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1. Introduction 

There are an estimated 10 million people affected annually by traumatic brain injury (TBI) 
across the globe.1 In the United States, TBI is a major cause of death and disability2 with 
about 52,000 annual deaths and 5.3 million Americans impaired by its effects. TBI is a 
contributing factor to over 30% of all injury-related deaths in the United States and it has 
been referred to as the silent epidemic of our time. 3, 4 European TBI prevalence data is not 
consistently reported by each country but it has been estimated that 1.6 million head-injured 
patients are hospitalized annually in Europe with an incidence rate of about 235 per 100,000. 
There is an average mortality rate of about 15 per 100,000 and a case fatality rate of about 11 
per 100. The TBI severity ratio of hospitalized patients is about 22:1.5:1 for mild vs. moderate 
vs. severe cases, respectively.5 According to the World Health Organization, TBI will 
surpass many diseases as the major cause of death and disability by the year 2020.1 
Brain injuries can be focal, diffuse or a combination of focal and diffuse. The degree of brain 
injury depends on the primary mechanism/magnitude of injury, secondary insults and the 
patient’s genetic and molecular response. Following the initial injury, cellular responses and 
neurochemical and metabolic cascades contribute to secondary injury.6, 7 Focal brain injuries 
include contusions, brain lacerations, and hemorrhage leading to the formation of 
hematoma in the extradural, subarachnoid, subdural, or intracerebral compartments within 
the head. Traumatic brain injury represents a spectrum of injury severity. The number, 
types, and location of lesions as well as the magnitude of overlapping injuries across this 
spectrum of injury severity are still not clearly described and are challenging to classify.  
There are two aspects to injury caused by TBI - the damage caused by the initial impact or 
insult, and that which may subsequently evolve over the ensuing hours and days referred to 
as secondary insults. Secondary insults can be mediated through physiologic events which 
decrease supply of oxygen and energy to the brain tissue or through a cascade of cytotoxic 
events. These events are mediated by many molecular and cellular processes.  
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2. The importance of mild and moderate TBI 

Research in the field of TBI has long been dominated by research on severe brain injury. 
However, of the estimated 1.8 million people in the United States who sustain a TBI each 
year, over 90% will have either a “moderate” (GCS 9-12) or “mild” (GCS 13-15) injury; far 
outnumbering severe injuries.2, 8, 9 Moderate TBI comprises over 10% of all TBI and mild 
TBI over 80%.8 The majority of these patients will present to emergency departments 
(ED’s) around the country for assessment and treatment.10 The direct medical costs for 
treatment of TBI in the United States have been estimated at more than $4 billion 
annually.11 If the costs of lost productivity that result from TBI are added to this then the 
overall estimated cost is closer to $56.3 billion. Moreover, mild TBI is significantly under-
diagnosed and the likely societal burden is therefore even greater.12 Mild and moderate 
TBI are often difficult to assess and distinguish clinically during the first hours after injury 
because neurological examinations are of restricted value. The distinction between mild, 
moderate and severe TBI is initially based on a GCS score and this may be influenced by 
factors such as perfusion and intoxication from drugs or alcohol, sedative medications, 
and other distracting injuries. 
The term “mild TBI” is actually a misnomer. Individuals who incur a TBI and have an initial 
GCS score of 13-15 are acutely at risk for intracranial bleeding and diffuse axonal injury.13 
Additionally, a significant proportion is at risk for impairment of physical, cognitive, and 
psychosocial functioning.14-18 Although some patients with mild TBI may be admitted to the 
hospital overnight, the vast majority are treated and released from emergency departments 
with basic discharge instructions. Most receive little guidance with respect to follow-up 
care. This group of TBI patients represents the greatest challenges to accurate diagnosis and 
outcome prediction. With perhaps no overt signs of acute head injury and a lack of clinical 
tools to detect the subtle cognitive deficits the patient is considered “unimpaired” and is 
discharged home and typically left to deal with persisting neurocognitive deficits on their 
own.19 Accordingly, a significant minority has incomplete recoveries and has outcomes 
disproportionately worse than would have been predicted by the objective facts of the 
injury.19, 20 The lack of clinical tools to detect the deficits that affect daily function leads to a 
state of frustration for patients and families that arises out of a failure to understand the 
nature of the difficulties encountered daily. Treatment protocols for mild TBI have only 
slowly begun to emerge and are still experimental. The injury is often seen as “not severe” 
and subsequently therapies have not been aggressively sought for these individuals. 
Unfortunately, despite the better understanding of the anatomical, cellular and molecular 
mechanisms of TBI, these advances have not yet yielded significant improvements in 
treatment. Among the potential barriers to treatment are the heterogeneity of traumatic 
brain injury, difficulty with stratification of patients by injury severity and lack of early 
markers of injury.21-24  

3. The problem with current assessment of TBI 

Prognostic tools for risk stratification of TBI patients are limited in the early stages of injury 
in the emergency setting for all severities of TBI. Unlike other organ-based diseases where 
rapid diagnosis employing biomarkers from blood tests are clinically essential to guide 
diagnosis and treatment, such as for myocardial ischemia or kidney and liver dysfunction, 
there are no rapid, definitive diagnostic tests for traumatic brain injury. Moreover, the 
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reference standard for TBI is also more difficult to define than say cardiac ischemia. There is 
no early gold standard for stratification of patients by severity. Currently, diagnosis of TBI 
depends on a variety of measures including neurological examination and neuroimaging. 
Neuroimaging techniques such as CT scanning and MRI are used to provide objective 
information. However, CT scanning has low sensitivity to diffuse brain damage and confers 
exposure to radiation. MRI can provide information on the extent of diffuse injuries but its 
widespread application is restricted by cost, the limited availability of MRI in many centers, 
and the difficulty of performing it in physiologically unstable patients. Additionally, its role 
in the clinical management of TBI patients acutely has not been established.25, 26 
While increasing CT use has reduced hospital admissions,27 it has also raised concern over 
unnecessary exposure to ionizing radiation.28-32 Although the calculation of projected cancer 
risk is still controversial, some studies suggest that CT scans of the head may be among the 
largest contributors to radiation exposure due to the frequency with which they are 
performed.33 There is significant consensus that efforts should be made to prevent 
unnecessary radiation exposure while maintaining quality of care.28, 29, 34, 35 

4. Challenges to the clinical application of biomarkers 

There have been a number of cerebrospinal fluid (CSF) and serum biomarkers evaluated in 
TBI animal models and in humans. However, many of these candidate biomarkers have 
failed to exhibit adequate sensitivity and specificity for brain injury, and they have added 
minimal diagnostic and prognostic information. As a result many are skeptical about the 
potential of neurotrauma biomarkers to influence future clinical management and clinical 
trials. This reservation is based on a handful of biomarkers studied using compromised 
research designs and without the advantage of advancements made in the field of 
proteomics. Even though the application of proteomics in brain injury is still in its infancy36, 37, 
neuroproteomics is penetrating the field of neurotrauma and brings great potential for 
improvements in research and patient care. As this technology advances and integrates 
other technologies such as bioinformatics and neuroimaging, characterization of CNS 
proteins will occur quickly and many more potential markers will be validated in a shorter 
timeframe.  
Another important challenge in validating biomarkers for TBI will be that traditional 
outcome measures used to measure injury severity are, in and of themselves, limited. This is 
true for all severities of injury, and is particularly germane to the less severe injuries where 
neuroimaging, such as computed tomography (CT), may not demonstrate any obvious 
pathology. Traditionally, TBI has been separated into three very broad categories: mild, 
moderate and severe. Unfortunately, this classification scheme fails to capture the spectrum 
of TBI and the different types of injuries associated with it. The difficulty in classifying 
injury severity is one which has made clinical trials in the field of TBI challenging. 
Therapeutic clinical trials for TBI have met with negative results at a cost of over $200 
million.38, 39 These failures have been attributed to a multitude of factors but particularly to 
the heterogeneity of TBI which makes classification of the different injury types problematic. 
This heterogeneity, together with the lack of early definitive measures of severity opens the 
door for using biomarkers as early prognostic indicators. Potentially, biomarkers could 
provide early outcome measure for clinical trial obtainable much more reliably and 
economically than conventional neurological assessments, thereby significantly reducing the 
risks and costs of human clinical trials. 
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The release of substances and potential biomarkers after an injury is not a static process. 
Understanding the biokinetic properties of a biomarker will be essential to understanding 
the release pattern and “optimum” time for measurement. Clinicians and researchers will 
have to keep in mind that different injury types (for instance, mass lesions versus diffuse 
injuries) may demonstrate different kinetic parameters and, thus, may produce different 
quantities of a marker with different peaks and rates of decay. Moreover, secondary insults 
may also contribute to secondary elevations in a marker, altering its sensitivity and 
specificity at different time-points.  
For markers measured in serum, the level of a biomarker may also reflect the extent of blood 
brain barrier disruption. Furthermore, extracranial sources of the biomarker may limit its 
specificity by creating false positives, thus compromising its clinical utility. For instance, the 
release of a potential CNS marker into the serum from other traumatized tissues or organs 
would hamper its clinical value in the setting of polytrauma. Another possible situation in 
which false positive marker values could occur is in the presence of a pre-existing disease 
state that may alter the metabolism or clearance of the marker, as with kidney or liver 
disease. Such factors need to be carefully assessed in rigorously designed clinical studies. 
Future studies should also ensure that adequate control groups are selected for comparison. 
Ongoing studies by our group are currently being conducted to more fully elucidate the 
relationships between novel biomarkers and severity of injury and clinical outcomes in all 
severities of TBI patients. Before clinical application neurochemical markers will have to be 
rigorously evaluated and the above mentioned challenges taken into consideration.  

5. Proteomic techniques in neurobiomarker discovery 

Two dimensional gel electrophoresis (2D GE) and mass spectrometry has classically been 
the gold standard for protein identification. It is an excellent technique for discovering a 
multitude of proteins and is widely used. However, it requires specialized training and 
technical expertise. Some of the disadvantages include sample to sample variation, the 
inability to detect certain classes or sizes of proteins, and the need for many samples and 
controls.40 
There are also non–gel-based mass spectrometry methods for identifying proteins that use 
high-resolution chromatography to separate complex mixtures of proteins prior to mass 
spectrometry. Typically the technique uses capillary chromatography for sensitivity and 
high-resolution mass spectrometry for identification of proteins. There is no need for two-
dimensional gel electrophoresis for initial separation and it can analyze a wider range of 
proteins. However, the technique requires significant expertise and the cost of the materials 
and equipment to run this technique is much higher.40 
Newer proteomic techniques are employing antibody-based methods such as high 
throughput immunoblotting and antibody panels and/or arrays (ELISA’s). Antibodies are 
significantly more specific and selective than traditional techniques and allow the detection 
of proteins amid complex high-protein content biofluids such as serum or plasma.41 
Methods of amplifying the signal are under development so that only very small samples 
will be required for analysis. The drawback of this technique is its reliance on the sensitivity 
and specificity of the antibodies, and the inability to identify a wide range of proteins 
because the protein of interest must be pre-selected. 
Examples of these techniques will be taken from studies conducted by our group. In two 
studies published in the Journal of Neurotrauma in 2007 by Pineda et al.42 and in 2009 by 
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Brophy et al.43 an immunoblotting technique employing sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) was used to measure alpha-spectrin. 
Quantitative evaluation of intact ┙II-spectrin and its breakdown products (SBDP150, 
SBDP145 and SBDP120) was performed via computer-assisted densitometric scanning. 
An example of the ELISA technique is taken from a study published in Critical Care 
Medicine in 2010 by Papa et al.44 that measured Ubiquitin C-terminal hydrolase. In this 
study samples were measured using a standard UCH-L1 sandwich ELISA where reaction 
wells were coated with capture antibody and detection antibody was added to wells. The 
wells were developed with substrate solution and read with a spectrophotometer. 

6. Status of biomarker research 

Although there are a number of biochemical markers that have been investigated in TBI, our 
discussion will include the most current and widely studied ones. The most extensively 
studied among these are glial protein S-100 beta(┚) 45-55, neuron-specific enolase (NSE)56-63, 
and myelin basic protein (MBP)41, 59, 64-66 Although some of these published studies suggest 
that these biomarkers correlate with degree of injury; conflicting results exist.67-75  
S100┚ is the major low affinity calcium binding protein in astrocytes 76 and it is considered a 
marker of astrocyte injury or death. It can also be found in non-neural cells such as 
adipocytes, chondrocytes, and melanoma cells.77 Elevated serum levels have been associated 
with increased incidence of post concussive syndrome and impaired cognition.78, 79 Other 
studies have reported that serum levels of S-100┚ are associated with MRI abnormalities and 
with neuropsychological examination disturbances after mild TBI.80, 81 A number of studies 
have found significant correlations between elevated serum levels of S-100┚ and CT 
abnormalities.82-84 It has been suggested that adding the measurement of S-100B 
concentration to clinical decision tools for mild TBI patients could potentially reduce the 
number of CT scans by 30%.84 Other investigators have failed to detect associations between 
S-100┚ with CT abnormalities.67, 85, 86 87 The vast majority of these clinical studies have 
employed ELISA to measure levels of S100B. Although S-100┚ continues to be actively 
investigated and remains promising as an adjunctive marker, its utility as a biochemical 
diagnostic remains controversial. Some studies have observed high serum S-100┚ levels in 
trauma patients without head injuries suggesting that it lacks CNS specificity and is released 
from peripheral tissues.88-90 
Neuron specific enolase is one of the five isozymes of the gycolytic enzyme enolase found in 
central and peripheral neurons and it has been shown be elevated following cell injury.91 It 
has a molecular weight of 78 kDa and a biological half-life of 48 hours.92 This protein is 
passively released into the extracellular space only under pathological conditions during cell 
destruction. Several reports on serum NSE measurements of mild TBI have been 
published.59, 62, 91, 93 Most of these studies employed an enzyme immunoassay for NSE 
detection. Many of these studies either contained inadequate control groups or concluded 
that serum NSE had limited utility as a marker of neuronal damage. Early levels of NSE and 
MBP concentrations have been correlated with outcome in children, particularly those under 
4 years of age.64, 65, 94, 95 A limitation of NSE is the occurrence of false positive results in the 
setting of hemolysis.96 
A supposedly cleaved form of tau, c-tau, has also been investigated as a potential biomarker 
of CNS injury. Tau is preferentially localized in the axon and tau lesions are apparently 
related to axonal disruption.97, 98 CSF levels of c-tau were significantly elevated in TBI 
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patients compared to control patients and these levels correlated with clinical outcome.99, 100 
Though levels of c-tau were also elevated in plasma from patients with severe TBI, there 
was no correlation between plasma levels and clinical outcome.101 A major limitation of all 
of these biomarkers is the lack of specificity for defining neuropathological cascades.  
Alpha-II-spectrin (280 kDa) is the major structural component of the cortical membrane 
cytoskeleton and is particularly abundant in axons and presynaptic terminals.102, 103 It is also 
a major substrate for both calpain and caspase-3 cysteine proteases.104, 105 A hallmark feature 
of apoptosis and necrosis is an early cleavage of several cellular proteins by activated 
caspases and calpains. A signature of caspase-3 and calpain-2 activation is cleavage of 
several common proteins such as cytoskeletal ┙II-spectrin.106 In a rat model, mean levels of 
both ipsilateral cortex (IC) and cerebral spinal fluid (CSF) spectrin breakdown products 
(SBDP) at 2, 6, and 24 h after two levels of controlled cortical impact (1.0 mm and 1.6 mm of 
cortical deformation) were significantly elevated by injury using immunoblotting.107 Using 
the same proteomic Western blot technique, levels of spectrin breakdown products (SBDP’s) 
have been reported in CSF from adults with severe TBI and they have shown a significant 
relationship with severity of injury and clinical outcome.42, 108-113 Following a TBI the 
axonally enriched cytoskeletal protein ┙-II-spectrin is proteolyzed by calpain and caspase-3 
to signature breakdown products (SBDPs). Calpain and caspase-3 mediated SBDP levels in 
CSF have shown to be significantly increased in TBI patients at several time points after 
injury, compared to control subjects. The time course of calpain mediated SBDP150 and 
SBDP145 (markers of necrosis) differs from that of caspase-3 mediated SBDP120 (marker of 
apoptosis). Average SBDP values measured early after injury correlated with severity of 
injury, CT scan findings and outcome at 6 months post injury.43  
A promising candidate biomarker for TBI currently under investigation is Ubiquitin C-
terminal Hydrolase-L1 (UCH-L1). UCH-L1 was previously used as a histological marker for 
neurons due to its high abundance and specific expression in neurons.114 This protein is 
involved in the addition and removal of ubiquitin from proteins that are destined for 
metabolism.115 It has an important role in the removal of excessive, oxidized or misfolded 
proteins during both normal and pathological conditions in neurons.116 In initial studies, 
UCH-L1 was identified as a protein with a two-fold increase in abundance in the injured 
cortex 48 hours after controlled cortical impact in a rat model of TBI.117 Subsequently, a 
UCH-L1 sandwich enzyme-linked immunosorbent assay quantitatively showed that CSF 
and serum UCH-L1 levels in rats were significantly elevated as early as 2 hours following 
both traumatic and ischemic injury.118 Clinical studies in humans with severe TBI confirmed, 
using ELISA analysis, that the UCH-L1 protein was significantly elevated in human CSF44, 

119 and was detectable very early after injury and remained significantly elevated for 168 
hours post-injury.44 Further studies in severe TBI patients have revealed a very good 
correlation between CSF and serum levels.120 Most recently, UCH-L1 was detected in the 
serum of mild and moderate TBI (MMTBI) patients within an hour of injury.121 Serum levels 
of UCH-L1 discriminated MMTBI patients from uninjured and non-head injured trauma 
controls and were also able to distinguish mild TBI (concussion patients) from these 
controls. Most notable was that levels were significantly higher in those with intracranial 
lesions on CT than those without lesions.121 
Glial Fibrillary Acidic Protein (GFAP) is a monomeric intermediate protein found in 
astroglial skeleton that was first isolated by Eng et al. in 1971.122 GFAP is found in white and 
gray brain matter and is strongly upregulated during astrogliosis.123 Current evidence 
indicates that serum GFAP might be a useful marker for various types of brain damage from 
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neurodegenerative disorders124, 125 and stroke126 to severe traumatic brain injury.127-131 
Recently, Vos et al. described serum GFAP profile in severe and moderate TBI (GCS <12).54 
In a recent study by our group, GFAP was systematically assessed in human serum 
following mild and moderate TBI. We confirmed that the GFAP levels were significantly 
elevated in this population using ELISA analysis, including those with mild TBI. GFAP was 
able to discriminate TBI patients from uninjured controls. Additionally, serum levels were 
able to distinguish orthopedic and motor vehicle controls form TBI patients. GFAP was 
detectable in serum within a few hours of injury and was associated with measures of injury 
severity including the GCS score and CT lesions.132, 133 The present work extends findings 
from studies in severe TBI to mild and moderate TBI.  
 

 

Fig. 1. The neuroanatomical locations of the above mentioned biomarkers. 

7. Attributes of an ideal biomarker for TBI 

Research in the field TBI biomarkers has increased exponentially over the last 20 years with 
most of the publications on the topic occurring in the last 10 years.134 During the course of 
our work in the development of TBI biomarkers, it has become evident that there are a 
number of key features that a clinically useful biomarker should possess.135 An “ideal 
biomarker” would: 1) demonstrate a high sensitivity and specificity for brain injury; 2) 
stratify patients by severity of injury; 3) have a rapid appearance in accessible biological 
fluid; 4) provide information on injury mechanisms; 5) have well defined biokinetc 
properties; 6) monitor progress of disease and response to treatment; 7) predict functional 
outcome; 8) be easily measured by widely available, simple techniques 
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Clinical researchers have developed methodological standards for developing clinical 
decision tools in order to ensure the validity of study results.136, 137 As TBI biomarker 
research transitions from the bench to the bedside there are a number of important 
methodological issues that researchers will have to consider as they design their clinical 
protocols. Since TBI biomarkers are being designed for clinical management, the outcome or 
diagnosis being examined will need to be clearly defined and clinically important. In order 
to ensure external validity and the generalizability of the results, study patients will have to 
be selected without bias and represent a wide spectrum of clinical and demographic 
characteristics. When interpreting the data, clinical variables that potentially affect outcome 
will require careful consideration in the analysis. Multivariate statistical and bioinformatics 
models will also further improve classification of patients and help reduce systematic 
bias.138 Another essential consideration will be the examination of biokinetic properties and 
temporal profiles of the biomarkers as well as systematic comparisons to controls. 

8. The potential clinical role of biomarkers 

Biochemical markers could help with clinical decision making by elucidating injury severity, 
injury mechanism(s), and monitoring progression of injury. Temporal profiles of changes in 
biomarkers could guide timing of diagnosis and treatment. Biomarkers could have a role in 
management decisions regarding patients at high risk of repeated injury. Accurate 
identification of these patients could facilitate development of guidelines for return to duty, 
work or sports activities and also provide opportunities for counseling of patients suffering 
from these deficits. Repeated mild TBI occurring within a short period (i.e. hours, days, or 
weeks) can be catastrophic or fatal, a phenomenon termed "second impact syndrome."139, 140 
Acute CT or MRI abnormalities are not usually found after these injuries, but levels of some 
neurotransmitters remain elevated, and a hypermetabolic state may persist in the brain for 
several days after the initial injury.141 During this time the brain appears to be particularly 
vulnerable to additional TBI, which may result in severe sequelae, including greatly 
increased cerebral edema and even death.139, 140  
Biomarkers could serve as prognostic indicators by providing information for patients and 
their families about the expected course of recovery. It opens the door to the initiation of 
early therapies. Identifying at-risk patients with less apparent TBI or differentiating injury 
pathology in those with more severe intracranial processes would be tremendously valuable 
in the management of these patients. For example, in a patient with a normal CT scan or 
MRI, a biomarker that could predict worsening neurological status or long-term disability 
would have great clinical utility.  
There have been a large number of clinical trials studying potential therapies for traumatic 
brain injury (TBI) that have resulted in negative findings. Biomarkers measurable in blood 
would have important applications in clinical research of these injuries. Biomarkers could 
provide clinical trial outcome measures that are cost-effective and more readily available 
than conventional neurological assessments, thereby significantly reducing the risks and 
costs of human clinical trials. Biomarkers that represent highly sensitive and specific 
indicators of disease pathways have been used as substitutes for outcomes in clinical trials 
when evidence indicates that they predict clinical risk or benefit. 
Lack of quickly accessible pathophysiologic information during the post-injury course has 
made pharmacologic intervention problematic. Biomarkers could provide more timely 
information on disease progression and the effects of interventions such as drugs and 
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surgery. Biomarker measurements could potentially relate the effects of interventions on 
molecular and cellular pathways to clinical responses. In doing so, biomarkers would 
provide an avenue for researchers and clinicians to gain a mechanistic understanding of the 
differences in clinical response that may be influenced by uncontrolled variables. 
Intoxicated, unconscious, sedated, or polytraumatized patients suspected of having a TBI 
pose a particular challenge to emergency and trauma physicians. Biomarkers could expedite 
the evaluation of such patients by providing information on the degree of brain injury prior 
to neuroimaging. Biomarkers in this setting could also help determine the need for early 
neurosurgical consultation or transfer to facilities with neurosurgical capabilities. 
There are potential military applications as well. Serum biomarkers could help diagnose 
and/or triage brain injured military servicemen and women. TBI is a leading cause of 
combat casualty with an estimated 15-20% of all injuries sustained in 20th century conflicts 
being to the head.142-144 America's armed forces are sustaining attacks by rocket-propelled 
grenades, improvised explosive devices, and land mines almost daily in the recent conflicts 
in Iraq and Afghanistan.145 It has been suggested that over 50% of injuries sustained in 
combat are the result of such explosive munitions including bombs, grenades, land mines, 
missiles, and mortar/artillery shells. Neuroimaging techniques to diagnose brain injury 
acutely and other monitoring tools that assess secondary insults are not immediately 
available in combat zones and such casualties have to be evacuated. Triage and 
management of brain injured soldiers could be significantly improved if first responders 
had a quick and simple means of objectively assessing severity of brain injury and of 
monitoring secondary insults.  
There is a unique opportunity to use the insight offered by biochemical markers to shed 
light on the complexities of the injury process. Accordingly, certain markers could be used 
as indicators of damage to a particular cell type or cellular process or may be indicative of a 
particular type of injury. Neuroanatomically, that could include evidence of, say, primary 
axonal damage versus glial damage. With such heterogeneity the solution may not lie with a 
single biomarker but more with a complementary panel of markers that may prove useful in 
distinguishing different pathoanatomic processes of injury.  

9. Conclusion 

The exploration and validation of biomarkers for TBI using advances in proteomics, 
neuroimaging, genomics, and bioinformatics must continue. Biomarkers of TBI measured 
through a simple blood test have the potential to significantly improve the management of 
TBI patients by providing timely information on the pathophysiology of injury; improving 
stratification of patients by injury severity; monitoring of secondary insults and injury 
progression; monitoring response to treatment; and predicting functional outcome. 
Biomarkers could provide major opportunities for the conduct of clinical research including 
confirmation of injury mechanism(s) and drug target identification. Ultimately the goal is 
improve outcome in patients suffering from these injuries. 
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Proteomic Discovery of Disease Biomarkers, Proteomic Analysis of Protein Functions, Proteomic Approaches
to Dissecting Disease Processes, and Organelles and Secretome Proteomics. We believe that clinicians,
students and laboratory researchers who are interested in Proteomics and its applications in the biomedical
field will find this book useful and enlightening. The use of proteomic methods in studying proteins in various
human diseases has become an essential part of biomedical research.
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