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1. Introduction 

Osteoporosis or porous bone was first described by Fuller Albright approximately 70 years 

ago as having “too little bone in the bone”. Bone tissue is maintained throughout life by 

being continually replaced and in osteoporosis bone resorption exceeds bone formation 

resulting in bone loss. The majority of current treatments for osteoporosis are anti-

resorptive, decreasing osteoclast activity and preventing further bone loss. Therapeutic 

agents that activate osteoblasts and increase bone formation have the potential benefit of 

restoring bone rather than only preventing further deterioration, but only a small number of 

safe anabolic therapies are currently available. Milk is a rich biological fluid that contains 

many growth factors and provides nutrition at a time of very rapid skeletal growth and 

development in the neonate, and was therefore considered as a possible source of factors 

with anabolic effects on bone. Investigations of fractions of whey proteins extracted from 

milk identified lactoferrin as a bone-active factor. Lactoferrin is an iron-binding glycoprotein 

which as well as being present in milk is found in other epithelial secretions. It is a 

pleiotropic factor with potent antimicrobial and immunomodulatory activities, and shows 

anabolic effects in bone at physiological concentrations. In a number of recent studies in 

humans and experimental animals dietary lactoferrin supplementation improved bone 

mineral density, bone markers and bone strength. The current chapter discusses the 

structure and function of lactoferrin, the bone-effects of lactoferrin in vitro and in vivo, and 

the potential use of lactoferrin for the improvement of bone health.  

2. Lactoferrin 

Lactoferrin is a multifunctional glycoprotein that was originally identified in bovine milk 

and first isolated from both human and bovine milk five decades ago (Groves et al. 1963). 

Lactoferrin is produced by mucosal epithelial cells and is present in very high 

concentrations in milk and colostrum, and in lower concentrations in mucosal secretions, 

including tears, saliva, nasal and bronchial secretions, bile and gastrointestinal fluids. 

Lactoferrin is also a major constituent of the secondary granules of neutrophilic leukocytes, 

and its serum level in healthy subjects is within the range of 1-10 g/mL (Caccavo et al. 

1999). 
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2.1 Molecular structure 

Lactoferrin is a non-haem iron-binding protein which belongs to the transferrin family of 

iron-transport proteins. It is a highly cationic monomeric glycoprotein with an isoelectric 

point of about 8.7 (Moguilevsky et al. 1985) and consists of about 690 amino acid residues 

folded into two homologous lobes, the so-called N-and C-lobes, which are linked by a 10-15 

residue alpha helical peptide (Baker & Baker 2005). There is a high degree of homology 

between lactoferrin from various species with bovine and human lactoferrin sequence 

identity being 69% (Pierce et al. 1991). 

2.1.1 Iron binding and glycosylation  

Each of the lactoferrin lobes contains a virtually identical iron-binding pocket, into which a 
trivalent iron cation (Fe3+) can be reversibly co-ordinated. The metal binding sites are highly 
conserved for all lactoferrins and transferrins thus far characterised (Baker & Baker 2009). 
Lactoferrin molecules can exist in several states whereby there is complete, partial (in either 
one of the two sites) or no occupancy of the two iron-binding sites.  Lactoferrin isolated from 
both human and bovine milk has a low iron saturation, generally reported between 10-25% 
(Bezwoda & Mansoor 1989). In vitro, iron can be removed from lactoferrin to yield the iron-
free or ‘apo’ form, or alternatively, lactoferrin can be loaded with iron to yield the fully iron-
bound or ‘holo’ form. Although other di- and trivalent transition metal ions such as Mn3+, 
Co3+, Cu2+ and Cr 3+ and even larger cations such as lanthanides (Smith et al. 1994) can be 
co-ordinated into the metal binding pocket, iron appears to be the natural ligand as it has 
optimal co-ordination and a very high binding affinity (Baker 1994). Nevertheless, lactoferrin 
may have a physiological role in binding trace amounts of other elements as manganese in 
milk is found exclusively associated with lactoferrin (Lonnerdal et al. 1985). 
All lactoferrins are glycosylated, but the number and location of glycosylation sites varies 

from species to species, and is also tissue specific (Derisbourg et al. 1990). Differentially 

glycosylated lactoferrins appear to have similar biophysical and functional properties 

suggesting minimal structural impact of glycosylation (Moguilevsky et al. 1985). 

2.1.2 Interactions with other molecules 

The highly basic nature of lactoferrin is contributed mainly by surface-exposed N-terminal 

domains containing clusters of highly basic residues which are capable of binding proteins 

such as ceruloplasmin (Vasilyev 2010) and osteopontin (Yamniuk et al. 2009). These cationic 

domains also confer on lactoferrin the ability to bind to many other anionic molecules 

including heparin, glycosaminoglycans, DNA, and various cell surface molecules (He & 

Furmanski 1995; Mann et al. 1994; van Berkel et al. 1997). 

2.2 Physiological function 
2.2.1 Anti-microbial activity 

The highly cationic nature of lactoferrin and its high affinity iron binding are implicated in 

the anti-microbial function of this glycoprotein. Thus, iron sequestration in sites of bacterial 

infection deprives the bacteria of this essential nutrient, creating a bacteriostatic effect 

(Gonzalez-Chavez et al. 2009; Jenssen & Hancock 2009). Lactoferrin has bactericidal effect as 

well, as it interacts directly with anionic molecules on the cell surface, causing cell lysis. In 

Gram-negative bacteria, lactoferrin interacts directly with LPS, causing its release from the 

cell wall and increasing the external membrane permeability, which results in cell lysis. In 
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Gram-positive bacteria lactoferrin damages the cell through direct interactions with 

lipoteichoic acid and other anionic surface molecules. Iron sequestration and interactions 

with anionic molecules are also the main mechanisms responsible for lactoferrin’s activity 

against fungus and parasite infections. Lactoferrin has been described as an antiviral agent 

that affects a broad range of RNA and DNA viruses that infect humans and animals 

(Gonzalez-Chavez et al. 2009). Although the antiviral mechanisms of lactoferrin have not 

been well characterised yet, one of the most widely accepted hypothesis is that lactoferrin 

blocks viral receptors on the cell surface, and in particular heparin sulphate, preventing 

contact between the virus and the target cell.  

2.2.2 Modulation of the immune response and inflammation 

Lactoferrin is a modulator of both the innate and acquired immune systems. Following the 

penetration of a microbe into a tissue, cells of the innate immune system release pro-

inflammatory cytokines, including interleukins 1 and 6 (IL-1, IL-6) and tumor necrosis 

factor-alpha (TNF-┙), which increase the permeability of blood vessels enabling the 

recruitment of circulating neutrophils to the site of infection. The release of neutrophil 

granule content creates very high local concentrations of lactoferrin. Apart from direct 

antimicrobial activity, lactoferrin interacts with cells of the innate immune systems as well 

as with cells of the adaptive immunity; regulating their recruitment, proliferation, 

differentiation and activation (Legrand et al. 2006; Legrand & Mazurier 2010). 

In different experimental systems, lactoferrin acts as either an anti-inflammatory or a pro-

inflammatory factor. The anti-inflammatory activity of lactoferrin is attributed to its ability 

to bind free iron and exogenous proinflammatory bacterial components, such as LPS and 

their receptors (Legrand et al. 2005). Thus, lactoferrin activity as an iron scavenger prevents 

the formation of free radicals, which trigger oxidation processes and tissue damage, while 

binding to proinflammatory molecules inhibits the activation and recruitment of immune 

cells to the inflamed tissue. An additional mechanism implicated in the anti-inflammatory 

activity of lactoferrin has been recently described in apoptosis, the process of 

noninflammatory programmed cell death. Bournazou et al. (Bournazou et al. 2009; 2010) 

discovered that apoptotic cell of diverse lineages synthesize and secrete lactoferrin, which 

selectively inhibits the migration of granulocytes but not mononuclear phagocytes. This 

selective migration allows for the swift phagocytosis of the dying cells by the mononuclear 

cells without initiating an inflammatory response. Subsequently, lactoferrin was also found 

to have an inhibitory effect on eosinophil migration (Bournazou et al. 2010). A number of 

other studies describe the proinflammatory activities of lactoferrin. As a factor that induces 

inflammation, lactoferrin has been shown to promote cell motility, superoxide production, 

release of nitric oxide, release of the proinflammatory cytokines TNF-┙ and IL-8 and 

phagocytosis  (Gahr et al. 1991; Legrand & Mazurier 2010; Shinoda et al. 1996; Sorimachi et 

al. 1997). 

2.2.3 Iron homeostasis and antioxidation 

Although lactoferrin is an iron-binding protein and has been shown to influence iron status 

in pregnant women (Paesano et al. 2009) it is generally thought not to have a central role in 

iron-transport and homeostasis, unlike the transferrins. Nevertheless it does appear to have 

some role in iron regulation at local sites of inflammation and infection (Brock 2002) and 
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iron sequestration is an important part of its role both as an antioxidant and antibacterial 

agent (Baldwin et al. 1984; Jenssen & Hancock 2009). In respect of iron-binding, lactoferrin is 

functionally different from transferrin as it retains iron to a much lower pH, giving it a more 

potent iron-withholding ability (Baker & Baker 2009). Although the antioxidant properties 

of lactoferrin are generally related to removal of free iron which otherwise reacts with 

reactive oxygen species (ROS) to form damaging hydroxyl radicals (Matsue et al. 1995; 

Raghuveer et al. 2002) a recent report suggests that apo- and holo bovine-lactoferrin have 

equal ability to act as antioxidants by scavenging ROS (Kanwar et al. 2011). This radical 

quenching ability, akin to antioxidant vitamins, is seemingly iron independent. 

2.2.4 Bioactive peptides derived from lactoferrin 

Functional cationic peptides with potent antibacterial activity, such as lactoferricin and 

lactoferrampin, can be derived from the N-terminal domain of lactoferrin by hydrolysis 

(Bellamy et al. 1992) or synthetic chemistry (van der Kraan et al. 2004), respectively.  

Lactoferrin can be degraded by digestive enzymes (Brock et al. 1976; Troost et al. 2001) and 

the functional peptide lactoferricin is likely to be formed in the gut by the action of pepsin. 

Lactoferrin ‘half molecules’ consisting of either the N-lobe or C-lobe can be generated by 

proteolysis or by recombinant technology (Baker & Baker 2005; Kim et al. 2006). These are 

useful as tools to probe for site-specific functionality or interactions. For example, the anti-

herpes virus activity of lactoferrin has been shown to be mediated mainly by the N-lobe 

(Siciliano et al. 1999) while simple sugars have been shown to interact with the C-lobe 

through a common recognition site (Mir et al. 2010). 

3. The activity of lactoferrin in bone 

3.1 Osteoblasts 
3.1.1 In vitro studies of lactoferrin activity in osteoblasts 

Lactoferrin potently induces proliferation of primary osteoblasts and osteoblastic-cell lines 

and increases osteoblast differentiation at physiological concentrations (Fig 1A) (Cornish et 

al. 2004; Takayama & Mizumachi 2008, 2009). In 3-week cultures of primary fetal rat 

osteoblasts lactoferrin dose-dependently increased osteoblast differentiation with increases 

in bone matrix deposition and the number of mineralized bone nodules formed (Fig 1B) 

(Cornish et al. 2004). In addition, lactoferrin decreased apoptosis induced by serum 

withdrawal in primary rat osteoblasts (Fig 1C) (Cornish et al. 2004) and in the human 

osteoblastic cell line SaOS2 (Grey et al. 2006). These effects on both the proliferation and 

survival of osteoblasts are profound, being far greater than those observed in response to 

several established osteoblast growth factors studied in the same in vitro assays, such as 

epidermal growth factor, transforming growth factor-┚, parathyroid hormone, amylin or 

insulin.  These factors increase thymidine incorporation in primary osteoblast cultures by 

only 20 – 30% (Cornish et al. 1999) whereas lactoferrin produces three- to five-fold 

increments (Cornish et al. 2004). This growth stimulating potency is complemented by the 

capacity of lactoferrin to substantially reduce osteoblast apoptosis, which again, is much 

more dramatic than the effects seen with other factors, such as insulin growth factor-1 (IGF-

1) which maximally decreases apoptosis by 50% (Cornish et al. 2000) compared to 70% with 

lactoferrin (Cornish et al. 2004). 
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Fig. 1. Lactoferrin stimulates osteoblast proliferation, differentiation and survival in vitro  

Thus, lactoferrin acts to expand the pool of pre-osteoblastic cells by exerting mitogenic and 

anti-apoptotic effects, as well as promoting differentiation of precursors to produce a more 

mature osteoblastic phenotype capable of promoting bone matrix deposition and 

mineralization.  

3.1.2 Local injection model 

The activities of lactoferrin on osteoblasts demonstrated in vitro are likely to contribute to 

the potent effects on bone formation seen in vivo after administration of lactoferrin, even 

with a very short-term exposure (Fig 2) (Cornish et al. 2004). The bone growth resulting 

from local lactoferrin injection is considerably greater than that found previously in 

response to factors such as insulin, amylin, adrenomedullin and C-terminal PTH-related 

peptide (Cornish et al. 1996; 1997a; 1997b). It is qualitatively different from the effects of 

PTH in this model, which produces a powerful stimulation of bone resorption in addition to 

its effect on formation (Cornish et al. 1995). This anabolic potency suggests that lactoferrin 

should be further explored as a therapy for osteoporosis that can restore skeletal strength. 

 

 
 

A      B 

Fig. 2. Photomicrographs of calvariae from animals treated with lactoferrin (A) and vehicle 

(B) for 5 days. Fluorochrome labels used: green, calcein; red, alizarin. Horizontal bar, 50 m. 

(Figure reproduced with kind permission. Cornish J., et al. Lactoferrin is a potent regulator 

of bone cell activity and increases bone formation in vivo. Endocrinology 145(9): 2004, 4366-

4374.  Copyright 2004, The Endocrine Society.) 
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3.1.3 Signalling pathways activated by lactoferrin in osteoblasts  

The downstream pathways activated by lactoferrin are largely unknown, although a 
number of lactoferrin receptors have been described. A specific lactoferrin receptor was 
cloned from the human intestine (Kawakami & Lonnerdal 1991) but this receptor is not 
expressed in all cell types that respond to lactoferrin and we have been unable to detect the 
mRNA in osteoblastic cells (Naot, unpublished data).  Proteins that can bind and induce 
endocytosis of lactoferrin are nucleolin (Legrand et al. 2004) as well as low-density 
lipoprotein receptor-related proteins 1 and 2 (LRP1 and LRP2) (Ji & Mahley 1994; Willnow 
et al. 1992). LRP1 and LRP2 are expressed in osteoblastic cells and LRP1 is at least partially 
responsible for lactoferrin’s mitogenic effects in osteoblasts (Grey et al. 2004). As lactoferrin 
complexes with LRP1, extracellular signal-regulated kinase (ERK) signalling pathway is 
upregulated.  In addition, lactoferrin upregulates phosphoinositide 3-kinase-dependent Akt 
signalling but this is in an LRP-independent manner.  Lactoferrin’s anti-apoptotic activity in 
osteoblasts is independent of both these two signalling pathways.   
In primary osteoblasts, lactoferrin induces a transient, dose-dependent increases in the 
transcription levels of IL-6, IL-11, the pro-inflammatory factor prostaglandin-endoperoxide 
synthase 2 (Ptgs2, encoding for the enzyme cyclooxygenase-2, COX-2) and the transcription 
factor nuclear factor of activated T-cells (Nfatc1). The activity of COX-2 to produce and 
secrete prostaglandin E2 and the activity of NFATc1 to promote transcription from NFAT 
consensus elements are also induced by lactoferrin. Moreover, COX-2 and NFATc1 act as 
mediators of the proliferative effect of lactoferrin in osteoblasts, as inhibition of their 
activities significantly reduces lactoferrin-induced thymidine incorporation (Naot et al. 
2011). Recently, Nakajima et al demonstrated that lactoferrin induces synthesis of 
angiogenic factors by osteoblasts. In murine osteoblast-like MC3T3-E1 cells and primary 
murine osteoblasts lactoferrin, purified from milk, increased mRNA expression of vascular 
endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF2) in a p44/p42 MAP 
kinase-dependent manner (Nakajima et al. 2011). A summary of some of the signalling 
pathways’activated by lactoferrin in osteoblasts is presented in Figure 3.  
 

 

Fig. 3. Mechanisms of action of lactoferrin in osteoblasts. Figure reproduced with kind 
permission from Springer Science+Business Media: (Biometals, Lactoferrin as an effector 
molecule in the skeleton, 23,  2010, 425-430, Cornish, J. & Naot, D.  Figure 1.) 
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3.1.4 Lactoferrin effects on early stages of osteogenic differentiation 

Lactoferrin supports osteogenic differentiation in mesenchymal pluripotent cells whilst 
reducing adipogenic differentiation. In the pluripotent mesenchymal cell line, C2C12, 
analyses of expression levels of mRNA and proteins indicated an induction of osteoblastic 
and chondroblastic differentiation markers and a reduction in myoblastic and adipocytic 
markers (Yagi et al. 2009). We have identified that lactoferrin reduces adipogenic 
differentiation in KUSA4b10 cells, a mouse mesenchymal progenitor cell-line capable of 
developing into adipogenic or osteogenic cell lineages (Fig 4).  Lactoferrin has also been 
found to promote the proliferation and osteogenic differentiation of human adipose stem 
cells (Ying et al. 2011). The activity of lactoferrin to support osteogenic differentiation whilst 
reducing adipogenic differentiation could be a promising approach for enhancing 
osteogenic capacity of cell-based construction in bone tissue engineering.  
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Fig. 4. Lactoferrin reduces adipogenic differentiation in KUSA4b10 cells as measured by Oil 
Red O release detected in a spectrophotometer at an optical density (OD) of 500nm. 

3.2 Osteoclasts 

In comparison with actions of lactoferrin on osteoblasts, its osteoclasts effects are strikingly 
different, in that it produces an almost total arrest of osteoclastogenesis in mouse bone 
marrow cultures (Fig 5) (Cornish et al. 2004). Reduced bone-resorbing activity was also 
demonstrated by Lorget et al, who used bovine lactoferrin in a rabbit mixed bone cell 
culture (Lorget et al. 2002). The mechanisms implicated in the inhibitory effect of lactoferrin 
on bone resorption are only partially understood. In the rabbit bone cell cultures, lactoferrin 
inhibited the development of mature osteoclasts by a mechanism independent of the 
receptor activator of NF-κB (RANK)/RANK-ligand (RANKL)/osteoprotegerin (OPG) 
system. In the mouse bone marrow cultures, lactoferrin reduced RANKL expression, which 
could in part explain the inhibition of osteoclastogenesis, although this was counterbalanced 
by the effects of lactoferrin to also inhibit expression of OPG (Cornish et al. 2004). As the 
RANK/RANKL/OPG pathway does not appear to play a major role in mediating the 
inhibitory effect of lactoferrin on osteoclast formation, the possibility of a direct effect on 
osteoclasts has been investigated. In RAW264.7 cells, which differentiate into osteoclasts in 
vitro in the absence of osteoblasts or stromal cells, lactoferrin inhibited RANKL-induced 
osteoclastogenesis in a dose-dependent manner, demonstrating a direct effect on osteoclasts 
(Cornish & Naot 2010). This effect of lactoferrin was not blocked by an inhibitor of LRP1, 
indicating that LRP1 is not the receptor that mediates the direct inhibition of 
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osteoclastogenesis by lactoferrin (Cornish & Naot 2010). It should be noted that lactoferrin 
has a capacity to inhibit the survival of progenitor cells in the bone marrow, implying that it 
might also act earlier in osteoclast development (Hangoc et al. 1991). In contrast to its 
inhibitory effect on osteoclast development, lactoferrin had no effect on bone resorption by 
isolated mature osteoclasts nor in organ cultures which also detect mature osteoclast activity 
(Cornish et al. 2004). Thus, lactoferrin inhibits bone resorption by reducing the number of 
osteoclasts formed from precursor cells.  
 

 

Fig. 5. Inhibition of osteoclastogenesis by lactoferrin in mouse bone marrow cultures 

3.3 Structure/Function relationship of lactoferrin’s bone activity 

Bovine, human and recombinant forms of lactoferrin have comparable ability in stimulating 
osteoblast proliferation (Cornish et al. 2004). This suggests that glycosylation is not critical to 
the mitogenic activity as these three forms of lactoferrin are differentially glycosylated. 
Furthermore, when carbohydrate chains were removed from bovine lactoferrin, the aglyco- 
form was as potent as the glyco-form (Cornish et al. 2006), confirming that carbohydrate is 
not a major determinant in the mitogenic activity of lactoferrin in osteoblasts. The activity of 
lactoferrin on bone cells was also shown to be independent of iron-binding with apo-, native 
and holo- preparations of bovine lactoferrin giving similar levels of stimulation of 
proliferation (Cornish et al. 2006). Moreover, replacement of the iron with chromium and 
manganese, two transition metals of equivalent size, also had no effect. This suggests firstly 
that the conformational changes induced by iron-binding have no impact on lactoferrin 
activity, and secondly that bound iron is not essential to this activity. 
Further structure/function studies were performed using the N-lobe and C-lobe of bovine 
lactoferrin (prepared by proteolysis), the N-lobe of human lactoferrin (prepared by 
recombinant technology), and synthetic bovine lactoferricin peptides (Cornish et al. 2006). 
The N-lobes of both human and bovine lactoferrin and the C-lobe of  bovine lactoferrin all 
showed osteogenic activity as measured by proliferation of primary rat osteoblasts, but the 
magnitude of response was less than for the full length molecule (Fig 6A). Interestingly, the 
bovine C-lobe appeared to have a stronger effect on proliferation than the bovine N-lobe. 
The bovine lactoferricin peptides (17-31 & 20-30) were both mildly osteogenic (Fig 6B). The N-
lobe of human lactoferrin decreased osteoclastogenesis in a dose-dependent manner with an 
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activity that appeared to be equivalent, on a molar basis, to that of intact recombinant human 
lactoferrin. In contrast, the C-lobe of bovine lactoferrin has only a weak effect in this assay.  
The ability of the various lactoferrin lobes and fragments to influence both osteoblast 
proliferation and osteoclast development suggests that several sites on the lactoferrin molecule 
might be involved in receptor recognition, binding and stabilisation, or alternatively, more 
than one receptor might be involved. On a molar basis, the activity of intact lactoferrin on bone 
cell proliferation was at least 10-fold greater than that of the part molecules, which suggests 
that a global structure is required for optimal activity. In contrast, the equivalent 
osteoclastogenic activities of the recombinant human lactoferrin and its N-lobe suggest that 
this activity might be largely located in the N-lobe. However, further structure/function 
studies are warranted, as from a therapeutic perspective small active synthetic peptides might 
present a more attractive option for drug development than the intact lactoferrin molecule.  
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Fig. 6. Thymidine incorporation in primary rat osteoblasts treated with lactoferrin 
fragments. LF; intact lactoferrin, LFC; lactoferricin. 

3.4 Lactoferrin’s activity in bone in vivo 

A number of recently published studies tested the potential use of lactoferrin for protection 
against bone loss. The effect of dietary supplementation of lactoferrin on bone was 
measured using ovariectomized (OVX) rodents as a model for post menopausal bone loss 
(Blais et al. 2009; Guo et al. 2009; Malet et al. 2011). C3H mice that were either OVX or sham 
operated, received a control diet or the same diet supplemented with different 
concentrations of bovine lactoferrin for 27 weeks. Lactoferrin supplementation improved 
bone mineral density and bone strength, measured as femoral failure load, in a dose-
dependent manner (Blais et al. 2009). A study in OVX rats produced similar results. 
Lactoferrin orally administered to OVX rats for 3 months protected them against the OVX-
induced reduction of bone volume and bone mineral density and increased the parameters 
of mechanical strength. Measurements of biochemical markers of bone remodelling 
indicated greater bone formation and reduced bone resorption occurred in rats treated with 
lactoferrin (Guo et al. 2009). Yamano et al. (Yamano et al. 2010) studied the potential use of 
lactoferrin for the prevention of alveolar bone destruction associated with periodontitis in 
an LPS-induced periodontitis rat model.  Lactoferrin or liposomal-lactoferrin, which 
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improved the robustness of bovine lactoferrin to digestive enzymes, were added to the 
drinking water for 7 days. The study showed that bone resorption stimulated by LPS 
through activation of TNF-┙ production and modulation of RANKL/OPG balance in 
osteoblasts was inhibited by the orally administered lactoferrin.  The researchers suggest 
that liposomal-lactoferrin could be a potent therapeutic and preventive agent for attenuating 
alveolar bone destruction in periodontitis patients. 
In a small clinical study, 38 healthy postmenopausal women were randomized to receive 
placebo or a ribonuclease-enriched lactoferrin dietary supplement (Bharadwaj et al. 2009). In 
the lactoferrin-treated group there was a decrease in the bone resorption markers urine 
deoxypyridinoline (Dpd) crosslinks and serum N-telopeptides and an increase in the bone 
formation markers bone-specific alkaline phosphatase and osteocalcin, but the results are 
difficult to interpret due to differences in the levels of markers between the two groups 
before treatment.    

3.5 The expression of lactoferrin in bone and cartilage 

Investigations of the expression of lactoferrin in normal fetal and adult bone and cartilage 

by immunohistochemistry determined that fetal chondroblasts and osteoblasts are positive 

for lactoferrin immunoreactivity, whereas the corresponding adult cells are negative 

(Antonio et al. 2010; Ieni et al. 2009a; 2009b; 2011). Bone and cartilaginous specimens from 

fetuses at 8-34 weeks of gestation were studied. At the eighth gestational week, lactoferrin 

immunoreactivity was mainly present in the mesenchymal cells forming the periosteum and 

in chondroblasts; and a lactoferrin signal was also present in immature osteocytes and 

osteoblasts up to the 18th gestation week. The lactoferrin immunoreactivity decreased 

considerably by the 24th week, with no expression found in any bone area after the 30th 

week or in any samples from adult bone (Antonio et al. 2010; Ieni et al. 2011). The expression 

of lactoferrin in bone and cartilaginous tissue between 8 and 24 weeks of gestation suggests 

a possible role for lactoferrin as a bone growth regulator in the early phases of the human 

endochondral ossification.  

The expression of lactoferrin was also studied by immunohistochemistry in a large number 

of tumors of bone and cartilage (Ieni et al. 2009a; 2009b; 2011). About half of all cases of 

osteocartilagineous tumors were positive, with lactoferrin expression in all giant cell tumors 

tested, all chondroblastomas, chondromyxoid fibromas and most osteoid osteomas. No 

lactoferrin immunoexpression was detected in osteosarcomas, chondrosarcomas, ossifying 

fibromas, osteochondroma and enchondromas. It is possible that lactoferrin expression 

reflects a less mature phenotype of these tumors, as lactoferrin is absent from normal adult 

bone and cartilage tissues.  

3.6 Lactoferrin as a therapeutic agent    
3.6.1 Local delivery 

There is much interest in the potential use of lactoferrin as a factor that can act locally in 

topical applications for regenerative bone therapies and bone tissue engineering. Various 

biomaterials and biomedical devices have been used to improve delivery and enable 

sustained release of lactoferrin at the requisite site.  Bovine lactoferrin incorporated into a 

type 1 collagen membrane promoted bone-like tissue formation by MG63 cells which were 

plated over the membrane (Takayama & Mizumachi 2009) and implantation of 

biodegradable gelatin hydrogels incorporating lactoferrin into a skull bone defect of rats 
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resulted in significantly stronger bone regeneration at the defect than was observed in either 

lactoferrin-free- or low-lactoferrin-treated rats (Takaoka et al. 2011). It was concluded that 

the sustained release from the gelatin hydrogels enabled lactoferrin to enhance the in vivo 

activity of bone regeneration. A titanium bone plate carrying lactoferrin for treatment of 

metaphyseal fracture has been patented, primarily as an implant for antibiosis, but such a 

device could conceivably be used for the promotion of bone repair (Fei et al. 2008). In the 

same context, a recent technology has been described whereby lactoferrin was coated in thin 

films onto inert substrates such as silica and biocompatibility assessed for use in 

applications such as implants (Constantinescu et al. 2009). 

3.6.2 Oral delivery 

The potential use of lactoferrin as a food supplement that promotes bone health requires 

experimental evidence showing that it is active when administered orally. Most ingested 

proteins are degraded into oligopeptides and amino acids in the small intestine and then 

absorbed as nutrients. The digestion of lactoferrin was studied in adult mice and rats 

(Fischer et al. 2007; Kuwata et al. 2001). In mice, immunoreactive lactoferrin, measured by 

ELISA one hour following intragastric intubation of a single dose, was present at the highest 

concentrations in the stomach, and in lower concentrations in all segments of the intestine:  

proximal intestine, distal intestine, caecum and large bowel (Fischer et al. 2007). Oral 

administration of 125I-labelled lactoferrin in adult rats, followed by detection of multiple 

forms of degraded lactoferrin by surface-enhanced laser desorption/ionization (SELDI) 

affinity mass spectrometry showed that the bioactive fragment lactoferricin (17-42) could 

survive proteolytic degradation in the small intestine (Kuwata et al. 2001). 

Transport of intact lactoferrin from the gut lumen to the circulation has been shown in 

infants (Hutchens et al. 1989, 1991; Knapp & Hutchens 1994) young calves (Talukder et al. 

2002, 2003) and piglets (Harada et al. 1999) suggesting that as the selective transport from 

the gut is not yet fully developed macromolecules can cross into the circulation. In addition, 

a number of recent studies demonstrated transport of intact lactoferrin in adult animals and 

in humans. Fischer et al. (Fischer et al. 2007) found that 10 minutes after the administration 

of 1mg lactoferrin to adult mice through intragastric intubation, the intact molecule could be 

detected in the peripheral blood as well as in the liver, kidneys, gall bladder, spleen and 

brain. Transport of lactoferrin into the circulation has also been shown in groups of Ovx 

mice that were fed different concentrations of bovine lactoferrin (1-20 g/kg) for 27 weeks. 

Blood concentrations of immunoreactive lactoferrin of mice that received the bovine 

lactoferrin-supplemented diets were significantly increased compared to controls and were 

correlated to the bovine lactoferrin concentration in the diet (Blais et al. 2009). 

3.6.3 Functional foods 

An important consideration for the use of food systems as vehicles for bioactive delivery is 

that the bioactive remains active throughout manufacture and shelf-life of the product.  

Recent work has shown that bovine lactoferrin dosed into stirred yoghurt remained 

structurally intact and retained its osteogenic activity on primary bone-forming cells up to 

21 days after storage of the yoghurt at 4° C (Palmano et al. 2011). In many respects yoghurt 

is the ideal functional food matrix for bone as it is calcium rich and a popular consumer 

product.   
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3.6.4 Lactoferrin preparations with potential use for bone applications 

Bovine and human lactoferrin constitute the most studied of the lactoferrins. In general and 
in spite of some structural differences, bovine and human lactoferrin including recombinant 
forms appear to have comparable bioactivities. However, some differences between bovine 
lactoferrin and human lactoferrin have been noted with respect to intestinal receptor 
recognition (Kawakami & Lonnerdal 1991) and it cannot be assumed that activities are 
always interchangeable  
The use of lactoferrin as a therapeutic agent requires not only proof of efficacy at the clinical 
level, but assured safety, consistent quality of supply and appropriate delivery mechanisms. 
Most studies on the effects of lactoferrin on bone, including clinical trials, have been performed 
using bovine lactoferrin. Bovine lactoferrin from milk has been available as a commercial 
isolate for many years (Tomita et al. 2009). It has a ‘Generally Recognized As Safe’ (GRAS) 
status from the United States Food and Drug Administration (FDA) and now has widespread 
acceptance for oral use in humans. Indeed, it has been available for a number of years in Japan 
and other countries as a dietary supplement and as a functional ingredient in foods such as 
yoghurt and fortified infant formulae (Wakabayashi & Tasaki 2006). Bovine lactoferrin has 
been administered orally at doses of 3g/day for one year in a cancer clinical trial, with some 
positive outcomes and no apparent adverse effects (Tomita et al. 2009).  
Equally, recombinant human lactoferrin can be considered for oral application although to 
date there have been no oral efficacy clinical trials targeted specifically at bone. High 
expression levels can be achieved in rice (Nandi et al. 2005) and transgenic animals (van 
Berkel et al. 2002) and recombinant human lactoferrin expressed in both baby kidney 
hamster cells and rice has been shown to have comparable activity to human lactoferrin and 
bovine lactoferrin in stimulating proliferation of primary rat osteoblasts (Cornish et al. 2004; 
Huang et al. 2008). Rice recombinant human  lactoferrin was shown to have no toxicity in 
rats when administered up to 1000 mg/kg body weight/day for 28 days (Bethell et al. 2008a, 
2008b) and did not elicit an allergic response in plant-glycan sensitive humans in a limited 
clinical study (Mari et al. 2008). Moreover it was shown to have beneficial effects as an oral 
agent in a clinical trial targeted at reduction of diarrhoea in Peruvian children (Zavaleta et 
al. 2007). No adverse events were reported.  
Another potential candidate for bone interventions is Talactoferrin alpha, a proprietary 

recombinant human lactoferrin expressed in the fungus Aspergillus awamori and produced at 

industrial scale by Aggenix AG (Sanchez et al. 2010). Talactoferrin is currently being 

evaluated for the oral treatment of several cancer types and Fast Track designation has been 

granted to Agennix by the FDA for treatment of non-small cell lung cancer (NSCLC) and 

first-line treatment of renal carcinoma in combination with sunitinib. Placebo-controlled 

Phase II clinical trials have been successfully completed for NSCLC (Jonasch et al. 2008) and 

at time of writing two Phase III trials evaluating Talactoferrin in NSCLC patients are 

ongoing. Talactoferrin appears to have no toxicity, is well tolerated and also appears to be 

safe for topical applications.  It has shown efficacy in the local treatment of diabetic ulcers 

(Engelmayer et al. 2008) for which it also has Fast Track FDA approval (Sanchez et al. 2010). 

4. Conclusion 

The positive effects of lactoferrin in bone have been demonstrated in vitro; where lactoferrin 
induces osteoblast proliferation, survival and differentiation and inhibits osteoclast 
formation, and in vivo; where lactoferrin given as a dietary supplement to rat and mice 
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protects against bone loss associated with oestrogen deficiency. The molecular pathways 
activated by lactoferrin in bone cells are only partially understood, and it appears that a 
combination of direct and indirect physiological mechanisms is producing the overall 
anabolic effect of lactoferrin in bone. Pharmaceutical or nutriceutical use of lactoferrin 
would require the development of a preparation with assured safety and consistent quality 
of supply. A better understanding of lactoferrin’s mechanism of action in bone would allow 
for the design of compounds that can mimic its anabolic bone activity, and would be useful 
in pathological states of reduced bone quality in either systemic or local applications.   
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