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1. Introduction 

Glycosylation is one of the most complex post-translation modifications, commonly found 

in many cell surface and secreted eukaryotic proteins. 1-2% of the human transcriptome 

encodes proteins that link to glycosylation. Many protein-based biotherapeutics approved 

or in clinical trials are glycoproteins. The oligosaccharides covalently attached to therapeutic 

glycoproteins pose biological benefits as well as manufacturing challenges. The present 

chapter reviews the structure and function of glycosylation, glycoform patterns observed for 

the biotherapeutic proteins produced by various host systems, and analytic methods for the 

characterization of glycoforms. Recent advances in utilizing glycosylation as a strategy to 

improve biotherapeutics properties are also discussed. 

2. Glycosylation as a major post-translational modification 

Glycosylation has been studied intensively for the past two decades as the most common 

covalent protein modification in eukaryotic cells (Varki 2009). Sophisticated oligosaccharide 

analysis has revealed a remarkable complexity and diversity of this post-translational 

modification. About 1-2% of the human transcriptome (about 250-500 glycogenes) has been 

predicted to encode proteins that are involved in glycosylation processing (Campbell and 

Yarema 2005). Majority of proteins synthesized in the endoplasmic reticulum (ER) such as cell 

surface and extracellular eukaryotic proteins are glycoproteins. It has been estimated that more 

than 50% of proteins in human are glycosylated (Apweiler et al. 1999; Wong 2005).  

Glycoproteins can be classified into four groups: N-linked, O-linked, glycosaminoglycans, 

and glycosylphosphatidylinositol-anchored proteins (Table 1). This chapter focuses only on 

N- and O-linked glycosylation. N-linked glycosylation is through the side chain amide 

nitrogen of a specific asparagine residue, while O-linked glycosylation is through the 

oxygen atom in the side chain of serine or threonine residues. The N-linked modification 

takes place in both ER and Golgi, while the O-linked glycosylation in higher eukaryotes 

occurs exclusively in the Golgi.  
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-------------------------------------------------------------------------------------------------------------------------- 
        Type                              Consensus site             Sugar structures          Synthesis Location 
-------------------------------------------------------------------------------------------------------------------------- 
(1) N-linked       N-X-T/S          High mannose         ER, Golgi 
                                                                           Complex-type 
                                                                                 Hybrid-type 
-------------------------------------------------------------------------------------------------------------------------- 
(2) O-linked       Ser/Thr                    Mucin-type                  Golgi 
                                                                                        O-linked fucose 
                                                                                        O-linked glucose 
                                                                                        O-linked GlcNAc 
-------------------------------------------------------------------------------------------------------------------------- 
(3) Glycosaminoglycans      Asn/Ser/Thr           Glycosaminoglycans    ER, Golgi 
-------------------------------------------------------------------------------------------------------------------------- 
(4) Glycosylphosphatidylinositol                            glycosylphosphatidylinositol  
                                    phosphatidylinositol /                                              ER, Golgi 
                                    phosphoethanolamine  
                                    to protein carboxyl terminus  
-------------------------------------------------------------------------------------------------------------------------- 

Table 1. Glycoproteins Categories 

Comparing to other major molecular constituents of cells such as nucleic acids and proteins, 
the biological importance of glycans or carbohydrates in the post-translational modification 
has been much later appreciated (Varki 2009). There is no single theory explaining why cells 
go through such complex and highly conserved biosynthetic machineries. Though not all 
answers are known, it is now clear that glycosylation plays many key biological functions 
such as protein folding, stability, intracellular and inter-cellular trafficking, cell-cell and cell-
matrix interaction (Varki 1993; Varki 2009).  
It is therefore not surprising that congenital disorders with serious medical consequences 
have been identified linked to the defects in a number of genes in glycosylation pathway 
(Freeze 2006). Over 40 such disorders have been reported to be associated with glycogene 
mutations, and many more to be discovered. In addition, glycosylation profiles of specific 
proteins change as certain diseases progress, such as cancers and rheumatoid arthritis, and 
have been regarded as disease and diagnostic markers.  
This chapter focuses on the biological structures and physiological roles of glycosylation 
modification in the context of biotherapeutics. Glycosylation differences in proteins 
produced by various host systems, and the potential impacts on biotherapeutics safety and 
side effects, are described. Various analytical characterization methods for glycoforms are 
also described. Lastly, several therapeutic examples with glycoengineering application are 
illustrated and discussed. 

2.1 Structure and biosynthesis 

N-linked glycosylation occurs in the sequon of Asn-X-Ser/Thr where X can be any amino 
acid except proline and aspartic acid (Helenius and Aebi 2004; Kornfeld and Kornfeld 1985). 
Glycosylation at Asn-Ala-Cys has also been reported (Stenflo and Fernlund 1982). 
Glycosylation efficiency of these Threonine, Serine, and Cysteine containing sequon is very 
different with an order of Thr>Ser>Cys (Bause and Legler 1981). N-linked oligosaccharides 
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are added to proteins en bloc in the lumen of ER as pre-synthesized core units of 14 
saccharides (Glc3Man9GlcNAc2) in virtually all eukaryotes. This core glycan is the product of 
a biosynthesis pathway in which monosaccharides are added to a lipid carrier (dolichol-
pryophosphate) on both sides of the ER membrane by monosaccharyltransferases in the 
membrane. The sugar moiety is translocated from cytosolic side to the luminal side of the 
ER by an ATP-independent bidirectional flippase (Hirschberg and Snider 1987). The 
oligosaccharyltransferase then scans the emerging polypeptide from translocon complex for 
glycosylation sequon and adds the core glycan unit to the side chain nitrogen of the Asn 
residue by N-glycosidic bond. The oligosaccharides are added to the sequon when it is only 
12-14 residues into the ER lumen, as the active site of the oligosaccharytransferase is no 
further than 5nm away from the exit of the protein translocon (Nilsson and von Heijne 
1993). 
After the core glycan is added to the growing nascent polypeptide chain, the oligosaccharide 
portion is modified by a series of glycosidases and glycosyl transferases. Various complex, 
hybrid, and high mannose types of N-linked oligosaccharides are generated. Glucosidase I 
and II located in the ER remove all three glucose residues from the core unit to produce a 
Man9GlcNAc2 high mannose structure. Hybrid and complex oligosaccharides can be 
produced from high mannose structures, from which -mannosidases in the ER and the 
Golgi remove 4-6 mannoses. Then Golgi-bound glycosyl transferases add GlcNAc as well as 
galactoses and sialic acids to produce complex types of oligosaccharides. These 
modifications reflect a spectrum of functions related to glycoprotein folding, quality control, 
sorting, degradation, and secretion. 
O-linked glycosylation normally takes place in the Golgi, most commonly initiated with a 
transfer of N-acetylgalactosamine (GalNAc) to a serine or threonine residue by an N-acetyl 
galactosaminyltransferase (Van den Steen et al. 1998). After the addition of the first GalNAc, 
a number of glycosyltransferases and enzymes in the Golgi can elongate the core structure 
and modify it with sialylation, fucosylation, sulphatation, methylation or acetylation(Van 
den Steen et al. 1998). O-linked glycosylation site is not readily predicted, any serine or 
threonine residue is a potential site and O-linked sugars are frequently clustered in short 
regions of peptide chain that contain repeating units of Serine, Threonine, and Proline. 
There are various types of O-linked sugars, including mucin-type O-glycans commonly 
found in many secreted and membrane-bound glycoproteins in higher eukaryotes, O-linked 
fucose and O-linked glucose found in the epidermal growth factor domains of different 
proteins, and O-linked GlcNAc on cytosolic and nuclear proteins. Yeast’s O-linked 
oligomannose glycans take place in the ER utilizing dolichol-phosphate-mannose instead of 
a sugar nucleotide, which is similar to N-linked glycosylation occurred co-translationally 
(van den Steen et al, 1998). 

2.2 Physiological function and roles 

Protein folding and conformation stabilization function of N-linked glycans were first 
suggested by the early studies with tunicamycin, a glycosylation inhibitor (Olden et al. 
1982). The sequential processing by glucosidases, mannosidases, and glycotranferases, of the 
core unit of 14 saccharides, provides recognition tags for lectins mediated folding pathway 
(Helenius and Aebi 2004). The content of oligosaccharides can regulate protein half-life. 
Large amount of sialic acids can increase plasma half-life while exposure of galactose and 
mannose can decrease half-life (Walsh and Jefferis 2006). N-glycans also play a critical role 
in intracellular trafficking with a well understood example of mannose-6-phosphate of 
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lysosomal enzymes (Kornfeld and Mellman 1989). For Antibodies, oligosaccharide moieties 
covalently attached at the highly conserved Asn297 at the CH2 domain of the Fc 
(crystallizable fragment) region, is critical to the activation of downstream effector 
mechanisms (Jefferis 2009; Natsume et al. 2009). Completely aglycosylated or 

deglycosylated IgGs do not bind effector receptors such as FcRI, FcRII, and FcRIII (Leader 
et al. 1991; Leatherbarrow et al. 1985; Walker et al. 1989). Sialylated IgGs have a lower 

affinity to FcRIIIA than non-sialylated IgGs, consequently a lower antibody-dependent 
cellular cytotoxicity (ADCC) activity (Kaneko et al. 2006; Scallon et al. 2007). Removal of 
terminal galactose residues from Fc glycans reduces complement-dependent cytotoxicity 

(CDC) activity (Boyd et al. 1995; Kumpel et al. 1995). Absence of a core -1, 6 linked fucose 
from Fc glycans improves in vitro ADCC activity (Niwa et al. 2004; Shields et al. 2002).  
O-linked glycosylation plays a role in maintaining secondary, tertiary, and quaternary 
structures of fully folded proteins. The examples are mucins and related molecules, in which 
peptide regions with O-linked sugar attachments assume a “bottle brush”-like structure 
(Carraway and Hull 1991; Gowda and Davidson 1994). Like N-glycans, O-glycans can 
modulate aggregation, maintain protein stability, confer protease and heat resistance. An 
example of O-linked sugars hindering protease cleavage is the modification at the hinge 
regions of IgA1 and IgD (Field et al. 1994; Van den Steen et al. 1998). O-linked glycosylation 
is important for the expression and processing of particular proteins such as glycophorin A 
(Remaley et al. 1991) and IGF-II (Daughaday et al. 1993). They are also crucial for some 
glycoprotein-protein interaction, such as the interaction between P-selectin glycoprotein 
ligand-1 (PSGL-1) and P Selectin. Some O-linked oligosaccharides of PSGL-1 have a terminal 
sialyl-Lewis-x structure, which is important for its P-selectin receptor function (Hooper et al. 
1996). 

3. Glycoproteins as biotherapeutics 

More than one-third of approved biotherapeutics and many in clinical trials are 
glycoproteins (Walsh and Jefferis 2006). The presence and nature of the oligosaccharides 
clearly affect these protein drugs’ folding, stability, trafficking, immunogenicity as well as 
their primary activities.  

3.1 Antibodies and Fc-fusion proteins 

Therapeutic recombinant antibodies and fusion proteins of Fc region of immunoglobulin G1 
(IgG1) represent a major class of biotherapeutics. An individual antibody molecule contains 
two light and two heavy polypeptide chains, forming two identical Fab (antigen-binding 
fragment) regions with a specific antigen-binding site, and a homodimeric IgG-Fc region. 
This Fc region is critical for phagocytosis, ADCC activity, CDC activity, and FcRn binding 
for recycling. As discussed above, the N-glycans attached to Asn297 in Fc region are critical 
to the activation of downstream effector mechanisms, while not affecting FcRn binding for 
catabolic half-life. 
Besides the presence of core glycans at the Fc regions, about 30% of polyclonal human IgG 
molecules contain N-linked oligosaccharides within the IgG-Fab region (Jefferis 2009). The 
N-linked sites can be at the variable regions of either heavy chains or light chains or both. 
The licensed antibody therapeutics cetuximab has an N-linked glycan at Asn88 of the heavy 
chain variable region, and an unoccupied N-linked motif at Asn41 of the light chain variable 
region (Qian et al. 2007). Fab oligosaccharide is heterogeneous complex diantenary and 
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hybrid oligosaccharides with sialic acids and galactoses, which are very different from the 
Fc oligosaccharides with predominantly fucosylated non-galactosylated diantennary 
oligosaccharides. The difference may be due to the inaccessibility of Fc N-glycan for further 
modification, as the N-glycans at the Fc regions are integral to the IgG structure and has a 
defined confirmation (Jefferies, 2009). Many Fc-fusion therapeutics proteins, such as 
TNFRII-Fc, CD2-Fc, and CTLA4-Fc, contain glycosylation modifications in the fusion 
portions, in addition to their Fc glycans. The contents of these glycosylations are very 
similar to those of Fab oligosaccharides.  

3.2 Non-immunoproteins 

Many non-immunoproteins such as growth factors, cytokines, hormones, and therapeutic 

enzymes, are glycoproteins. Growth factors such as erythropoietin (EPO) have three N-

linked and one O-linked sugar side chains. Removal of either two (Asn38 and Asn83) or all 

three sites results in poor product secretion (Egrie 1993). Cytokines such as interferon(IFN)-

 and IFN- are glycoproteins (Pestka et al. 1987). Although glycosylation is not essential for 

INFs protein efficacy or safety, lack of glycosylation decreases their biological activity and 

circulatory half-life. Oligosaccharide structures of follicle-stimulating hormone heterodimer 

play an important role in its biosynthesis, secretion, metabolic fate, and functional potency 

(Ulloa-Aguirre et al. 1999). The glycans at each subunit seem to exhibit distinct roles, with 

those in ┙ subunit critical for dimer assembly, signal transduction, and secretion, and those 

in ┚ subunit more crucial for circulation clearance. In addition, many therapeutics enzymes 

such as recombinant human glucocerebrosidase for Gaucher disease (Van Patten et al. 2007) 

are glycoproteins and N-glycosylation is important for its targeting and functional activities. 

3.3 Effects of glycosylation on therapeutic efficacy of glycoproteins 

In comparison to small-molecule drugs, therapeutic proteins display a number of favorable 

therapeutic properties, such as higher target specificity, good pharmacological potencies, 

and lower side effects, but they also possess intrinsic limitations like poor physicochemical 

and pharmacological properties. Glycosylation of therapeutic glycoproteins can improve 

therapeutic efficacy through its positive impact on protein pharmacodynamics (PD) and 

pharmacokinetics (PK).  

Pharmacodynamics refers to the potency of therapeutic proteins as enzymatic rates and 
receptor binding affinities. Pharmacokinetics exams the time dependency of drug action, 
which is influenced by drug absorption, distribution, excretion, initial response times and 
duration of effects. The parameters include circulatory half-life, volumes of distribution, 
clearance rates, and total bioavailability. Protein drugs’ PK/PD are typically affected by 
adverse local adsorption in subcutaneous administration due to variable protein 
hydropathy surface, and by rapid elimination from body in intravenous administration, via 
proteolytic, renal, hepatic, and receptor mediated clearance mechanisms (Mahmood and 
Green 2005; Tang et al. 2004). 
Glycosylation has multiple impacts on PK/PD properties of therapeutics glycoproteins. 
First, glycosylation can shield non-specific proteolytic degradation, as discussed above. 
Second, sialic acids at the terminus of glycan chains carry negative charge, which reduces 
renal clearance most likely due to repulsion from negatively charged polysaccharides on 
membranes in the glomerular filter (Chang et al. 1975; Venkatachalam and Rennke 1978). 
Third, size of glycans can increase protein molecular weight and hydrodynamic radius of 
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glycoprotein and therefore reduce glomerular filtration. Fourth, terminal sialic acids of 
glycan branches prevent the exposure of galactose, N-acetyl-glycosamine, or mannose that 
interacts with hepatic asialoglycoprotein receptor as well as other mammalian lectin-like 
receptors to be removed from circulation. 

4. Glycosylation in various cell production systems 

Glycosylation patterns of biotherapeutics are highly variable based on the production 
systems (Table 2) and their culture processes. Mammalian cells such as Chinese Hamster 
Ovary cells (CHO) and mouse myeloma cells (NS0, SP2/0) are the most commonly used 
systems. Alternative cell production systems are being developed and explored. 
 
-------------------------------------------------------------------------------------------------------------------------- 
  Host systems                  Similarity to human glycans                Abnormal sugars 
-------------------------------------------------------------------------------------------------------------------------- 

  CHO    High         trace amount of -Gal, NGNA 
 

  NS0/SP2/0   High         small amount of -Gal, NGNA 
 
  Yeast    Low         high mannose 
 

  Plant    Low         bisecting 1,2 xylose, 1,3 fucose 
 
  Transgenic animals  Low         high mannose and NGNA 
-------------------------------------------------------------------------------------------------------------------------- 

Table 2. Glycans comparison in various production systems   

The glycoforms of CHO-produced IgGs are close to human IgGs, but having very little 
glycoform with the third N-acetylglucosamine bisecting arm, which makes up about 10% of 
human IgG glycoforms, and also very low amount of terminal N-acetyl neuraminic acid is 
generated. The glycosylation in mouse-derived cells such as NS0 and SP2/0 shows even 
more difference from human glycoforms. They produce small amounts of glycoforms with 

additional -1,3-galactose (-Gal) and a different predominant sialic acid, N-Glycolyl 
neuraminic acid (NGNA). NGNA is reported to be immunogenic in human (Sheeley et al. 

1997), and in certain patient populations, -Gal is associated with IgE-mediated 
anaphylactic responses, with the best known example of cetuximab (Chung et al. 2008). 

Detection of both -Gal and NGNA in CHO-derived glycans is also reported, but only in 
trace amount (Hamilton and Gerngross 2007; van Bueren et al. 2011). 
Yeast, insect cells, plants, and transgenic animals, are the alternative systems to the current 
mammalian hosts. They are being actively explored for biotherapeutics production because 
of their lower manufacture cost. However, restricted abilities to generate human-like 
glycoforms are their major limitations, as different glycosylation machinery yields 
immunogenic recombinant glycoproteins. For instance, complex type N-glycans are very 

different in plants and mammals. Plant N-glycans contain a bisecting 1,2 xylose in place of 

 mannose core, an 1,3 fucose instead of an 1,6 fucose, and are highly heterogeneous 
(Gomord et al. 2005), and allergenic. Glycans from yeast (Hamilton et al. 2006) and insect 
(Shi and Jarvis 2007) have a high mannose content, resulting a quick clearance through 
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binding to macrophage mannose receptor in the liver. IgGs produced in the milk of 
transgenic goats contain 50% NGNA and a higher level of mannose (Edmunds et al. 1998). 
Tremendous efforts have focused on “humanization” of the glycosylation pathways in these 
alternative systems to improve product consistency and pharmacokinetics, while decreasing 
the potential immunogenicity for product antibody response.  

5. Analytic characterization of glycoforms 

Various glycosylation analysis approaches (Table 3)  have been developed and utilized for 
glycoform characterization. Glycans can be enzymatically or chemically released from 
glycoproteins, prior to electrophoretic, chromatographic or mass spectrometric analysis. 
Glycoproteins can also be treated with endoproteinases, followed by glycosylation analysis 
at the glycopeptides level. 
 
-------------------------------------------------------------------------------------------------------------------------- 
 Methods            Principles                    Major advantages and shortcoming 
-------------------------------------------------------------------------------------------------------------------------- 
(1) Electrophoresis 
 

 SDS-PAGE           Size       General equipment, cheap, fast 
                                                                              High-throughput possible, 
 IEF             Charge                Limited resolution 
 

(2) Chromatography (HPLC)       Polarity                High resolution 
                                                                                        Separation of major glycoforms 
                                                                                         Risk of hydrolysis 
 

(3) Mass spectrometry           Mass                        Detailed information, fast 
                                                                                       High resolution, precise   
                                                                                       Expensive equipment 
                                                                                        Trained personnel 
-------------------------------------------------------------------------------------------------------------------------- 

Table 3. Glyco-analytical methods  

5.1 Electrophoresis 

Sodium Docedyl sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and 
IsoElectrofocusing electrophoresis (IEF) are two methods that are routinely used for gross 
glycoprotein characterization. SDS-PAGE is for separation of mass variant due to the 2kDa 
mass addition of a single N-glycan. When treated with glycanase such as PNGase F and 
Endo-H, a migration shift can be detected. IEF is for separation of charge variants. The sialic 
acid content of glycans can increase negative charge of glycoproteins, while the PNGase F 
treatment generates a negatively charged aspartic acid instead of the neutral N-glycan 
linked asparagines.   

5.2 Liquid chromatography 

Normal phase high-performance liquid chromatography (NP-HPLC) is one of the most 
commonly used analytical methods to analyze oligosaccharides after enzymatic release and 
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fluorescent labeling. The glycans can be accurately quantified and detected in sub-picomolar 
levels (Guile et al. 1996). Different peaks in an NP-HPLC chromatogram can be isolated and 
submitted to off-line analysis by mass spectrometry or to sequential digestion with selective 
exoglycosidases (neuraminidase, ┙-galactosidase, ┚-galactosidase, ┚-hexoaminidase, ┙-
fucosidase, ┙-mannosidase, ┚-mannosidase) for further biochemical confirmation. NP-HPLC 
can also be used for routine IgGs glycan finger printing for IgGs expressed in different cell 
lines.  

5.3 Mass spectrometry 

Mass spectrometry is a fast and powerful method to differentiate and estimate the relative 

proportion of different glycoforms. Glycans and glycopeptides are traditionally ionized by 

fast atom bombardment and laser desorption. In the past two decades, softer ionization 

techniques such as Electrospray Ionization-Time-of-Flight (ESI-TOF) and Matrix-assisted 

laser desorption ionization (MALDI) provide a much higher sensitivity and precision. It 

allows measuring intact glycoproteins and investigating non-symmetry of N-linked 

biantennary oligosaccharides between two heavy chains on intact antibodies (Beck et al. 

2008). 

6. Glycoengineering to improve protein therapeutics 

It is obvious that selectively producing a certain type of glycoforms of biotherapeutics 

protein could be advantageous in terms of efficacy and safety. Residue screening with site-

directed mutagenesis is widely used to introduce or eliminate N-glycosylation sites (Zhong 

et al. 2009). Though there is no “one-size-for-all” principle and guideline, the process has 

been aided by knowledge of the known structure and function of the target protein so that 

the changes can retain in vitro biological activity, stability, and high sugar occupancy rate. 

Cell line engineering to knock-out and knock-in glycogenes is another approach to enrich 

desired glycoforms. It is also possible to use in vitro glycoenzymes to modify glycoform 

profiles. The following are a few specific examples. 

6.1 Half-life extension 

One well known glycoengineering application is altering pharmacokinetic property of 

therapeutic proteins. Introducing new N-linked glycosylation site into target proteins to 

increase sialic acid containing carbohydrates can increase in vivo activity due to a longer 

half-life. This technology has been successfully applied to produce a hyperglycosylated 

analogue of recombinant human erythropoietin (Elliott et al. 2003). This glycoengineered 

protein contains two additional N-linked carbohydrates, which result in a threefold increase 

in serum half-life and a less frequent dosing for anemic patients (Sinclair and Elliott 2005). 

Sialic acid containing carbohydrates are highly hydrophilic and therefore increase protein 

solubility by shielding hydrophobic residues. Similar approach has been applied to a 

number of therapeutic proteins, including human growth hormone (Flintegaard et al. 2010), 

follicle stimulating hormone(Perlman et al. 2003), Leptin and Mpl ligand (Elliott et al. 2003). 

In case of human growth hormone, the terminal half-life in rats for  the sialylated protein 

with three additional N-linked glycans was prolonged by 24-fold compared with that of 

wild type protein (Flintegaard et al. 2010). The correlation between half-life optimization 

and N-linked carbohydrate addition remain unclear. 
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6.2 Glycoengineered antibody for ADCC modulation 

N-glycans in the Fc-region of IgG1 play a critical role in ADCC activity. Absence of a core -

1, 6 linked fucose  improves binding to FcRIII and in vitro ADCC activity (Niwa et al. 2004; 

Shields et al. 2002). Addition of bisecting GlcNAc, which also results in the removal of core 

fucose, significantly enhances ADCC activity (Davies et al. 2001; Shinkawa et al. 2003; 

Umana et al. 1999). ADCC enhancement has also been shown for non-fucosylated IgG4 

(Niwa et al. 2005), for Fc fusion proteins (TNFRII-Fc) (Shoji-Hosaka et al. 2006), for single 

chain-Fc and bispecific antibodies (Natsume et al. 2006). Several glycoengineered antibodies 

such as anti-GD3 (BioWa), anti-CD20 (Glycart-Roche), and anti-IL5R (BioWa/Medimmune) 

are currently being investigated in clinical trials.  

Besides defucosylation, sialylation is also utilized for antibody and Fc engineering. 

Sialylated IgGs have been found to possess a lower ADCC activity than non-sialylated IgGs 

(Kaneko et al. 2006; Scallon et al. 2007). Overexpressing gal and sialic transferases in CHO 

results in sialylation increase of ≥ 90% of available glycan branches in Fc-fusion proteins 

(Weikert et al. 1999).  

6.3 Mannose for target delivery 

Engineered glycosylation has been employed for targeted delivery to disease affected 

tissues. One well established example is the treatment of lysosomal storage diseases. 

Recombinant human enzymes such as glucocerebrosidase can be digested with 

exoglycosidases to expose mannose or mannose-6-phosphate that can efficiently target the 

enzymes into the lysosomes of macrophages. The high mannose modified enzymes can also 

be produced by a glycosylation mutant such as Lec1 mutant (Van Patten et al. 2007), or by 

treatment of chemical inhibitors (Zhou et al. 2008). Targeting the protein drugs to the 

desired site by glycoengineering have significantly increased therapeutic efficacy of a 

number of replacement enzymes, including -glucosidase, -galatosidase, and -L-

iduronidase (Sola and Griebenow 2010). 

7. Conclusions and future directions 

Glycosylation modification offers both an opportunity and a challenge to biotherapeutics 

glycoproteins. Complexity and heterogeneity of oligosaccharides present a considerable 

challenge to the biopharmaceutical industry to manufacture biotherapeutics with a 

reproducible and consistent glycoform profile. Meanwhile, a better understanding of the 

structure and function of glycosylation modification to glycoproteins can better facilitate the 

development of next-generation of biotherapeutics with optimized glycoforms and 

therapeutic utilities. Further humanization of glycosylation machinery in non-mammalian 

expression systems may represent a trend in lowering the manufacture cost for 

biotherapeutics such as antibodies and Fc-fusion proteins. With a full development of 

glycoanalytical techniques, an improved knowledge on glycoprotein activity in vivo will 

certainly help design a safer and more efficacious biotherapeutics drugs.  

8. Acknowledgement 

We would like to thank Ronald Kriz for critical reading on the manuscript. This book 

chapter is dedicated to the centenary of the late Prof. Haoran Jian (1911-2011) (by X.Z.). 

www.intechopen.com



 
Integrative Proteomics 192 

9. References 

Apweiler R, Hermjakob H, Sharon N. 1999. On the frequency of protein glycosylation, as 
deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 
1473(1):4-8. 

Bause E, Legler G. 1981. The role of the hydroxy amino acid in the triplet sequence Asn-Xaa-
Thr(Ser) for the N-glycosylation step during glycoprotein biosynthesis. Biochem J 
195(3):639-44. 

Beck A, Wagner-Rousset E, Bussat MC, Lokteff M, Klinguer-Hamour C, Haeuw JF, Goetsch 
L, Wurch T, Van Dorsselaer A, Corvaia N. 2008. Trends in glycosylation, 
glycoanalysis and glycoengineering of therapeutic antibodies and Fc-fusion 
proteins. Curr Pharm Biotechnol 9(6):482-501. 

Boyd PN, Lines AC, Patel AK. 1995. The effect of the removal of sialic acid, galactose and 
total carbohydrate on the functional activity of Campath-1H. Mol Immunol 32(17-
18):1311-8. 

Campbell CT, Yarema KJ. 2005. Large-scale approaches for glycobiology. Genome Biol 
6(11):236. 

Carraway KL, Hull SR. 1991. Cell surface mucin-type glycoproteins and mucin-like 
domains. Glycobiology 1(2):131-8. 

Chang RS, Robertson CR, Deen WM, Brenner BM. 1975. Permselectivity of the glomerular 
capillary wall to macromolecules. I. Theoretical considerations. Biophys J 15(9):861-
86. 

Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, Murphy BA, Satinover SM, 
Hosen J, Mauro D and others. 2008. Cetuximab-induced anaphylaxis and IgE 
specific for galactose-alpha-1,3-galactose. N Engl J Med 358(11):1109-17. 

Daughaday WH, Trivedi B, Baxter RC. 1993. Serum "big insulin-like growth factor II" from 
patients with tumor hypoglycemia lacks normal E-domain O-linked glycosylation, 
a possible determinant of normal propeptide processing. Proc Natl Acad Sci U S A 
90(12):5823-7. 

Davies J, Jiang L, Pan LZ, LaBarre MJ, Anderson D, Reff M. 2001. Expression of GnTIII in a 
recombinant anti-CD20 CHO production cell line: Expression of antibodies with 
altered glycoforms leads to an increase in ADCC through higher affinity for FC 
gamma RIII. Biotechnol Bioeng 74(4):288-94. 

Edmunds T, Van Patten SM, Pollock J, Hanson E, Bernasconi R, Higgins E, Manavalan P, 
Ziomek C, Meade H, McPherson JM and others. 1998. Transgenically produced 
human antithrombin: structural and functional comparison to human plasma-
derived antithrombin. Blood 91(12):4561-71. 

Egrie J, Grant, J., Gillies, D., Aoki, K., & Strickland, T. 1993. The role of carbohydrate on the 
biological activity of erythropoietin. Glycoconj J 10:263. 

Elliott S, Lorenzini T, Asher S, Aoki K, Brankow D, Buck L, Busse L, Chang D, Fuller J, Grant 
J and others. 2003. Enhancement of therapeutic protein in vivo activities through 
glycoengineering. Nat Biotechnol 21(4):414-21. 

Field MC, Amatayakul-Chantler S, Rademacher TW, Rudd PM, Dwek RA. 1994. Structural 
analysis of the N-glycans from human immunoglobulin A1: comparison of normal 
human serum immunoglobulin A1 with that isolated from patients with 
rheumatoid arthritis. Biochem J 299 ( Pt 1):261-75. 

www.intechopen.com



 
Recent Advances in Glycosylation Modifications in the Context of Therapeutic Glycoproteins 193 

Flintegaard TV, Thygesen P, Rahbek-Nielsen H, Levery SB, Kristensen C, Clausen H, Bolt G. 
2010. N-glycosylation increases the circulatory half-life of human growth hormone. 
Endocrinology 151(11):5326-36. 

Freeze HH. 2006. Genetic defects in the human glycome. Nat Rev Genet 7(7):537-51. 
Gomord V, Chamberlain P, Jefferis R, Faye L. 2005. Biopharmaceutical production in plants: 

problems, solutions and opportunities. Trends Biotechnol 23(11):559-65. 
Gowda DC, Davidson EA. 1994. Isolation and characterization of novel mucin-like 

glycoproteins from cobra venom. J Biol Chem 269(31):20031-9. 
Guile GR, Rudd PM, Wing DR, Prime SB, Dwek RA. 1996. A rapid high-resolution high-

performance liquid chromatographic method for separating glycan mixtures and 
analyzing oligosaccharide profiles. Anal Biochem 240(2):210-26. 

Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y, Rios S, Bobrowicz P, Stadheim 
TA, Li H, Choi BK and others. 2006. Humanization of yeast to produce complex 
terminally sialylated glycoproteins. Science 313(5792):1441-3. 

Hamilton SR, Gerngross TU. 2007. Glycosylation engineering in yeast: the advent of fully 
humanized yeast. Curr Opin Biotechnol 18(5):387-92. 

Helenius A, Aebi M. 2004. Roles of N-Linked Glycans in the Endoplasmic Reticulum. Annu 
Rev Biochem 73:1019-1049. 

Hirschberg CB, Snider MD. 1987. Topography of glycosylation in the rough endoplasmic 
reticulum and Golgi apparatus. Annu Rev Biochem 56:63-87. 

Hooper LV, Manzella SM, Baenziger JU. 1996. From legumes to leukocytes: biological roles 
for sulfated carbohydrates. Faseb J 10(10):1137-46. 

Jefferis R. 2009. Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev 
Drug Discov 8(3):226-34. 

Kaneko Y, Nimmerjahn F, Ravetch JV. 2006. Anti-inflammatory activity of immunoglobulin 
G resulting from Fc sialylation. Science 313(5787):670-3. 

Kornfeld R, Kornfeld S. 1985. Assembly of asparagine-linked oligosaccharides. Annu Rev 
Biochem 54:631-64. 

Kornfeld S, Mellman I. 1989. The biogenesis of lysosomes. Annu Rev Cell Biol 5:483-525. 
Kumpel BM, Wang Y, Griffiths HL, Hadley AG, Rook GA. 1995. The biological activity of 

human monoclonal IgG anti-D is reduced by beta-galactosidase treatment. Hum 
Antibodies Hybridomas 6(3):82-8. 

Leader KA, Kumpel BM, Hadley AG, Bradley BA. 1991. Functional interactions of 
aglycosylated monoclonal anti-D with Fc gamma RI+ and Fc gamma RIII+ cells. 
Immunology 72(4):481-5. 

Leatherbarrow RJ, Rademacher TW, Dwek RA, Woof JM, Clark A, Burton DR, Richardson 
N, Feinstein A. 1985. Effector functions of a monoclonal aglycosylated mouse 
IgG2a: binding and activation of complement component C1 and interaction with 
human monocyte Fc receptor. Mol Immunol 22(4):407-15. 

Mahmood I, Green MD. 2005. Pharmacokinetic and pharmacodynamic considerations in the 
development of therapeutic proteins. Clin Pharmacokinet 44(4):331-47. 

Natsume A, Niwa R, Satoh M. 2009. Improving effector functions of antibodies for cancer 
treatment: Enhancing ADCC and CDC. Drug Des Devel Ther 3:7-16. 

Natsume A, Wakitani M, Yamane-Ohnuki N, Shoji-Hosaka E, Niwa R, Uchida K, Satoh M, 
Shitara K. 2006. Fucose removal from complex-type oligosaccharide enhances the 
antibody-dependent cellular cytotoxicity of single-gene-encoded bispecific 

www.intechopen.com



 
Integrative Proteomics 194 

antibody comprising of two single-chain antibodies linked to the antibody constant 
region. J Biochem 140(3):359-68. 

Nilsson IM, von Heijne G. 1993. Determination of the distance between the 
oligosaccharyltransferase active site and the endoplasmic reticulum membrane. J 
Biol Chem 268(8):5798-801. 

Niwa R, Natsume A, Uehara A, Wakitani M, Iida S, Uchida K, Satoh M, Shitara K. 2005. IgG 
subclass-independent improvement of antibody-dependent cellular cytotoxicity by 
fucose removal from Asn297-linked oligosaccharides. J Immunol Methods 306(1-
2):151-60. 

Niwa R, Shoji-Hosaka E, Sakurada M, Shinkawa T, Uchida K, Nakamura K, Matsushima K, 
Ueda R, Hanai N, Shitara K. 2004. Defucosylated chimeric anti-CC chemokine 
receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows 
potent therapeutic activity to T-cell leukemia and lymphoma. Cancer Res 
64(6):2127-33. 

Olden K, Parent JB, White SL. 1982. Carbohydrate moieties of glycoproteins. A re-evaluation 
of their function. Biochim Biophys Acta 650(4):209-32. 

Perlman S, van den Hazel B, Christiansen J, Gram-Nielsen S, Jeppesen CB, Andersen KV, 
Halkier T, Okkels S, Schambye HT. 2003. Glycosylation of an N-terminal extension 
prolongs the half-life and increases the in vivo activity of follicle stimulating 
hormone. J Clin Endocrinol Metab 88(7):3227-35. 

Pestka S, Langer JA, Zoon KC, Samuel CE. 1987. Interferons and their actions. Annu Rev 
Biochem 56:727-77. 

Qian J, Liu T, Yang L, Daus A, Crowley R, Zhou Q. 2007. Structural characterization of N-
linked oligosaccharides on monoclonal antibody cetuximab by the combination of 
orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-
quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic 
digestion. Anal Biochem 364(1):8-18. 

Remaley AT, Ugorski M, Wu N, Litzky L, Burger SR, Moore JS, Fukuda M, Spitalnik SL. 
1991. Expression of human glycophorin A in wild type and glycosylation-deficient 
Chinese hamster ovary cells. Role of N- and O-linked glycosylation in cell surface 
expression. J Biol Chem 266(35):24176-83. 

Scallon BJ, Tam SH, McCarthy SG, Cai AN, Raju TS. 2007. Higher levels of sialylated Fc 
glycans in immunoglobulin G molecules can adversely impact functionality. Mol 
Immunol 44(7):1524-34. 

Sheeley DM, Merrill BM, Taylor LC. 1997. Characterization of monoclonal antibody 
glycosylation: comparison of expression systems and identification of terminal 
alpha-linked galactose. Anal Biochem 247(1):102-10. 

Shi X, Jarvis DL. 2007. Protein N-glycosylation in the baculovirus-insect cell system. Curr 
Drug Targets 8(10):1116-25. 

Shields RL, Lai J, Keck R, O'Connell LY, Hong K, Meng YG, Weikert SH, Presta LG. 2002. 
Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to 
human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem 
277(30):26733-40. 

Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, 
Anazawa H, Satoh M, Yamasaki M and others. 2003. The absence of fucose but not 
the presence of galactose or bisecting N-acetylglucosamine of human IgG1 

www.intechopen.com



 
Recent Advances in Glycosylation Modifications in the Context of Therapeutic Glycoproteins 195 

complex-type oligosaccharides shows the critical role of enhancing antibody-
dependent cellular cytotoxicity. J Biol Chem 278(5):3466-73. 

Shoji-Hosaka E, Kobayashi Y, Wakitani M, Uchida K, Niwa R, Nakamura K, Shitara K. 2006. 
Enhanced Fc-dependent cellular cytotoxicity of Fc fusion proteins derived from 
TNF receptor II and LFA-3 by fucose removal from Asn-linked oligosaccharides. J 
Biochem 140(6):777-83. 

Sinclair AM, Elliott S. 2005. Glycoengineering: the effect of glycosylation on the properties of 
therapeutic proteins. J Pharm Sci 94(8):1626-35. 

Sola RJ, Griebenow K. 2010. Glycosylation of therapeutic proteins: an effective strategy to 
optimize efficacy. BioDrugs 24(1):9-21. 

Stenflo J, Fernlund P. 1982. Amino acid sequence of the heavy chain of bovine protein C. J 
Biol Chem 257(20):12180-90. 

Tang L, Persky AM, Hochhaus G, Meibohm B. 2004. Pharmacokinetic aspects of 
biotechnology products. J Pharm Sci 93(9):2184-204. 

Ulloa-Aguirre A, Timossi C, Damian-Matsumura P, Dias JA. 1999. Role of glycosylation in 
function of follicle-stimulating hormone. Endocrine 11(3):205-15. 

Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE. 1999. Engineered glycoforms of 
an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic 
activity. Nat Biotechnol 17(2):176-80. 

van Bueren JJ, Rispens T, Verploegen S, van der Palen-Merkus T, Turinsky AL, Stapel S, 
Workman LJ, James H, van Berkel PH, van de Winkel JG and others. 2011. Anti-
galactose-alpha-1,3-galactose IgE from allergic patients does not bind alpha-
galactosylated glycans on intact therapeutic antibody Fc domains. Nat Biotechnol 
29(7):574-6. 

Van den Steen P, Rudd PM, Dwek RA, Opdenakker G. 1998. Concepts and principles of O-
linked glycosylation. Crit Rev Biochem Mol Biol 33(3):151-208. 

Van Patten SM, Hughes H, Huff MR, Piepenhagen PA, Waire J, Qiu H, Ganesa C, Reczek D, 
Ward PV, Kutzko JP and others. 2007. Effect of mannose chain length on targeting 
of glucocerebrosidase for enzyme replacement therapy of Gaucher disease. 
Glycobiology 17(5):467-78. 

Varki A. 1993. Biological roles of oligosaccharides: all of the theories are correct. 
Glycobiology 3(2):97-130. 

Varki A, Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Hart, G.W., 
Etzler, M.E. 2009. Essentials of Glycobiology, 2nd edition. Cold Spring Harbor 
(NY): Cold Spring Harbor Laboratory Press. 

Venkatachalam MA, Rennke HG. 1978. The structural and molecular basis of glomerular 
filtration. Circ Res 43(3):337-47. 

Walker MR, Lund J, Thompson KM, Jefferis R. 1989. Aglycosylation of human IgG1 and 
IgG3 monoclonal antibodies can eliminate recognition by human cells expressing 
Fc gamma RI and/or Fc gamma RII receptors. Biochem J 259(2):347-53. 

Walsh G, Jefferis R. 2006. Post-translational modifications in the context of therapeutic 
proteins. Nat Biotechnol 24(10):1241-52. 

Weikert S, Papac D, Briggs J, Cowfer D, Tom S, Gawlitzek M, Lofgren J, Mehta S, Chisholm 
V, Modi N and others. 1999. Engineering Chinese hamster ovary cells to maximize 
sialic acid content of recombinant glycoproteins. Nat Biotechnol 17(11):1116-21. 

www.intechopen.com



 
Integrative Proteomics 196 

Wong CH. 2005. Protein glycosylation: new challenges and opportunities. J Org Chem 
70(11):4219-25. 

Zhong X, Pocas J, Liu Y, Wu PW, Mosyak L, Somers W, Kriz R. 2009. Swift residue-
screening identifies key N-glycosylated asparagines sufficient for surface 
expression of neuroglycoprotein Lingo-1. FEBS Lett 583(6):1034-8. 

Zhou Q, Shankara S, Roy A, Qiu H, Estes S, McVie-Wylie A, Culm-Merdek K, Park A, Pan 
C, Edmunds T. 2008. Development of a simple and rapid method for producing 
non-fucosylated oligomannose containing antibodies with increased effector 
function. Biotechnol Bioeng 99(3):652-65. 

www.intechopen.com



Integrative Proteomics
Edited by Dr. Hon-Chiu Leung

ISBN 978-953-51-0070-6
Hard cover, 442 pages
Publisher InTech
Published online 24, February, 2012
Published in print edition February, 2012

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

Proteomics was thought to be a natural extension after the field of genomics has deposited significant amount
of data. However, simply taking a straight verbatim approach to catalog all proteins in all tissues of different
organisms is not viable. Researchers may need to focus on the perspectives of proteomics that are essential
to the functional outcome of the cells. In Integrative Proteomics, expert researchers contribute both historical
perspectives, new developments in sample preparation, gel-based and non-gel-based protein separation and
identification using mass spectrometry. Substantial chapters are describing studies of the sub-proteomes such
as phosphoproteome or glycoproteomes which are directly related to functional outcomes of the cells.
Structural proteomics related to pharmaceutics development is also a perspective of the essence.
Bioinformatics tools that can mine proteomics data and lead to pathway analyses become an integral part of
proteomics. Integrative proteomics covers both look-backs and look-outs of proteomics. It is an ideal reference
for students, new researchers, and experienced scientists who want to get an overview or insights into new
development of the proteomics field.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Xiaotian Zhong and Will Somers (2012). Recent Advances in Glycosylation Modifications in the Context of
Therapeutic Glycoproteins, Integrative Proteomics, Dr. Hon-Chiu Leung (Ed.), ISBN: 978-953-51-0070-6,
InTech, Available from: http://www.intechopen.com/books/integrative-proteomics/recent-advances-in-
glycosylation-modifications-in-the-context-of-therapeutic-glycoproteins



© 2012 The Author(s). Licensee IntechOpen. This is an open access article
distributed under the terms of the Creative Commons Attribution 3.0
License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/3.0

