Implementation of MRSA Infection Prevention and Control Measures – What Works in Practice?

Jobke Wentzel, Nienke de Jong, Joyce Karreman and Lisette van Gemert-Pijnen
Center for eHealth Research and Disease Management
University of Twente
The Netherlands

1. Introduction

There have been increasing numbers of media reports about careless behaviour by healthcare workers, mainly involving insufficient cleaning practices and the absence of hand hygiene measures (Boyce, 2009). Although adherence to infection prevention and control measures has received a lot of attention in the media and in scientific literature, surprisingly little attention has been given to the implementation of the infection prevention and control strategies in healthcare practices. In the medical literature the focus is on the availability of national or regional MRSA surveillance data and guidelines for prevention and control. To date hardly any data has been made available about the kinds of interventions that have been successful in implementing infection prevention and control.

Research has shown that an intensive infection prevention programme could prevent about one-quarter to one-third of all hospital infections (Sengers et al., 2000). An example of such a successful policy is the ‘search-and-destroy’ strategy that has been introduced in the Netherlands, to prevent the spread and outbreak of infections caused by multi-resistant bacteria such as Methicillin Resistant Staphylococcus Aureus (MRSA). However, adherence to this policy still remains a problem. It is known from prior research (van Gemert et al., 2005; Verhoeven et al., 2009) that healthcare workers are insufficiently aware of infection control measures; they do not understand the rationale behind these measures and think that infection control is not their problem, that it is mainly an issue for hygiene experts.

Research in the social sciences has shown that improving safety in hospitals requires a tailored strategy to persuade people to change their attitudes and behaviours (Fogg, 2003). Furthermore, changing routines and habits in healthcare is not easy: it requires an integral approach, with activities addressing human behaviour, culture, incentives and other managerial reinforcement activities, and of course adequate information about safety regulations (Foy et al., 2001; Van Gemert et al., 2005; Verhoeven et al., 2009). A multifaceted implementation strategy might be a solution (Foy et al., 2001, Pittet et al.,...
Such a strategy should include interventions aimed at different levels: the management of healthcare institutions, the behaviour of healthcare workers and the quality of the infection control guidelines. However, what empirical evidence exists for a multi-faceted implementation strategy? And how successful are these strategies? To investigate this, we conducted a systematic literature review. This review will be used to develop an implementation strategy that fits the habits and culture of hospital-based healthcare workers (HCWs) in hospital care settings. In this review, we searched for empirical studies to investigate and identify effective implementation strategies for improving adherence to MRSA prevention and control measures. The following questions guided our review of the literature:

- What implementation strategies are used?
- What is the foundation of these strategies (theories, experience, etc.)?
- What research designs were used to measure the effects of the implementation strategies?
- What effects are reported?
- On adherence to the measures?
- On the reduction of costs?
- On the reduction of MRSA?

2. Method of the systematic review

The York protocol for systematic reviews (Centre for Reviews and Dissemination, 2001) was used to guide the review process. Literature searches were carried out in the online databases Scopus, ISI Web of Knowledge and the Cochrane Library. In addition, we hand-searched the indexes of the Journal of Hospital Infection (JHI), the American Journal of Infection Control (AJIC) and Clinical Microbiology and Infection (CMI) for relevant publications. We searched for studies describing the implementation of MRSA prevention or control measures. The publications were included in the review if they met the inclusion criteria listed in Table 1. Most important was that the publications described an implementation strategy and implementation outcomes. Two independent reviewers (NdJ, JW) applied the inclusion criteria to the publications in a title screening round, followed by an abstract and a full-text screening round. After each round, the reviewers compared their judgments and resolved discrepancies through discussion. The included studies are summarized in a data table, and the study features and results are summarized and compared. Due to the heterogeneity of the data and the limited number of included studies, no meta-analysis was performed.

3. Results of the systematic review

3.1 Article screening

The search strategy resulted in 661 potentially relevant publications (after duplicates were removed). The screening process and outcomes are shown in Figure 1; 29 publications were included in the review. The characteristics of these publications are summarized in Table 2. The characteristics and outcomes of the included studies are discussed in the following sections. The numbers we cite correspond to the publications summarized in Table 2.
Inclusion Criteria

Publication Type

(Scientific) Journal article, published between 2005-2010

Scope of Studies

Implementation of an evidence-based MRSA prevention or control measure. The implementation strategy must be described.

Study Settings

Primary-/secondary-care facilities, long-term care facilities, nursing homes

Outcome measure

Implementation outcomes (mostly behavioural) must be given.
- Behavioural (e.g. adherence to implemented measure, knowledge)
- Clinical (e.g. prevalence rates, infection rates, deaths)
- Organizational (e.g. changes in Length of Stay (LoS), expenditures, costs)

Table 1. Inclusion Criteria

<table>
<thead>
<tr>
<th>Reason</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Insufficient implementation strategy information.</td>
<td>45</td>
</tr>
<tr>
<td>B: No Compliance rates; no implementation results described.</td>
<td>25</td>
</tr>
<tr>
<td>C: Article is a Viewpoint/Review.</td>
<td>13</td>
</tr>
<tr>
<td>D: Article was not written in English.</td>
<td>10</td>
</tr>
<tr>
<td>E: Article is a report of Conference Proceedings.</td>
<td>2</td>
</tr>
<tr>
<td>F: Other.</td>
<td>2</td>
</tr>
</tbody>
</table>

Fig. 1. Results of the screening process

Database and journal index search results: publications entered in title screening

Publications entered in abstract screening (n=315)

Publications entered in full text screening (n=126)

Relevant publications included in review (n=29)
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Implementation strategy</th>
<th>Reported Findings (behavioural, clinical, financial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baldwin, et al., 2010, Ireland</td>
<td>Educational meetings, Local opinion leaders, Audit and feedback, Technology supported</td>
<td>Behavioural
 In-person observations
 Mean audit score was higher in the intervention than in the control group at 3 months, 6 months, and 12 months. Clinical
 MRSA positive screenings were similar in intervention and control homes at 3 months, 6 months, and 12 months. MRSA prevalence rates among staff were similar in intervention and control group at 3 months, 6 months, and 12 months.</td>
</tr>
<tr>
<td>Bassetti, et al., 2009, Italy</td>
<td>Audit and feedback, AB permission, Formulary restrictions, Clinical multidisciplinary teams</td>
<td>Behavioural
 Significant reduction in cephalosporins use. Significant increase in ciprofloxacin use. Clinical
 Significant reduction in MRSA due to intervention. An increase in susceptibility to piperacillin/tazobactam observed in P. aeruginosa isolates ceased after the change in antibiotic policy. Increase in susceptibility to ciprofloxacin in K. pneumoniae albeit an abrupt change in the percentage of susceptible isolates due to intervention. Decrease in susceptibility to piperacillin/tazobactam and increase in susceptibility to ciprofloxacin in P. aeruginosa isolates observed during the entire surveillance period, with no significant changes due to intervention.</td>
</tr>
<tr>
<td>Burkitt, et al., 2010, United States</td>
<td>Educational meetings, Reminders, Mass media, Technology-supported</td>
<td>Behavioural
 Questionnaires
 Significant increase in proportion of respondents who reported always washing hands more often than soap and water to clean their hands. Significant increase in mean number of knowledge questions answered correctly. Significant decrease in job satisfaction. Significant increase in proportion of respondents who reported using prevention practices. Significant increase in proportion of respondents who reported at least one barrier to proper hand hygiene, primarily because they feared that hand rubs or soap damaged the skin or because they forgot to perform hand hygiene.</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Implementation strategy</td>
<td>Reported Findings (behavioural, clinical, financial)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| **4: Camins & Fraser, 2005, United States** | Distribution of educational materials
Educational meetings
Local opinion leaders
Audit and feedback
Reminders
Rewards
Implementation foundation
Theoretical: CDC Hand Hygiene Task Force recommendations
Infection control measure
Hand hygiene
Design
Before and after design | **Behavioural**
Observations in person
Hand hygiene compliance increased from 1st to 4th quarter of 2004. (Details on material use or observed compliance not given). |
| **5: Carboneau, et al., 2010, United States** | Distribution of educational materials
Educational meetings
Local opinion leaders
Audit and feedback
Reminders
Mass media
Implementation foundation
Theoretical: prior research solutions, including scientific articles and at other hospital
Infection control measure
Hand hygiene
Design
Before and after design | **Behavioural**
Observations in person
Hand hygiene compliance increased from 17-months pre-intervention to 7 months post-intervention.
Clinical
Decrease in MRSA-positive cases from 17 months pre-intervention to 7 months post-intervention and decrease in invasive MRSA cases.
Financial
Net dollar savings due to MRSA infection prevention of US $276,500 over study period (August 1, 2006 to September 30, 2007)
41 MRSA infections were prevented during study period, thereby decreasing length of stay, resulting in a savings of $354,276, a net hard-dollar savings of $276,500. Increased hand sanitizer costs of $40,000 per year. |
| **6: Cheng et al., 2009, China** | Educational meetings
Audit and feedback (trained auditors)
Reminders
Mass media
Clinical multidisciplinary teams
Changes in physical structure, facilities and equipment
Implementation foundation
Infection control measure
Hand hygiene
Design
Before and after design
Before and after design Time series design | **Behavioural**
Observations in person
Increased hand hygiene adherence. Increased use of alcohol-based hand rub.
Clinical
Decreased MRSA infection rates
Change in ICU onset MRSA infections between phase 1 and 2 (ICU renovation) and between phase 2 and 3 (hand hygiene campaign). |
<table>
<thead>
<tr>
<th>Author, Year, Country</th>
<th>Implementation strategy</th>
<th>Reported Findings (behavioural, clinical, financial)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7: Davis, 2010, United Kingdom</td>
<td>Reminders, Mass media, Duration 6 months, Infection control measure Hand hygiene Design</td>
<td>Behavioural Video observations Significant increase in hand hygiene compliance of HCWs but no significant increase for patients. Clinical Decrease in MRSA incidence (from 2 to 0 cases during 6-month periods), MRSA incidence (from 0 to 2 cases during 6-month periods).</td>
</tr>
<tr>
<td>8: Eveillard, et al., 2006, France</td>
<td>Educational meetings, Educational outreach, Audit and feedback, Reminders, Mass media, Changes in physical structure, facilities and equipment Implementation foundation</td>
<td>Behavioural Increase in use of waterless alcohol-based hand disinfectants. In 2004, the use of alcohol-based hand disinfectants was twice as high in high-risk wards. Questionnaire 46% of 450 employees declared they had attended at least one educational session. Number of patients screened on admission or after intra-hospital transfer increased. Clinical Decrease in the incidence of newly acquired MRSA infections in high-risk wards. Decrease in the incidence of risk of acquisition. Decrease in proportion of acquired MRSA. Number of MRSA carriage on admission did not increase. Proportion of MRSA/total S. aureus within the first 48 hours.</td>
</tr>
<tr>
<td>9: Fowler, et al., 2010, England</td>
<td>Audit and feedback, Reminders Implementation foundation Theoretical: systematic reviews on improving AB prescribing and feedback Infection control measure Medication Design Time series design</td>
<td>Behavioural Significant decrease in targeted Aβs: Cephalosporins and Amoxicillin/Clavulanate. Significant increase in level of benzyl penicillin. Significant increase in level of amoxicillin. Non-significant change in trend (not reversed long-term). Non-significant change in level and trend of trimethoprim. Clinical Significant decrease in CDI (Clostridium difficile infection) and crude mortality. Non-significant change in MRSA infections. Non-significant change in crude mortality. Financial No change in length of stay throughout study.</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Implementation strategy</td>
<td>Reported Findings (behavioural, clinical, financial)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>10: Gagné, et al., 2010, Canada</td>
<td>Distribution of educational materials, Educational outreach, Patient-mediated interventions, Mass media</td>
<td>Behavioural
Observations in person
Increase in overall staff hand hygiene compliance. Clinical
Decrease in MRSA infections vs. positive screenings. Decrease in MRSA infections. Financial
Empirical: own observation that MRSA kept spreading despite staff decontamination
Based on comparative year, 51 cases of infection were prevented, resulting in net savings of CAN$688,843.</td>
</tr>
<tr>
<td></td>
<td>Infection control measure
Hand hygiene
Design
Before and after design</td>
<td></td>
</tr>
<tr>
<td>11: Gillespie, et al., 2007 Australia</td>
<td>Audit and feedback, Reminders, Mass media, Changes in physical structure, facilities and equipment</td>
<td>Behavioural
Exact compliance rate unclear, but all staff/family entering ward on non-compliance; compliance is assumed to be close to 100%
Clinical
MRSA acquisition rate decreased. Resistance increased, due to a clonal outbreak of rifampicin-resistant MRSA.</td>
</tr>
<tr>
<td></td>
<td>Infection control measure
Hand hygiene, Patient screening
Design
Before and after design</td>
<td></td>
</tr>
<tr>
<td>12: Goodman, et al., 2008, United States</td>
<td>Educational meetings, Audit and feedback, Changes in physical structure, facilities and equipment</td>
<td>Behavioural
Observations in person
Mark removal was more frequent during the intervention period.
Additional predictors of mark removal included type of ICU and type of surface.
No difference in the effect of the intervention between surgical and medical ICUs.
Clinical
Type of ICU was predictive of positive surface-culture results.
Multivariate models showed significant intervention effect, with reduction in environmental MRSA and VRE contamination when cultures were used as the unit of analysis.
No direct association between the removal of the mark from the surface culture would yield MRSA or vancomycin-resistant Enterococci (VRE) contamination.
Multivariate models assessing the proportion of marks removed and positive cultures for every 10% increase in the proportion of marks removed
Mark removal was more frequent during the intervention period.
Additional predictors of mark removal included type of ICU and type of surface.
No difference in the effect of the intervention between surgical and medical ICUs.
Clinical
Type of ICU was predictive of positive surface-culture results.
Multivariate models showed significant intervention effect, with reduction in environmental MRSA and VRE contamination when cultures were used as the unit of analysis.
No direct association between the removal of the mark from the surface culture would yield MRSA or vancomycin-resistant Enterococci (VRE) contamination.
Multivariate models assessing the proportion of marks removed and positive cultures for every 10% increase in the proportion of marks removed.</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Implementation strategy</td>
<td>Reported Findings (behavioural, clinical, financial)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>15: Holder & Zellinger, 2009, United States</td>
<td>Educational meetings, Educational outreach, Local opinion leaders, Audit and feedback, Duration 2 months</td>
<td>Infection control measure: Medication (chlorhexidine baths). Design. Time series design. Behavioural Patient documentation: Compliance with bathing procedure increased. Clinical: Bloodstream infection (BSI) rates decreased after implementation procedure. Rate of MRSA/VRE colonization decreased after implementation procedure. Financial: 75% reduction in BSIs over 6 months and increased costs per bath led to a projected cost savings of $1.56 million per year if chlorhexidine baths were used in all hospital ICUs.</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Implementation strategy</td>
<td>Reported Findings (behavioural, clinical, financial)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Behavioural</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observations in person</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ABHR institution and hand hygiene campaign increased compliance of healthcare workers. Hand hygiene compliance decreased thereafter.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab statistics (PD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Routine MRSA surveillance caused increase in compliance and decrease in the incidence density of MRSA bacteremia.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clinical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Campaign to promote sterile CVC precautions caused substantial decrease in all-cause catheter-associated bacteremia in ICUs. Among the interventions, only routine ICU MRSA surveillance was associated with a decrease in the incidence density of MRSA bacteremia. After 16 months, routine screening was associated with a decrease in hospital-associated incidence density in ICUs, in non-ICUs, and hospital-wide. Routine screening was associated with a decrease in hospital-associated incidence density in ICUs, non-ICUs, and hospital-wide. All findings were statistically significant. Routine surveilance caused significant reduction in MRSA acquisition in ICUs when comparing the first and last halves of the intervention period, exclusive of the phase-in period. This was despite a stable MRSA importation rate into ICUs. No significant secular trend and no impact of any infection control interventions on rates of methicillin-susceptible S. aureus (MSSA) bacteremia.</td>
</tr>
<tr>
<td>Huang, et al., 2006, United States</td>
<td>Sterile CVC placement: 10 months. Alcohol-based hand rubs: 1 month. Hand hygiene campaign: 14 months. Routine surveillance: 12 months</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Behavioural</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observations in person</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overall hand hygiene compliance improved at 4 months, and was maintained at the same level at 12 months. In individual sentinel areas, compliance rates improved significantly between pre-intervention and 4 months post-intervention in all areas. Use of ABHRS products increased in all sentinel areas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clinical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MRSA colonization rates did not change in any of the sentinel areas. Environmental contamination did not change significantly during OCS. Significant decline in total clinical MRSA infections per 100 patient-discharges over 36 months. For patient episodes of MRSA bacteremia, the monthly rate of MRSA bacteremia had decreased. Total clinical isolates per month of ESBLs increased during the study period, but fell significantly in the post-intervention period. Monthly rate of MRSA bacteremia had decreased.</td>
</tr>
<tr>
<td>Johnson, et al., 2005, Australia</td>
<td>Distribution of educational materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Behavioural</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Observations in person</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Overall hand hygiene compliance improved at 4 months, and was maintained at the same level at 12 months. In individual sentinel areas, compliance rates improved significantly between pre-intervention and 4 months post-intervention in all areas. Use of ABHRS products increased in all sentinel areas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clinical</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MRSA colonization rates did not change in any of the sentinel areas. Environmental contamination did not change significantly during OCS. Significant decline in total clinical MRSA infections per 100 patient-discharges over 36 months. For patient episodes of MRSA bacteremia, the monthly rate of MRSA bacteremia had decreased. Total clinical isolates per month of ESBLs increased during the study period, but fell significantly in the post-intervention period. Monthly rate of MRSA bacteremia had decreased.</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Implementation strategy</td>
<td>Reported Findings (behavioural, clinical, financial)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>18: Kho, et al., 2008, United States</td>
<td>Reminders Technology-supported Implementation foundation Theoretical: low compliance (delay) associated with manual/paper-based information systems; computerized reminders appear promising</td>
<td>Duration 12 months Infection control measure Patient isolation Design Before and after design Behavioural Computer logs Significant increase in proportion of correct contact isolation orders. Mean time between ward arrival and isolation order decreased. Acceptance of the reminder increased. Questionnaire 19/20 survey respondents reported that the reminder either had no negative effect on workflow or saved them time. 25/27 agreed with automatic contact isolation, and half of these would simultaneously request surveillance swabs. Clinical Lab statistics During the intervention period, the number of patients with known MRSA or VRE increased which reflected an increased ability of the IC service to both identify patients and update the list. National trend of MRSA/VRE increased during the study (no significant difference between baseline and post-intervention). Financial Annual isolation gown expenditures increased 23% from the same time period a year earlier (from US$167,000 to US$205,000). No calculations of cost savings in prevented nosocomial infections made.</td>
</tr>
<tr>
<td>19: Kurup, et al., 2010, Singapore</td>
<td>Educational meetings Audit and feedback Reminders Mass media Duration 12 months Infection control measure Hand hygiene Patient screening: Active Surveillance Testing (AST) Patient isolation Design Before and after design Behavioural Between groups: compliance in performing all study-related swab activities appeared better in the Surgical ICU (SICU), but the difference between the ICUs was not statistically significant. Clinical AST detected MRSA in at least 137 of the 653 patients (21.0%). In contrast, clinical cultures for MRSA were positive in only 12 patients (1.8%). No significant improvement in detection rate when including axilla and groin sites in the AST. No improvement in detection rate in patients admitted to Medical ICU (MICU), slight improvement in SICU. Inclusion of axilla and groin sites did not affect the MRSA detection rate during the ICU stay and at discharge, both overall and when the ICUs were analysed individually. Between groups: the rate of MRSA colonization detected by AST during the ICU stay or at ICU discharge was higher in SICU than MICU. No significant difference in MRSA infection rate pre- and post-intervention when analysed individually. Less variability in MRSA rates post-intervention; the 95% CI are narrower than that at pre-intervention. Septic shock at ICU admission was more common in MRSA-colonized patients. Financial Detection of MRSA at any point was associated with longer pre-ICU length of stay, longer duration of antibiotic therapy, and longer ICU length of stay.</td>
<td></td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Implementation strategy</td>
<td>Reported Findings (behavioural, clinical, financial)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>20: Lederer, et al., 2009, United States</td>
<td>Distribution of educational materials, Audit and feedback, Reminders, Mass media, Clinical multidisciplinary teams, Implementation foundation Theoretical and empirical: CDC recommendations and observed low compliance</td>
<td>Behavioural Increased hand hygiene compliance with sustained rates greater than 90%. Clinical MRSA healthcare-associated rate decreased, representing a 54% reduction associated with improved compliance.</td>
</tr>
<tr>
<td>21: Lee, et al., 2009, Canada</td>
<td>Educational meetings, Technology-supported Implementation foundation Empirical: SARS outbreak in Toronto in 2003, the Ontario Ministry of Labour mandated an IC education programme for all Mount Sinai Hospital staff</td>
<td>Behavioural Non-significant increase in hand hygiene compliance on inpatient medical units. Clinical Significant decrease in nosocomial MRSA acquisition rate per 100 admission MRSA exposure days. Significant decrease in nosocomial MRSA acquisition rate per 100 unprotected MRSA exposure days.</td>
</tr>
<tr>
<td>22: Liebowitz & Blunt, 2008, United Kingdom</td>
<td>Educational meetings, Audit and feedback, Clinical multidisciplinary teams, Implementation foundation Theoretical: prior research, no studies have been published in which the use of both classes of antibiotics has been discouraged. No foundation for content educational activity.</td>
<td>Behavioural Hospital-wide decrease in level of dispensing of intervention drugs. ICU-specific decrease in level of dispensing of intervention drugs. Clinical Decrease in level of MRSA-positive screenings (no statistical test). MRSA colonization in screening specimens from high-risk patients decreased. Decrease in level of MRSA-positive screenings (no statistical test).</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Implementation strategy</td>
<td>Reported Findings (behavioural, clinical, financial)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>23: Madaras-Kelly, et al., 2006, United States</td>
<td>Reminders Technology-supported Implementation foundation Theoretical: The Society for Healthcare Epidemiology of America (SHEA) recommendations Duration 12 months</td>
<td>Behavioural Non-significant decrease of overall AB use. Significant decreases in the use of several antibiotics. Significant differences between non-antibiotic variables: purchase of chlorhexidine skin preparation increased; the number of ventilator days, purchase of alcohol foam, and the nursing staff ratio decreased. Clinical Decrease in nosocomial MRSA infections (not statistically tested). Total fluoroquinolone and levofloxacin use decreased significantly.</td>
</tr>
<tr>
<td>24: Miyachi, et al., 2007, Japan</td>
<td>Local opinion leaders Audit and feedback Mass media Implementation foundation Theoretical: prior research on link nurses in large hospitals Duration 76 months</td>
<td>Behavioural Significant increase in arithmetic mean of monthly consumption of the liquid soap. Clinical Percentage of MRSA in Staphylococcus Aureus increased. Monthly counts of new MRSA cases dropped in 15 of 25 wards. Significant decrease in the monthly number of inpatient admissions.</td>
</tr>
<tr>
<td>25: Nicastri, et al., 2008, Italy</td>
<td>Educational outreach Clinical multidisciplinary teams Implementation foundation</td>
<td>Behavioural Significant reduction of defined daily doses (DDD) of cephalosporins. A clinical audit 12 months after introduction of Antibiotic Stewardship Program (ASP) protocol showed >90% adherence by the physicians (no statistical test). Clinical Significant decrease of MRSA isolations. Significant correlation between MRSA monthly prevalence rates and reduction of third-generation cephalosporins. Significant reduction of isolation of MRSA from surgical site infection (BSI). Significant decrease in MRSA prevalence among Staphylococcus Aureus associated blood stream infections (BSI) and in the respiratory specimens of patients affected by ventilator-associated pneumonia (VAP).</td>
</tr>
<tr>
<td>26: O’Brien, et al., 2008, United States</td>
<td>Educational meetings Reminders Technology-supported Implementation foundation Theoretical: SHEA recommendations Duration 12 months</td>
<td>Behavioural Post-IT admission culture rate in the telemetry unit was >91% Intermediate Care unit. Employee satisfaction with the MRSA surveillance protocol was measured by self-assessment survey; 88% of the respondents were “fully satisfied”, the remaining 12% were “satisfied”. Increased efficiency of staff time use. Clinical Overall decrease in the rate of MRSA acquisition in the pre-IT period was statistically significant. Significant decrease in 2 of 3 unit specific comparisons before and after implementation.</td>
</tr>
<tr>
<td>Author, Year, Country</td>
<td>Implementation strategy</td>
<td>Reported Findings (behavioural, clinical, financial)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>27: Peterson, et al., 2010, United States</td>
<td>Distribution of educational materials, Educational meetings, Educational outreach, Local opinion leaders, Audit and feedback, Reminders, Changes in physical structure, facilities and equipment, Technology-supported</td>
<td>Theoretical: Institute for Healthcare Improvement's (IHI) five components to MRSA control. Duration 24 months. Infection control measure: Patient screening. Design: Before and after design. Behavioural: Screening compliance increased to >90%, and sustained >90%. Clinical: Decrease in MRSA transmission (from colonization to infection). Decrease in overall MRSA BSIs by the end of the first year. Financial: Programme cost represented a net expense of $15-$16 per admission. Eliminating 50 infections led to a reduction of nearly $1,200,000 in medical expenditures, with programme cost saving a net of $15-$16 per hospital admission.</td>
</tr>
<tr>
<td>28: Robert, et al., 2006, France</td>
<td>Distribution of educational materials, Reminders, Mass media, Implementation foundation</td>
<td>Theoretical: Observational studies indicated that isolation precautions were poorly implemented outside ICUs. Duration 3 months. Infection control measure: Patient isolation (flagging records). Design: Before and after design. Behavioural: Within groups: Medical and nursing staff reported that they knew the MRSA status of patients in 87% of cases in the control period, and in 96% of cases in the intervention period. Medical and nursing records were flagged significantly more often in the intervention period than in the control period. The same observation was made when considering only ICUs and rehabilitation units, i.e. wards with MRSA rounds. There was no significant increase in the proportion of healthcare workers informed of the MRSA status of patients or in the proportion of flagged records.</td>
</tr>
</tbody>
</table>
3.2 Study design

Among the included studies, there was one randomized controlled trial (RCT) (1). In eight studies, a time series design was used (2, 9, 14, 15, 17, 22, 23, 25), and in fourteen studies a before and after design was used (3, 4, 5, 7, 10-12, 18, 19, 21, 26-29). Five studies applied a combination of time series and before and after design (6, 8, 13, 16, 20).

3.3 MRSA prevention and control measures

Different measures were implemented to prevent or control MRSA. In some studies a single MRSA prevention or control measure was implemented, in others a bundle of measures was implemented. Hand hygiene was implemented as a stand-alone measure in seven studies (4, 5, 7, 10, 13, 20, 29) and as part of a bundle of measures in eleven studies (1, 3, 6, 8, 11, 14, 16, 17, 19, 21, 24). Environmental hygiene was implemented as a stand-alone measure in one study (12) and as part of a bundle of measures in two studies (1, 17). The use of personal protective equipment such as gloves or gowns was implemented as part of a bundle of measures in four studies (1, 3, 16, 21); it was implemented as a stand-alone measure in none of the studies. Medication, or the correct use of antibiotics, was implemented as a stand-alone measure in six studies (2, 9, 15, 22, 23, 25); in none of the included studies was it part of a bundle of measures. In two studies (26, 27), patient screening was implemented as a stand-alone measure, and in six studies (3, 8, 11, 16, 17, 19) it formed part of a bundle of measures that was implemented. HCW screening was implemented only as part of a bundle of measures, in one study (17). Patient isolation was implemented as stand-alone measure in one study (28), and was part of a bundle of measures in five studies (3, 6, 16, 18, 19).

3.4 Implementation strategies and their foundation

Various strategies were used to implement the MRSA prevention and control measures. Most implementation strategies are set up because of the empirical observation of non-adherence to clinical guidelines, thus creating an impediment to successful MRSA control. The theoretical foundation of the chosen strategies is often unclear, or not specified.

Most studies, 24 out of 29, combined different elements (1-17, 19, 20, 22, 24, 25, 26, 27). In five studies the implementation strategy consisted of one component (18, 21, 23, 28, 29). The strategies used are summarized below:

- Audit and feedback was performed and given by trained nurses or auditors, infection control specialists, or multidisciplinary teams (nineteen studies: 1, 2, 4-6, 8, 9, 11-17, 19, 20, 22, 24, 27).
- Reminders were used in eighteen studies (3-9, 11, 16-20, 23, 26, 27, 28, 29), for example pop-ups, fluorescent tape drawing attention to hand-cleaning facilities, posters or messages clipped to patient charts.
- Educational meetings were held, for example to inform HCWs about the measure or to demonstrate new working methods or hygienic practices (seventeen studies: 1, 3-6, 8, 12-16, 19, 21, 22, 26, 27).
- Mass media were used in fourteen studies (3, 5-8, 10, 11, 13, 17, 19, 20, 24, 28, 29); posters, and to a lesser extent brochures or flyers, were used to remind or instruct HCWs about the implemented measures. Role models (hospital management or
leaders) were sometimes depicted, or HCWs were involved in the creation of the poster (11, 17, 29).

- **Technology** was used in ten studies (1, 3, 5, 13, 17, 18, 21, 23, 26, 27), in the context of education (PowerPoint presentations, training via DVD), electronic order forms, pop-ups assisting medication choice or screening of patients.

- **Changes in physical structure, facilities and equipment** were applied in eight studies (4, 5, 6, 8, 11, 12, 16, 27). These changes included strategically placed hand disinfectant dispensers, equipping HCWs with pocket bottles of hand disinfectant, or new cleaning materials (cloths), the bundling of protective gear and the availability of a test kit for screening.

- **Educational materials** were distributed in eight studies (4, 5, 8, 10, 13, 17, 20, 27). Brochures, newsletters or instructional pocket cards were given to HCWs, often focused on applying correct (hand) hygiene.

- **Local opinion leaders** guided the implementation process in six studies (1, 4, 5, 15, 24, 27), sometimes by reinforcing good infection control, or acting as a link worker between the professions and management.

- **Clinical multidisciplinary teams** were used in five studies (2, 6, 20, 22, 25) to guide the implementation of a MRSA control measure. Via cooperation or consultation these teams supported the measures taken, for example by approving antibiotic prescriptions.

- **Educational outreach** was carried out in five studies (6, 10, 15, 25, 27) to teach HCWs on-site and sometimes on demand how to apply the implemented measure.

- **Rewards** for correctly performing the implemented measures were given in two studies (4, 16), either to individuals directly after observing correct behaviour, or to groups based on periodic adherence results.

- A **patient-mediated intervention** was implemented in one study (10); patients and visitors were actively addressed to perform the desired hand hygiene behaviour and motivate adherence among staff.

- **AB permission/formulary** was applied in one study (2) where permission to use a certain antibiotic was required.

3.5 Outcomes

We classified the reported effects into three categories: adherence to the measures, reduction of costs and reduction of MRSA.

In twelve studies (1-3, 7, 9, 12, 13, 17, 18, 24, 28) significant improvements (e.g. fewer prescriptions for antibiotics, more correctly executed hand hygiene, reduced expenditure on materials) in adherence to the MRSA control measures were observed. Similar positive results were observed in fourteen studies (4-6, 8, 10, 14-16, 20, 22, 23, 25, 27, 29), although these results were not statistically tested. In one of the studies (16), negative effects were observed: adherence to the measures increased in the first year but decreased thereafter.

Acquiring a hospital-associated infection (HAI) results in a longer length of stay for the patient and poses many additional costs. Therefore, reductions in length of stay are an important outcome associated with decreased MRSA infection rates. Cost savings, or at least cost-neutral intervention effects, were observed in four studies (5, 10, 15, 27). On the other hand, increased isolation and increased expenditure also posed costs, as described in one
study (18). However, in this study, these increased costs were not compared to possible savings due to prevented infections. In another study (19), improved screening led to increased lengths of stay (pre-ICU and ICU), because MRSA detection increased. In nine studies (8, 12-14, 16, 17, 21, 25, 26), significant clinical improvements were reported, including MRSA prevalence, MRSA infection rates and susceptibility rates. Positive effects were also observed in eleven other studies (2, 5, 7, 10, 11, 15, 20, 22-24, 27), although these results were not statistically tested.

4. Conclusion and discussion

The results of our review show that in most cases hygiene experts or an infection control team (nurse, infectologist, microbiologist) are the developers of implementation strategies. These strategies are driven by empirical observations and audits. The theoretical foundation of the chosen strategies is often unclear. No references to theories and models of human behaviour are made. However, some articles indicated that a literature search was carried out.

When looking at the implementation strategies, we can conclude that in most cases a multifaceted strategy was carried out. This strategy entails a combination of several activities:

- Education or training modules for HCWs, sometimes mandatory, taking various forms (DVDs, PowerPoint presentations, posters, meetings, brochures) to improve hand hygiene and compliance with protocols.
- Inspections of the adherence to the safety programme and of hand washing behaviour via audits, on-site instructions, and observations by hygiene experts or trained auditors. Results were communicated to management and demonstrated via feedback meetings.
- Environmental interventions (red lines at the entrance to high-risk wards, talking walls) to remind HCWs to behave safely in that particular area and to provide antibiotic policy support via guidelines and cards.

The implementation pathway consists of education-inspection-feedback rounds; unfortunately it is unclear who is responsible for the management of the intervention strategies and who invests in these activities. No business model seems to underpin the entire implementation strategy.

To answer the research question about the effect of the implementation strategies, we reviewed the research designs that were used to measure their effects. In general, quasi-experimental designs (before and after and time series designs) underpin the research activities. Implementation outcomes are usually measured in a before-and-after design, where they do not concern antibiotic use, and therefore provide little insight into temporal changes in implementation results or adherence. HCWs are the main target group in the research designs. It is unclear who these designs seek to manage (researchers, HCWs, management) in their execution or whether a project manager is responsible for this. Trained nurses or infection control teams are sometimes used. In most cases quantitative instruments are used to measure the effects on knowledge and behaviour (questionnaires, self-reporting of behaviour, material use, and hand hygiene) and on a reduction in MRSA and antibiotic doses (lab statistics). The effects on cost/benefits were sometimes measured, addressing utilizations such as reduced length of stay. In general the outcomes are
promising. However, the extent to which the outcomes are related to the implementation strategies is not clear, except for the routine screenings and reduced MRSA rates. The outcomes on cost-savings are especially hard to analyse. It remains unclear what is measured, how it is measured and to what purpose. Long-term effects are almost never addressed.

Due to several shortcomings in research designs, the overall impact of the implementation strategies could not be measured sufficiently. Shortcomings in the research designs include, for example, the one-sided focus on HCWs. We know from prior research (Verhoeven et al., 2009) and from behaviour change models that not only is a multifaceted strategy needed to change safety behaviour, but that a multi-perspective stakeholder view (HCWs, infection experts, patients, the safety policy of the management of the organization) is necessary to obtain insight into the cost/benefits of the implementation strategy and to discuss the long-term implications of the strategy for the organization and workflow (Kukafka et al., 2003). This requires a theory or innovation-driven approach that grounds the implementation strategy, enabling an assessment of which activities are successful for whom (patient, HCWs, management) and what the interaction effects of the different components of the strategy are.

Another shortcoming concerns the chosen study designs. Authors of the included studies refer to the difficulties in matching control and intervention groups, the high rates of drop-outs and the low volume of included respondents, and confounding factors that cannot be excluded. These shortcomings are well-known impediments related to RCTs and the self-reported behaviours. In fact, these shortcomings cannot be avoided due to the study of real-time behaviours and contextual factors that influence these behaviours. Therefore, these factors should not be regarded as nuisances, as the authors do; they are the key issues that are important in implementation studies aimed at changing culture and behaviour. For example, some authors reported problems in implementing the activities due to a lack of resources (a result of the economic downturn) to manage the implementation and problems with measuring the effects of each component of the implementation strategy due to financial constraints. A lack of transparent funding models and lack of management support made the participation of different institutes or wards in the research projects problematic, resulting in only small pilot projects being carried out. These financial barriers should not be reported as shortcomings; rather, these factors should be determined by the key stakeholders and considered as critical factors for changing behaviour and the culture of safety in hospitals or other institutions.

In addition, some authors reported a lack of commitment on the part of nursing personnel to participate in the implementation projects. It appeared that some personnel were uncertain about the implications of several measures. For example, they were concerned that patients would not feel as clean after being washed with wipes instead of soap and water. The level of commitment of HCWs and management is one of the main conditions for success in programmes for innovation or change. The impediments indicate that the implementation strategies are expert-driven rather than stakeholder-centred. Changing safety behaviour in hospitals is first and foremost a cultural problem of management and staff, which requires that implementation strategies should address that level.

How to improve the implementation strategies? Given the fact that the implementation strategies influenced the attitude and knowledge of HCWs in a positive way, that intentions to behave safely increased, and that MRSA rates decreased in several studies, the question is
how to boost the impact of the implementation strategies. Education-inspection-feedback rounds could be one way to do this.

Based on prior experience in infection management control and on information gathered from other studies of innovation management (Cain & Mittman, 2002; Rogers, 2003), we argue that the participation of staff and management is crucial to the development and implementation of interventions, to increase applicability, accountability and ownership and to create a fit between the proposed activities and the culture of the organization (Van Gemert et al., in press). In addition, both positive and negative incentives are needed to encourage staff to do the right things at the right times. Change agents and demonstration of best practices will improve the incorporation of safety behaviour. To enhance the transparency of the implementation programme and strategies, communication of results or key factors for success should be available to staff. Communication should include insights into results related to infection management (prevalence and incidence rates of MRSA, identification of increasing/decreasing trends), the business model underpinning the programme (resources, investments, additional costs) and benchmarking (how are we doing and what are others doing?). It is also important to demonstrate to the management and staff that the investment costs of the intervention can be less than the costs of not adopting an MRSA-infection control programme.

Another point of attention is the use of media to implement the strategies. Even though evidence of the usefulness and effectiveness of computerized decision support or reminders exists (Grimshaw et al., 2004), it is not often used. We found that in ten studies DVDs, PowerPoint presentations, educational programmes available online or on CD-ROM, and electronic alerts or reminders were used. This is rather remarkable in our Internet-driven world. Web-based communications systems in particular can increase staff knowledge and provide access to accurate, adequate and easy to understand information (Kreps & Neuhauser, 2010). In prior and on-going research projects aimed at cross-border infection control (MRSA-net; EurSafety Health-net) we developed stakeholder-driven, web-based communication systems, based on national infection control standards, to support staff and patient behaviours (see for example Verhoeven et al., 2009). This resulted in fewer errors, time savings and also appropriate behaviour by HCWs.

5. References

triphosphate bioluminescence assay. Infection Control and Hospital Epidemiology, 30 (7), pp. 678-684.

Implementation of MRSA Infection Prevention and Control Measures – What Works in Practice?

Health care associated infection is coupled with significant morbidity and mortality. Prevention and control of infection is indispensable part of health care delivery system. Knowledge of Preventing HAI can help health care providers to make informed and therapeutic decisions thereby prevent or reduce these infections. Infection control is continuously evolving science that is constantly being updated and enhanced. The book will be very useful for all health care professionals to combat with health care associated infections.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
