identity fusion provides the most accurate result 
(Hall et al., 1997). This may be due to the fact that the originality information from each sensor 
is maintained and used in further processes. Thus, low level data fusion is potentially more 
accurate than the other two fusion methods. However, the difficulties in the application of low 
level data fusion method are due to the noise that frequently occurs in the sensor data and 
redundant data, which have an adverse effect on the classification results.  

1.1.2 Intermediate level data fusion 

This approach consists of extracting features from the signals of each sensor to yield feature 
vectors. Then, the feature vectors are fused and identity declaration is made based on the 
joint feature vectors. The identity declaration process includes techniques such as 
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knowledge-based approach that includes expert system and fuzzy logic, or training-based 
approach like discriminant analysis, neural network, Bayesian technique, k-nearest 
neighbors and centre mobile algorithms. Fig. 2 illustrates the framework of the intermediate 
level data fusion.   

 

 

Fig. 2. Framework of intermediate level data fusion by Hall (1992) 

It is important to note that both low and intermediate level data fusion apply feature 

extraction in transforming the raw signals provided by the sensor into a reduced vector of 

features describing parsimoniously the original information. Then, in the identity 

declaration, a quality class is assigned to the signals based on the feature extraction result. 

2. Principal component analysis 

Principal component analysis (PCA) was first described by Karl Pearson in 1901. A 

description of practical computing methods came much later from Harold Hotelling in 1933 

(Manly, 2004). The idea of PCA is to keep the variation of the number of p original features 

into a fewer number of k unobservable variables (k ≤ p), which is termed as principal 

components, as maximum as possible. Let Table 1 below describes the original data of a 

sensor data set with n objects each was observed with p features.  

 

Case 
1X  2X    pX  

1 
11X  12X  . 

1pX  

2 
21X  22X  . 

2 pX  

. . . . . 

. . . . . 

. . . . . 

n 
1nX  2nX    npX  

Table 1. The form of data for a principal component analysis with p features on n cases 
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The aim of PCA is to find a new set of variables, say 1 2Z ,Z , ..., Zi  in a form of a linear 

combination of X’s which is Z α X T .Here, 1 2Z (Z ,Z ,..,Z ) p  is a vector of principal 

components and αT  is a matrix of coefficients ij  for 1,2,.., pƌ,ƍ . 

The first principal component ( 1Z ) is the linear combination of the original features which 

mathematically written as 1 11 1 12 2 1Z X X ... X       p p , assemble as the largest as 

possible of variance of p features subject to the condition that 2 2 2
11 12 1... 1      p . Then, 

the second principal component ( 2Z ) is chosen to have the property of having the second 

largest possible variance of 1 2X ,X ,...,Xp  while being uncorrelated with the first component 

( 1Z ). The remaining principal components are defined similarly, with the jth principal 

component having the largest possible variance given that it is uncorrelated with the ith  

principal component for i < j. Let i  be the variance (eigenvalues) of iZ , and ij  be the 

eigenvectors of iZ  where , 1, 2, ,i j p  , then these conditions hold for the eigenvalues and 

eigenvectors:  

 1 2 ... 0i       (1) 

 1T
i i    (2) 

 0T
i h     where i j  (3) 

Before we proceed to discuss on the issue of reducing the dimension intended for further 
analysis, it is a need to understand which matrix of information should be used, either a 
correlation matrix or a covariance matrix to allow for a computation of principal 
components. One should clearly understand when to use either one of the input matrix as 
often the results of these two are different. The next sections 2.1 and 2.2 briefly discuss the 
guidelines.  

2.1 Information matrix for principal component analysis 

2.1.1 Principal component using covariance matrix 

An implicit assumption when using covariance matrix as an input is that the features should 
not have grossly different variances. Such differences in variance might arise because of 
different scales of measurements, different magnitude of measurements, or some 
combination of the two factors (Krzanowski, 2000). If they do, then the first few principal 
components will be pulled toward those features with the larger variances (Dillon & 
Goldstein, 1984).  

In such cases, the data should be standardized and it means the correlation matrix is used 

in the PCA. As a general guideline, it would seem sensible to standardize first whenever 

the measured features show differences in variances, or whenever the user is concerned 

with very different measured entities or units (Krzanowski, 2000). However, 

transformation on the original data would result PC scores of a different meaning 

(Martinez & A.R. Martinez, 2001). Obviously, the big drawback of PCA based on 

covariance matrix is the sensitivity of the PCs to the units of measurement used for each 

element of X (Jolliffe, 2002). 
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2.1.2 Principal component analysis using correlation matrix 

PCA aims to create linear combination of new variables that are uncorrelated to each other, 
thus, if the correlation matrix portrays nearly small correlation, then there is probably not 
much point in carrying PCA (Chatfield & Collins, 1980). PCA calculation based on 
correlation matrix is suitable for features with unequal scales of measure. One way to trace 
unequal scales is through wide differing variances among the features. In computing a 
correlation coefficient between two features, differences due to the mean and the dispersion 
of the features are removed (Dillon & Goldstein, 1984). This is recommended as the original 
features are all standardized to unit variance (Borgognone et al., 2001).  

Therefore, data that is used to calculate PCA for correlation input does not need any 
transformation as it is applied automatically in the correlation computation. However, a 
disadvantage in using correlation matrix to calculate the principal components are that they 
give coefficients for standardized variables and are therefore less easy to interpret directly. 
Thus, to interpret the principal components in terms of the original variables, each 
coefficient must be divided by the standard deviation of the corresponding variables 
(Jolliffe, 2002).  

2.2 Deciding the number of components to retain 

Mathematically, the choice of values for coefficients α  is subjected to the restrictions given in 

equations (2) and (3). Thus, the obtained principal components are in decreasing order of 

variance, 1 2 1 2var(Z ) var(Z ) ... var(Z ) ...         p p . In practice, only the first k 

numbers of principal components account for most of the variability of the original data, thus 

keeping all the p principal components sound impractical. This mean, only the first k principal 

components will be used in further analysis while the p-k principal components will be 

ignored. However, there is no universally accepted method to do so because the decision is 

largely judgemental and a matter of taste (Dillon & Goldstein, 1984). A number of procedures 

to determine k have been suggested. Among the most common procedures are as follows. 

2.2.1 Average eigenvalue 

The most common criterion to determine the number of informative principal components 
in PCA is the Guttman-Kaiser criterion (Jackson, 1993). Principal components associated 

with eigenvalues (  ) derived from a covariance matrix which are larger in magnitude than 

the average of the eigenvalues, are retained. In the case of eigenvalues derived from a 
correlation matrix, the average is 1.0 for the variables to retain. Therefore, any principal 
component associated with an eigenvalue whose magnitude is greater than or equal to 1.0 is 
choosen for further analysis. However, Rencher (1998) warned that this method works well 
in practice but when it identifies wrongly, it is likely to retain too many components. It is 
well known as simple and the most suitable criterion to be applied especially when 
confronted with numerous variables. 

2.2.2 Proportion of total variance explained 

In a PCA model, each eigenvalue represents the level of variation of the original features 
explained by the associated principal components. Another popular decision criterion is 
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based on the proportion of the total variance explained by the principal components 
retained in the model. If k-components are retained, then we may represent the cumulative 
variance explained by the first k principal components by, 

 1

i
1

k

i
i

k p

i

t








   (4) 

Often, the researcher decides on a satisfactory value for tk and then determines k 
accordingly. The obvious problem with the technique is to decide on an appropriate tk. In 
practice, it is common to select from 70% to 90% (Jolliffe, 2002). Because of such obviously 
arbitrary, this approach has sometimes been criticized for its subjectivity (Kim & Mueller, 
1978). While Jackson (1993) strongly argues against the use of this method except possibly 
for exploratory purposes when little are known about the population of the data. 

2.2.3 Scree plot 

Perhaps much easier decision on k can be made based on graphical approaches as suggested 
by Cattell (1966) called the scree plot. A scree plot is a plot of the eigenvalues versus the 
index of the eigenvalue. With this approach, the eigenvalues of each component are plotted 
in successive order of their extraction, and then an elbow in the curve is identified by 
applying a straightedge to the bottom portion of the eigenvalues to see where they form an 
approximate straight line (Dillon & Goldstein, 1984).  

The value of k is given by the point at which the components curve above the straight line 
formed by the smaller eigenvalues. Fig. 3 shows a case in which k is equal to three and the 
straight line (shallow) begins at the forth until the last component. As we can observe from 
Fig. 3, the third component is marked exactly at eigenvalue is equal to 1. Dillon and 
Goldstein (1984) argue that this method is inconclusive when there is no obvious break or 
there may be several breaks. And it become more troublesome when two breaks occur 
among the first half of the eigenvalues, since it will be difficult to decide which of the breaks 
reflect the correct number of components.  

 

Fig. 3. Illustration of the scree plot. 

www.intechopen.com



 
Principal Component Analysis – Engineering Applications 

 

8 

3. Linear discriminant analysis 

Linear discriminant analysis or discriminant function analysis or in short discriminant 
analysis is a supervised technique for classifying objects into two or more groups, given the 
measurements for these objects is from several features (i.e. sensor responses). It involves 
deriving linear combinations of the independent features that will discriminate between the 
a priori defined groups in such a way that the misclassification error are minimized (Dillon 
& Goldstein, 1984). The discrimination can be accomplished by maximizing the between 
group variance relative to the within-group variance. The basic discriminant analysis is the 
one that involves only two-group problem which was first suggested by R. A. Fisher (1936). 
In the two-group problem, the aim is to find a single linear composite of the predictor 
features that could discriminate between the two groups. The linear composite then acts as a 
new axis along which the groups were maximally separated.  

In reality, we may encounter discrimination problems of more than two groups which 
require an extension of the basic discriminant analysis called the multiple discriminant 
analysis. The goal in multiple discriminant analysis is much similar with discriminant 
analysis for two groups. Dillon and Goldstein (1984) describe in general, with k groups and 
p predictor features, there are in total, min(p, k-1) possible discriminant functions (i.e. linear 
composites). In most applications, since the number of features (p) is exceeding the number 
of groups (k), at most k-1 discriminant functions will be considered. However, not all of 
these functions show statistically significant variation among the groups, and fewer than k-1 
discriminant functions is actually needed. Likewise in forming principal components in 
PCA, discriminant functions are generated so that the scores of each new discriminant 
function are uncorrelated with the scores of previously obtained discriminant function. 
Thus, each linear composite is the new single function that maximizes the ratio of the 
between-groups to within-groups variability, accordingly. Besides, the discriminant 
functions are extracted in a decreasing order of accounted variation. 

There are assumptions that need to be considered by researchers for obtaining optimal 
procedure in the sense of producing smallest misclassification error rate. According to 
Dillon and Goldstein (1984), for optimality, we assume (i) multivariate normality of the p 
predictor features, and (ii) equal variance-covariance matrices in each of the k groups. They 
added that the objectives of multiple discriminant analysis are for the most part is the 
generalizations of those of the two-group problem. Among others it includes: 

i. To find the linear composites with as large as possible between-groups variability 
subject to each uncovered linear composites being uncorrelated with previously 
extracted composites. The accounted variations for all linear composites are in 
decreasing order. 

ii. To determine whether the group centroids are statistically different.  
iii. To determine the number of discriminant functions that is statistically significant. 
iv. To successfully assign new signal or observation to one of the several groups. 
v. To determine the predictor features that contributes most for discrimination among 

groups. 

The goal in constructing classification rules is to minimize the mistakes in assigning new 
signals to its groups. Less mistakes means less error for the classification rules to correctly 
allocate the signals. In real problem, often one has a set of data to be discriminated 
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accordingly to g groups. However, using the same data for constructing a rule and 
evaluating a rule is biased. As the matter of fact, it does not mimic the real use of 
discrimination rule to classify a future object where the rule is constructed based on the 
existing data. There are some techniques that can be considered in an attempt to avoid such 
bias. Some of the techniques are re-substitution method, cross validation method which is 
also known as sample-splitting method and leave-one–out method. Lachenbruch and 
Mickey (1968) in (Krzanowski, 2000) proposed the leave-one-out method that was believed 
to be able to overcome most problems inherent in the previous two methods. The technique 
consists of determining the allocation rule using the sample data minus one observation and 
then using the subsequent rule to classify the omitted observation. Repeating this procedure 
by omitting each of the individuals in the two training set in turn yields, an estimate of the 
error rates, the proportions of misclassified signals in the two training sets. 

4. Materials and methods 

The experiment was implemented in the Sensor Laboratory, Centre of Excellence for 
Advanced Sensor Technology, University Malaysia Perlis. The aim is to identify and classify 
different types of pure honey, beet sugar, cane sugar and adulterated samples (i.e. mixtures 
of pure honey with cane sugar and beet sugar) by applying the low level data fusion and 
intermediate level data fusion. PCA was employed to reduce the data dimension and 
further classification was fulfilled by LDA.   

4.1 Sample selection and preparation 

In this experiment, 10 different brands of Tualang honey were purchased from the local 

market with three different batches of each particular honey. While for the adulteration 

purposes, two types of sugar solution namely beet sugar and cane sugar were imported 

from Germany and United Kingdom respectively. Display of pure honey and sugar are 

illustrated in Fig. 4 and all honey and sugar samples are summarized in Table 2. 

Item Descriptions Group 

AG Agromas 1 
AS As-Syifa 1 
ST Syair Timur 1 
T3 Tualang 3 1 
TB Tayyibah 1 
TK Tualang King 1 

TLH Tualang TLH 1 
TN Tualang Napis 1 
WT Wild Tualang 1 
YB Yubalam Bahtera 1 
BS Beet Sugar 2 
CS Cane Sugar 3 

XXBS Pure Honey + BS 4 (20%), 5 (40%) 
XXCS Pure Honey + CS 6 (20%), 7 (40%) 

Table 2. Description and abbreviation of honey samples, sugar and adulterated samples 
used in the experiments 
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Based on the three different batches of each pure honey, three samples of 5ml was prepared 
for further measurement. For adulteration samples, each pure honey was mixed with sugar 
of different concentration (i.e. 20% and 40%) as shown in Table 3. Each pure sugar was also 
measured. Each sampling of pure honey, sugar and adulterated were repeated ten times. In 
total there were about 172 samples of pure honey, pure sugar and adulterated mixtures.  

 

Percentage of 
Pure Honey 

Descriptions 

20% pure honey 1:4 (ratio of pure honey /sugar solution) 
40% pure honey 2:3 (ratio of pure honey /sugar solution) 

Table 3. Description of mixture for different samples of honey and sugar 

 

Fig. 4. Display of different samples of honey and sugar 

4.2 Electronic nose setup and measurement 

The e-nose used was Cyranose320 from Smith DetectionTM, consists of 32 non-selective 
sensors of different types of polymer matrix, blended with carbon black composite, 
configured as an array. It can be trained to analyze both simple and complex vapor mixtures 
with equal ease. When the sensors are exposed to vapors or aromatic volatile compounds 
they swell, changing the conductivity of the carbon pathways and causing an increase in the 
resistance value that is monitored as the sensor signal. The resistance changes across the 
array are captured as a digital pattern i.e. representative of the test smell (Dutta et al., 2006).   

The e-nose setup for this experiment is illustrated in Fig. 5 and the setting of the sniffing 
cycle is also indicated in Table 4. Each sample was drawn from the bottle using 10ml syringe 
and kept in a 13 x 100 mm test tube and seal with a silicone stopper. Each sample was 
replicated ten times. Before measurement, each sample was placed in a heater block and 
heat up for 10 minutes to generate sufficient headspace volatiles. The temperature of sample 
was controlled at 50  °C during the headspace collection.  

Preliminary experiments were performed to determine the optimal experimental setup for 
the purging, baseline purge and sample draw durations. Ten seconds baseline purge with 40 
seconds sample draw produced an optimal result (result is not shown). Baseline purge was 
set longer to ensure residual gases were properly removed since all the samples are in a 
liquid form and contains moisture. The pump setting was set to medium speed during 
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sample draw. The filter used is made up of activated carbon granules and has large surface 
area which is effective to remove a wide range of volatile organic compounds and moisture 
in the ambient air. The experiment was carried out using e-nose for a variety of honey 
samples followed by sugar and adulterated samples.  

 

Fig. 5. E-nose setup for headspace evaluation of honey, sugar concentration and adulteration 
sample 

 

 
Sampling 

Setting 

Cycle Time (s) Pump Speed 

Baseline Purge 10 120 mL/min 
Sample Draw 40 120 mL/min 

Idle Time 3 - 
Air Intake Purge 40 120mL/min 

Table 4. E-nose parameter setting for honey, sugar and adulterated samples assessment 

4.3 Electronic tongue setup and measurement 

The chalcogenide-based potentiometric e-tongue was made up of eleven distinct ion-

selective sensors from Sensor Systems (St. Petersburg, Russia). The e-tongue system shown 

in Figure 6 was implemented by arranging an array of potentiometric sensors around the 

reference probe. Table 5 describes the potentiometric sensors used in this experiment. Each 

sensor output was connected to the analogue input of a data acquisition board (NI USB-

6008) from National Instruments (Austin TX, USA). 

A 10% (w/v) solution of honey in distilled water was prepared and stirred for 3 minutes at 
1000rpm before making any measurements. Each sample was replicated ten times. For each 
measurement, the e-tongue was steeped simultaneously and left for two minutes, and the 
potential readings were recorded for the whole duration. After each sampling, the e-tongue 
was rinsed twice using distilled water (stirred at 400rpm for two minutes) to remove any 

C320 

HTS320 

Ambient Air 

Charcoal 
Filter 

Purge 
Inlet 

Purge Outlet 

Headspace 
Inlet 

Sample Inlet 

Digital Hotplate 
Stirrer 

Honey 

Heating Block 

Computer 
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sticky residues from previous sample sticking on the sensor surface to avoid contaminating 
of the next sample. 

 

Fig. 6. E-tongue setup for headspace evaluation of honey, sugar concentration and 
adulterated sample 

 

Sensor Label Description 

Fe3+ Ion-selective sensor for Iron ions 

Cd2+ Ion-selective sensor for Cadmium  ions 

Cu2+ Ion-selective sensor for Copper ions 

Hg2+ Ion-selective sensor for Mercury ions 

Ti+ Ion-selective sensor for Titanium ions 

S2- Ion-selective sensor for Sulfur ions 

Cr(VI) Ion-selective sensor for Chromium ions 

Ag+ Ion-selective sensor for Argentum ions 

Pb2+ Ion-selective sensor for Plumbum ions 

HI 5311 pH sensor 

HI 2111 Reference probe using Ag/AgCl electrode 

Table 5. Chalcogenide-based potentiometric electrodes used in the e-tongue. 

4.4 Data preprocessing 

The fractional measurement method is essential when using a multi-modalities sensor 

fusion. This technique is often known as baseline manipulation and was applied to 

preprocess the data of both modalities (Gardner & Bartlett, 1999). The maximum sensor 

response, St is subtracted from the baseline, S0 and then divided again by the S0. The formula 

for this dimensionless and normalized Sfrac, is determined as follows: 

Ag/AgCl 

Honey solution 

Chalcogenide Sensor 
array 

NI USB 6008 
(NiDaQ) 

Virtual Instrument 
(VI) Interface 

Pattern Recognition 

Multivariate  
analysis  

Arrangement of 
chalcogenide sensor 
array  
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 Sfrac = [St – S0]/S0 (5) 

This gives a unit response for each sensor array output with respect to the baseline, which 
compensates for sensors that have intrinsically large varying response levels. It can also 
further minimize the effect of temperature, humidity and temporal drifts (Gardner & 
Bartlett, 1999).  

The data from different modalities were processed separately and all sensors were used in 

this analysis. In the case of the e-nose, S0 is the minimum value taken during the baseline 

purge with ambient air and St was measured during the sample draw. Each sampling cycle 

was repeated three times and the average was obtained for each of ten replicated samples. 

For the e-tongue measurements, S0 (baseline reading) is the average reading of distilled 

water, while St is the sensor reading when steeped in the solution. The steeping cycle was 

repeated three times for each sample and the average was obtained for each ten of the 

replicated samples. Each Sfrac data point from each e-nose and e-tongue sensor formed the 

Sfrac matrix for further analyses. 

4.4.1 Low level data fusion 

For the purpose of low level data fusion, measurements recorded from both sensors were 

fused during the data level. For the e-nose data, there were 720 observations with 32 

features from 16 different honey, sugar and adulterated samples. Likewise for the e-tongue 

data, 720 observations with 11 features from 16 different honey, sugar and adulterated 

samples were recorded. As a result, a new dimension for the fused data was represented by 

720 observations with 43 features. At this stage, the original data from both measurements is 

formed in a data matrix, and is described in Fig. 7 as follows. No transformation is being 

applied at this stage. 

 

Fig. 7. Illustration of fusing data in low level data fusion 

The correlation input matrix from the fused data was proceeded for the PCA calculation. For 

the purpose of classification in LDA, the reduced number of principal components was 

selected based on magnitude eigenvalues greater or equal to 1 ( 1i  ). The result from the 

scree plot is also applied for comparison and confirmation purposes. 

4.4.2 Intermediate level data fusion 

In this framework, fusion was applied after feature extraction process. For that purpose, 

PCA was calculated based on the correlation matrix from both datasets. The number of 

principal components to retain is decided based on the associated eigenvalues with 

magnitude greater than or equal to 1.0 ( 1i  ). The results were double checked using the 
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scree plot of each dataset. Fig. 8 illustrates the related processes. The resulting principal 

components from each sensor which is three principal components were then combined 

before the classification using LDA is performed. 

 

Fig. 8. Illustration of fusing extracted features in intermediate level data fusion 

5. Results and discussion 

Before the analyses of PCA was continued, a thorough study on each and every selected 
principal components (i.e. at low level data fusion) considered for classification using LDA 
was performed and the resulting classification error rate for each case are highlighted in Fig. 
9. Comparisons and evaluations of classification error rate were performed differently based 
on correlation or covariance input matrix, procedure to evaluate performance of leave-one-
out approach and the elimination of the least important of principal components (i.e. 
elimination begin with principal components of the smallest eigenvalue). Table 6 shows the 
total of variance explained using the correlation and covariance matrix input for the low 
level data fusion. 
 

Number of 
Retained 
Principal 

Component 

Correlation Matrix Covariance Matrix 

Total Eigenvalue 
(%) 

Error Rate 
(Leave-one-out) 

Total Eigenvalue 
(%) 

Error Rate 
(Leave-one-out) 

2 72.070 0.546 77.277 0.546 

3 77.836 0.500 86.640 0.500 

       

20 99.581 0.151 99.999 0.153 

21 99.649 0.151 100.000 0.150 

       

42 99.998 0.142 100.000 0.142 

43 100.000 0.144 100.000 0.144 

Table 6. Total variance explained for low level data fusion 
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Fig. 9. Different classification performance for correlation and covariance input matrix with 
leave-one-out approach. 

Fig. 9 clearly reveals similar classification performance of correlation and covariance input 
matrix with a leave-one-out approach for the low level data fusion. It should be highlighted 
here that the performance of classification for the correlation and covariance input is not 
much differ because the standard deviations for each features in the fused dataset is  
slightly small. 

In reality, good classification performance is not determined by the greater number of 
features included in data. What we need is features with the most discriminative effect 
which often measured by the error rate. In the case of low level data fusion, the PCA based 
on the correlation matrix of fused data was used to extract the most important features in a 
linear combination form. Table 7 displays the total of variance explained for the principal 
components of low level data fusion. Six principal components with eigenvalues greater 
than or equal to 1.0 were retained to be the input for classification using LDA. It can be seen 
that with only six linear combinations of the original features out of 43-principal-
component, we only loose about 9.3% of information to proceed with classification task. The 
scree plot in Fig. 10 also shows that six principal components should be retained. 

 

Component 
Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % 

1 27.167 63.179 63.179 

2 3.823 8.891 72.070 

3 2.480 5.767 77.836 

4 2.223 5.169 83.005 

5 1.966 4.572 87.577 

6 1.356 3.153 90.730 

        

Table 7. Total variance explained for low level data fusion 
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Fig. 10. Scree plot for the low level data fusion 

 

Component 
Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % 

1 4.023 36.573 36.573 

2 2.232 20.289 56.862 

3 1.930 17.549 74.411 

        

Table 8. Total variance explained of e-tongue data for intermediate level data fusion 

 

Component 
Extraction Sums of Squared Loadings 

Total % of Variance Cumulative % 

1 26.652 83.287 83.287 

2 2.336 7.300 90.587 

3 1.287 4.023 94.610 

        

Table 9. Total variance explained of e-nose data for intermediate level data fusion 

Table 8 and 9 display the total of variance explained for the principal components of 
intermediate level data fusion. Based on the eigenvalues greater than or equal to 1.0 from 
both e-tongue and e-nose data, three principal components each were retained to be the 
input for classification using LDA. With the three principal components selected from e-
tongue and e-nose data, we loose about 31% of information which is quite high compared to 
the low level data fusion. The scree plot in Fig. 11 seems agrees that three principal 
components are adequate to represent the original features. 
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                                         (a)                                      (b) 

Fig. 11. Scree plot for (a) e-tongue data and (b) e-nose data low level data fusion 

The selected principal components for low and intermediate level data fusion are further 
analyzed. The classification and prediction of the class of different types of pure honey, sugar, 
and adulterated samples were carried out using LDA with leave-one-out procedure. Table 10 
indicates the significant differences in means of the predictors (i.e. the selected principal 
components) between the seven groups for both fused models. The results indirectly show the 
importance of the principal component to the discrimination function. Based on the Wilk’s 
Lambda, principal component with smaller value means it is an important predictor. The most 
important principal components to the least important were arranged according to the italic 
number. Note in contrast, the bigger the Wilk’s Lambda, the smaller the F values. Besides 
knowing the important predictors for the discrimination function, it is worth to investigate 
whether the assumption of homogeneity of covariance matrices is met. Table 11 displays the 
Box’s M test for both data fusion models. The significant values of both data fusion models 
indicate that the covariance matrices are not similar for the seven groups.  

 

Tests of Equality of Group Means 

Low Level Data Fusion Intermediate Level Data Fusion 

 
Wilks' 

Lambda 
F Sig.  

Wilks' 
Lambda 

F Sig. 

PC1 .7775 34.109 .000 PC1_EN .7945 30.742 .000 

PC2 .6862 54.404 .000 PC2_EN .6122 75.467 .000 

PC3 .7414 41.578 .000 PC3_EN .9286 9.206 .000 

PC4 .7393 42.005 .000 PC1_ET .7184 46.707 .000 

PC5 .3991 178.960 .000 PC2_ET .6763 56.940 .000 

PC6 .9216 10.183 .000 PC3_ET .4231 162.029 .000 

Table 10. Test of equality of group means to identify the important variable to the 
discrimination function 

www.intechopen.com



 
Principal Component Analysis – Engineering Applications 

 

18

Test Results 

Low Level Intermediate Level 

Box's M 3194.447 Box's M 3450.654 

F Approx. 22.505 F Approx. 24.310 

df1 126 df1 126 

df2 6677.884 df2 6677.884 

Sig. .000 Sig. .000 

Table 11. Test null hypothesis of equal population covariance matrices. 

Based on Table 12 and Table 13, all the first five discriminant functions for low and 

intermediate level data fusion are able to explain 100%of the total variance. However, the 

canonical correlation values greater than 0.5 reveal that only the first two discriminant 

functions from both fusion model describe strong relationship. 

 

Eigenvalues 

Function Eigenvalue % of Variance Cumulative % 
Canonical 

Correlation 

1 7.151 75.1 75.1 .937 

2 2.177 22.9 98.0 .828 

3 .106 1.1 99.1 .309 

4 .076 .8 99.9 .267 

5 .008 .1 100.0 .090 

6 .000 .0 100.0 .000 

Table 12. Percentage of variance explained for each discrimination function for low level 
data fusion. 

 

Eigenvalues 

Function Eigenvalue % of Variance Cumulative % 
Canonical 

Correlation 

1 6.365 74.3 74.3 .930 

2 2.015 23.5 97.8 .818 

3 .105 1.2 99.1 .309 

4 .074 .9 99.9 .263 

5 .006 .1 100.0 .077 

6 .000 .0 100.0 .002 

Table 13. Percentage of variance explained for each discrimination function for intermediate 
level data fusion. 
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The best predictors in predicting the types of honey, sugar, and adulterated samples from 

the respective discrimination functions of each data fusion model are marked italic in Table 

14. The highest value in each function (column) marks as the best predictor. For example, 

the best predictor for the first discriminant function of the low level data fusion is the third 

principal components (PC3). 

 

Standardized Canonical Discriminant Function Coefficients 

Function (Low Level Data Fusion) 

 1 2 3 4 5 6 

PC1 -.420 .758 .277 .583 .404 -.165 

PC2 -.342 .902 .353 -.500 -.018 .265 

PC3 1.299 -.128 .139 .275 .057 .661 

PC4 1.097 -.452 .352 -.312 .497 -.281 

PC5 -1.236 -.580 .171 -.008 .179 .218 

PC6 .115 -.317 .716 .193 -.591 -.207 

Standardized Canonical Discriminant Function Coefficients (cont’d) 

Function (Intermediate Level Data Fusion) 

 1 2 3 4 5 6 

PC1_T 1.238 -.117 .161 .340 -.089 .628 

PC2_T .968 -.363 .384 -.144 .621 -.166 

PC3_T -1.263 -.512 .146 .074 .177 .258 

PC1_N -.084 .615 -.153 .562 .636 -.027 

PC2_N -.020 .923 .434 -.320 .119 .275 

PC3_N .005 .032 .741 .551 -.287 -.297 

Table 14. Indication of relative importance of the independent variables in predicting the 
groups for both data fusion models. 

Graphical representations of the classification for low level data fusion and intermediate 
level data fusion are as of Fig. 12 and Fig. 13 respectively. Table 15 and 16 describes in detail 
the classification results for each fusion model. It seems that the classification of several 
types of pure honey (group 1), beet sugar (group 2) and cane sugar (group 3) were very 
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good. Confusions occur a lot for adulterated samples of group 4, 5, 6 and 7. As we can see 
the classification performance of the intermediate level data fusion based on the leave-one-
out approach is slightly better than the classification performance of the same approach of 
low level data fusion with 73.5% and 71.5% correct classification respectively. 

 
 

Cross-validated Classification Results of Leave-One-Out Procedure 

  

Group 
Predicted Group Membership 

Total 
  1 2 3 4 5 6 7 

 Count 1 300 0 0 0 0 0 0 300 

2 0 10 0 0 0 0 0 10 

3 0 0 10 0 0 0 0 10 

4 6 10 4 49 0 31 0 100 

5 0 0 8 0 41 4 47 100 

6 1 6 0 35 0 58 0 100 

7 0 0 0 0 53 0 47 100 

 

Table 15. Classification performance for low level data fusion 

 
 

Cross-validated Classification Results of Leave-One-Out Procedure 

  
Group 

Predicted Group Membership 

Total   1 2 3 4 5 6 7 

 Count 1 300 0 0 0 0 0 0 300 

2 0 10 0 0 0 0 0 10 

3 0 0 10 0 0 0 0 10 

4 7 9 4 46 0 34 0 100 

5 0 0 10 1 45 5 39 100 

6 2 6 0 23 4 65 0 100 

7 0 0 0 0 47 0 53 100 

 

Table 16. Classification performance for intermediate level data fusion 
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Fig. 12. Seven groups discriminating plot for low level data fusion  

 

Fig. 13. Seven groups discriminating plot for intermediate level data fusion  

6. Conclusions 

This study focuses on the application of PCA in reducing the dimension of fused data from 
e-tongue and e-nose at low level and intermediate level data fusion. Previous studies on 
PCA have proven that this method is strongly advisable to be applied before performing 
any classification. In this study, we have shown the ability of PCA to create new variables in 
the form of principal components of the original features. Even though with some loss of 
information, special characteristics preserved in the selected principal components have 
made the new variables as reliable predictors in the discrimination and classification 
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process. In order to improve the classification performance of the multi sensor data fusion 
models in this study, there are two special attentions that should be given. Firstly, to fulfil 
the discriminant analysis assumption on the homogeneity of covariance for each group, and 
secondly to study and overcome the violation effect to discriminant analysis method caused 
by the existence of outliers. In future, we will attempt to solve these problems. 
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