Development of 99Mo Production Technology with Solution Irradiation Method

Yoshitomo Inaba
Japan Atomic Energy Agency
Japan

1. Introduction

Technetium-99m (99mTc, half-life: 6.01 hours) is the world’s most widely used radiopharmaceutical for exams of cancer, bowel disease, brain faculty and so on, and it is used for more than twenty million exams per year in the world and more than one million exams per year in Japan. The demand for 99mTc is continuously growing up year by year. The features of 99mTc as the radiopharmaceutical are as follows:

1. It is easy to add 99mTc to diagnostic medicines.
2. It is easy to measure the γ-ray energy with 0.14 MeV generated by isomeric transition from outside the body.
3. β rays are not emitted.
4. The patients’ exposure associated with the exams is kept to the minimum because of the short half-life.

The production of the short-lived 99mTc is conducted by extracting from molybdenum-99 (99Mo, half-life: 65.94 hours), which is the parent nuclide of 99mTc. Therefore, the stable production and supply of 99Mo is very important in every country. All of 99Mo used in Japan is imported from foreign countries. However, a problem has emerged that the supply of 99Mo is unstable due to troubles in the import and the aging production facility (Atomic Energy of Canada Limited [AECL], 2007, 2008). In order to solve the problem, the establishment of an efficient and low-cost 99Mo production method and the domestic production of 99Mo are needed in Japan.

As a major 99Mo production method, the fission method ((n, f) method) exists, and as a minor 99Mo production method, the neutron capture method ((n, γ) method) exists. In order to apply to the Japan Materials Testing Reactor (JMTR) of the Japan Atomic Energy Agency (JAEA), two types of 99Mo production methods based on the (n, γ) method have been developed in JAEA (Inaba et al., 2011): one is a solid irradiation method, and the other is a solution irradiation method, which was proposed as a new 99Mo production technique (Ishitsuka & Tatenuma, 2008).

The solution irradiation method aims to realize the efficient and low-cost production and the stable production and supply of 99Mo, and the fundamental research and development for the practical application of the method has been started (Inaba et al., 2009).
In this paper, a comparison between 99Mo production methods, an overview of the solution irradiation method containing the structure of 99Mo production system with the method and the progress of the development made thus far, estimates of 99Mo production with the method, and the results of a newly conducted test are described.

2. Comparison between 99Mo production methods

A comparison between the three 99Mo production methods (the fission method, the solid irradiation method and the solution irradiation method) is shown in Table 1, assuming the 99Mo production in JMTR, which is a tank-type reactor.

2.1 Fission method ((n, f) method)

In the conventional fission method ((n, f) method), high-enriched uranium targets are irradiated with neutrons in a testing reactor, and 99Mo is produced by the 235U (n, f) 99Mo reaction. Most of the world supply of 99Mo is produced by the (n, f) method since 99Mo with a high-level specific activity of 370 TBq/g-Mo is obtained. However, the method has problems about the nuclear nonproliferation and the generation of a significant amount of radioactive waste including Fission Products (FPs) and Pu. Caused by the radioactive waste, the separation process of 99Mo is too complex, and 99Mo production with the (n, f) method needs expensive facilities and extreme care to avoid contamination with FPs. The 99Mo production cost by this method achieves 57 US$/37 GBq (Boyd, 1997), and it is too expensive.

2.2 Neutron capture method ((n, γ) method)

2.2.1 Solid irradiation method

In the conventional solid irradiation method, solid targets including natural molybdenum such as MoO$_3$ pellets are irradiated with neutrons in a testing reactor, and 99Mo is produced by the 98Mo (n, γ) 99Mo reaction. The post-irradiation process is only dissolution of the irradiated solid targets with an alkaline solution, and only a small amount of radioactive waste is generated in the process compared with the (n, f) method. The 99Mo production cost of this method or the (n, γ) method is only 0.83 US$/37 GBq (Boyd, 1997).

However, the (n, γ) method has the disadvantage of producing 99Mo with a low-level specific activity of 37-74 GBq/g-Mo and therefore the method has not had practical application in earnest. In order to utilize 99Mo with the low-level specific activity, a high-performance adsorbent for (n, γ) 99Mo is needed. The Japan Atomic Energy Research Institute (the present organization: JAEA) and KAKEN Inc. had developed the high-performance molybdenum adsorbent of Poly-Zirconium Compound (PZC) in 1995 (Hasegawa et al., 1996) and improved PZC (Hasegawa et al., 1999), and then the practical application of the (n, γ) method is just in sight. The molybdenum adsorbent performance of PZC is over 100 times compared with the conventional molybdenum adsorbent of alumina.

99Mo production in JMTR will start by using the solid irradiation method. JMTR aims to provide 99Mo of 37 TBq/w (1,000 Ci/w), and it will cover about 20% of the 99Mo imported into Japan (Inaba et al., 2011).
2.2.2 Solution irradiation method

In the new solution irradiation method, a solution target including natural molybdenum such as an aqueous solution of a molybdenum compound (aqueous molybdenum solution) is irradiated with neutrons in a testing reactor, and 99Mo is produced by the 98Mo (n, γ) 99Mo reaction. This new method is the improved type of the solid irradiation method, and it is possible to enhance the 99Mo production compared with the solid irradiation method. The solution irradiation method has the following advantages compared with the solid irradiation method:

1. It is easy to increase the irradiated volume by using a capsule with larger volume than that of a rabbit. The rabbit is a small sized (150 mm length) capsule (Inaba et al., 2011).
2. The separation and dissolution processes after the irradiation are not necessary because the irradiation target is an aqueous solution.
3. The amount of generated radioactive waste is smaller than that of the solid irradiation method.

<table>
<thead>
<tr>
<th>Items</th>
<th>Fission method ($\langle n, f \rangle$ method)</th>
<th>Neutron capture method ($\langle n, \gamma \rangle$ method)</th>
</tr>
</thead>
<tbody>
<tr>
<td><Irradiation target></td>
<td>Enriched 235U</td>
<td>Natural Mo</td>
</tr>
<tr>
<td>Chemical type</td>
<td>U-Al alloy, UO_2</td>
<td>MoO_2, metal Mo</td>
</tr>
<tr>
<td>Form</td>
<td>Foil, pellet</td>
<td>Powder, pellet, metal</td>
</tr>
<tr>
<td>Quality control</td>
<td>Complex</td>
<td>Complex</td>
</tr>
<tr>
<td><Irradiation container></td>
<td>Rabbit (30 cm3)</td>
<td>Rabbit (30 cm3)</td>
</tr>
<tr>
<td><Irradiation></td>
<td>Adjustment of target and enclosing with container 235U (n, f)</td>
<td>Adjustment of target and enclosing with container 98Mo (n, γ) 99Mo</td>
</tr>
<tr>
<td>Pre-process of irradiation</td>
<td>5-7 days</td>
<td>5-7 days</td>
</tr>
<tr>
<td>Reaction of 99Mo production</td>
<td>Batch collection</td>
<td>Batch collection</td>
</tr>
<tr>
<td>Irradiation time</td>
<td>5-7 days</td>
<td>5-7 days</td>
</tr>
<tr>
<td>Collection of target</td>
<td>Batch collection</td>
<td>Batch collection</td>
</tr>
<tr>
<td>Post-process of irradiation</td>
<td>Isolation in hot lab. (Complex)</td>
<td>Dissolution in hot lab. (Relatively simple)</td>
</tr>
<tr>
<td>Generated 99Mo</td>
<td>370 TBq/g-Mo</td>
<td>$37-74$ GBq/g-Mo</td>
</tr>
<tr>
<td>Specific activity</td>
<td>Quite many (131I, 103Ru, 89Sr, 90Sr, etc.)</td>
<td>92mNb</td>
</tr>
<tr>
<td>Activation by-product</td>
<td>92mNb, 14C, 42K, etc. (depending on a target solution)</td>
<td></td>
</tr>
<tr>
<td><Mo adsorbent></td>
<td>Alumina (2 mg-Mo/g-$\mathrm{Al}_2\mathrm{O}_3$)</td>
<td>PZC (250 mg-Mo/g-PZC)</td>
</tr>
<tr>
<td><Radioactive waste></td>
<td>Rabbits with FPs and Pu (Generation every one irradiation)</td>
<td>Rabbits (Generation every one irradiation)</td>
</tr>
<tr>
<td><Production in Japan></td>
<td>Difficult</td>
<td>Possible</td>
</tr>
</tbody>
</table>

Table 1. Comparison between three 99Mo production methods
In this new method, efficient and low-cost 99Mo production compared with the conventional 99Mo production can be realized by using the (n, γ) reaction and PZC. This new method aims to provide 100% of the 99Mo imported into Japan.

3. Overview of solution irradiation method

3.1 Structure of 99Mo production system with solution irradiation method

The schematic diagram of the 99Mo production system with the solution irradiation method is shown in Fig. 1. The system consists of an irradiation system, a supply and circulation system, and a collection and subdivision system. In the irradiation system, an aqueous molybdenum solution in a capsule installed in a reactor core is irradiated with neutrons under static or circulation condition, and 99Mo is generated. In the supply and circulation system, the solution is supplied to the capsule through pipes and is circulated by a circulator in irradiation operation. A gas disposal device and a heat exchanger are installed in order to take measures against the radiolysis gas and heat generated from the solution by irradiation. The system is designed so as to minimize unirradiated solution. In the collection and subdivision system, after the solution including the generated 99Mo is collected from the capsule through pipes, it is treated so as to be products such as PZC-99Mo columns or 99Mo transport containers.

![Schematic diagram of 99Mo production system with solution irradiation method](image_url)

Fig. 1. Schematic diagram of 99Mo production system with solution irradiation method

The detailed design of the 99Mo production system is carried out based on the results of future investigations and tests.

3.2 Progress of the development made thus far

The most important element of the solution irradiation method is the aqueous molybdenum solution as the irradiation target. The solution with a high concentration near the saturation
is used for efficient 99Mo production, and the solution always is in contact with the structural materials of the capsule and the pipes in the 99Mo production system under irradiation. Aqueous molybdate solutions are promising candidates for the irradiation target. The effect of the solutions on metals such as the structural materials has been researched, and molybdates are known as corrosion inhibitors (Kurosawa & Fukushima, 1987; Lu et al, 1989; McCune et al, 1982; Saremi et al, 2006). However, the behavior of aqueous molybdenum solutions including the aqueous molybdate solutions under such the conditions is not well understood. Therefore, the following subjects about the fundamental characteristics of the solutions should be investigated:

1. Selection of the aqueous molybdenum solutions as candidates for the irradiation target
2. Compatibility between the solutions and the structural materials
3. Chemical stability of the solutions
4. Effect of γ ray and neutron irradiation on the solutions such as the radiolysis, the γ heating and the activation by-products.

The some subjects described above had already investigated (Inaba et al., 2009), and the progress of the development made thus far is explained as below:

3.2.1 Selection of candidates for irradiation target

The selection of candidates for the irradiation target was carried out. The conditions required for the irradiation target solution are as follows:

1. The irradiation target solution has the high molybdenum content for the efficient production of 99Mo.
2. Few activation by-products are generated by target solution irradiation for the prevention of radioactive contamination.
3. The solution has good compatibility with the structural materials of the capsule and the pipes for the prevention of corrosion.
4. The solution is chemically stable and has no generation of precipitation for the prevention of an obstruction to the solution’s flow.

Based on the conditions (1) and (2), two aqueous molybdate solutions (aqueous ammonium molybdate and potassium molybdate solutions) were selected as the candidates for the irradiation target among the aqueous solutions of general molybdenum compounds.

The solubilities of ammonium molybdate ($\text{(NH}_4\text{)}_6\text{Mo}_7\text{O}_{24} \cdot 4\text{H}_2\text{O}$) and potassium molybdate (K_2MoO_4) for pure water are 44 g/100 g-H_2O and 182.4 g/100 g-H_2O respectively, and the molybdenum contents in the solubilities of ($\text{NH}_4\text{)}_6\text{Mo}_7\text{O}_{24} \cdot 4\text{H}_2\text{O}$ and K_2MoO_4 are 23.9 g and 73.5 g respectively.

The activation by-product of ($\text{NH}_4\text{)}_6\text{Mo}_7\text{O}_{24} \cdot 4\text{H}_2\text{O}$ is only ^{92}mNb. The activation by-products of K_2MoO_4 are ^{42}K and ^{92}mNb. The γ-ray energy emitted from ^{42}K is high. However, by using PZC, it is possible to remove ^{42}K and ^{92}mNb from the two aqueous molybdate solutions irradiated with neutrons.

The conditions (3) and (4) were confirmed by tests with the two solutions.
3.2.2 Unirradiation and γ-ray irradiation tests

Unirradiation and γ-ray irradiation tests were carried out by using the selected two aqueous molybdate solutions (aqueous (NH₄)₆Mo₇O₂₄·4H₂O and K₂MoO₄ solutions), and compatibility between the two solutions and the structural materials of stainless steel and aluminum, the chemical stability, the circulation characteristics, the radiolysis and the γ heating of the two solutions were investigated. In addition, the integrity of PZC was investigated under γ-ray irradiation. As a result, the following were found:

1. The compatibility between the two static aqueous molybdate solutions and stainless steel is very well under unirradiation and γ-ray irradiation.
2. The two solutions are chemically stable and have smooth circulation under unirradiation and γ-ray irradiation.
3. The ratios of hydrogen in the gases generated by the radiolysis of the two solutions are higher than that of pure water.
4. The effect of γ heating on the two solutions is the same level as that on pure water.
5. The integrity of PZC is maintained under γ-ray irradiation.

However, the pH of the aqueous (NH₄)₆Mo₇O₂₄·4H₂O solution needs to be adjusted from weak alkaline to weak acid for the prevention of precipitation. This is a disadvantage as one of the candidates for the irradiation target.

At present, the aqueous K₂MoO₄ solution, which has no pH adjustment and has higher molybdenum content than that of the aqueous (NH₄)₆Mo₇O₂₄·4H₂O solution, is investigated as the first candidate of the irradiation target.

4. Estimates of 99Mo production rates by solution irradiation method

The estimates of 99Mo production rates by the solution irradiation method are shown in cases using aqueous (NH₄)₆Mo₇O₂₄·4H₂O and K₂MoO₄ solutions as irradiation targets, assuming the 99Mo production in JMTR.

4.1 Conditions for estimates of 99Mo production rates

The JMTR core arrangement is shown in Fig. 2. The capsule of the 99Mo production system with the solution irradiation method is installed into the irradiation hole, M-9 with maximum and average thermal neutron fluxes of 3.5×10^{18} n/(m²·s) and 2.6×10^{18} n/(m²·s) (Department of JMTR Project, 1994). The capsule consists of inner and outer tubes, and an aqueous molybdate solution is irradiated with neutrons in the inner tube to prevent the solution from leaking into the reactor coolant. Table 2 shows the conditions of the capsule and the two irradiation targets of the aqueous (NH₄)₆Mo₇O₂₄·4H₂O and K₂MoO₄ solutions.

99Mo production rates are estimated based on the following conditions in addition to the conditions of Table 2:

- The generation and reduction of 99Mo by the neutron capture reaction of 98Mo (n, γ) 99Mo and 99Mo (n, γ) 100Mo and the radioactive decay of 99Mo are evaluated.
- 99Mo doesn’t exist in the initial stage of the calculation.
- The decay of neutron flux due to the inner and outer tubes of the capsule is considered.
- The circulation of the two irradiation targets is not considered.
Development of 99Mo Production Technology with Solution Irradiation Method

Fig. 2. JMTR core arrangement

<table>
<thead>
<tr>
<th>Size and material of capsule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer tube: outer diameter of 65 mm, inner diameter of 61 mm</td>
</tr>
<tr>
<td>Inner tube: outer diameter of 59 mm, inner diameter of 55 mm</td>
</tr>
<tr>
<td>Irradiation height: 700 mm</td>
</tr>
<tr>
<td>Irradiation volume: 1,663 cm3</td>
</tr>
<tr>
<td>Material: Stainless steel</td>
</tr>
</tbody>
</table>

Dissolved molybdenum in each irradiation target

- Aqueous (NH$_4$)$_6$Mo$_7$O$_{24}$·4H$_2$O solution (concentration: 90% of saturation): 372.8 g/1,663 cm3
- Aqueous K$_2$MoO$_4$ solution (concentration: 90% of saturation): 702.7 g/1,663 cm3

Table 2. Conditions of capsule and two irradiation targets of aqueous (NH$_4$)$_6$Mo$_7$O$_{24}$·4H$_2$O and K$_2$MoO$_4$ solutions

4.2 Basic equations for estimates of 99Mo production rates

The disintegration rates of 98Mo (isotopic ratio: 24.138%) and 99Mo are shown as following equations:

$$\frac{dN_{98}}{dt} = -\phi \sigma_{98} N_{98}$$ (1)
\[
\frac{dN_{99}}{dt} = -(\lambda + \phi \sigma_{99}) N_{99} + \phi \sigma_{98} N_{98}
\]
(2)

The solutions of the equations (1) and (2) are as follows:

\[
N_{98}(t) = N_{98}(0) \exp\left(-\phi \sigma_{98} t\right)
\]
(3)

\[
N_{99}(t) = \frac{\phi \sigma_{98}}{\lambda + \phi (\sigma_{99} - \sigma_{98})} N_{98}(0) \left[\exp\left(-\phi \sigma_{98} t\right) - \exp\left[-(\lambda + \phi \sigma_{99}) t\right]\right]
\]
(4)

where \(N_{98}\) and \(N_{99}\) are the atom number densities of \(^{98}\)Mo and \(^{99}\)Mo (n/cm\(^3\)), \(t\) is time (s), \(\phi\) is neutron flux (n/(cm\(^2\)·s)), \(\sigma_{98}\) and \(\sigma_{99}\) are the capture cross section of \(^{98}\)Mo and \(^{99}\)Mo (cm\(^2\)), and \(\lambda\) is the decay constant of \(^{99}\)Mo (1/s). When the neutron flux, the capture cross section, the decay constant and the time are given for the equations (3) and (4), \(^{99}\)Mo generation rate per unit volume can be calculated depending on the time.

The specific activity of the generated \(^{99}\)Mo is calculated from the following equation:

\[
- \frac{dN_{99}}{dt} = \frac{W \times 4.17 \times 10^{23}}{AT}
\]
(5)

where \(W\) is the mass of \(^{99}\)Mo (g), \(A\) is the atomic mass number of \(^{99}\)Mo, and \(T\) is the half-life of \(^{99}\)Mo (s).

4.3 Estimated results of \(^{99}\)Mo production rates

The relationship between the irradiation time and the calculated specific \(^{99}\)Mo generation (generated \(^{99}\)Mo activity per 1 g of molybdenum) is shown in Fig. 3. When the irradiation time is 6 days (144 h), the specific \(^{99}\)Mo generation is 0.286 TBq/g-Mo as shown in Fig. 3.

![Fig. 3. Relationship between irradiation time and specific \(^{99}\)Mo generation](image-url)
Using the specific 99Mo generation of 0.286 TBq/g-Mo, 99Mo production rates are estimated. In the case using the aqueous $(\text{NH}_4)_6\text{Mo}_7\text{O}_{24}\cdot 4\text{H}_2\text{O}$ solution as the irradiation target,

$(^{99}\text{Mo production in the case using the aqueous } (\text{NH}_4)_6\text{Mo}_7\text{O}_{24}\cdot 4\text{H}_2\text{O} \text{ solution})$

$= 372.8 \text{ g} \times 0.286 \text{ TBq/g-Mo} = 106.6 \text{ TBq} = 2,881.9 \text{ Ci}$

In the case using the aqueous K_2MoO_4 solution as the irradiation target,

$(^{99}\text{Mo production in the case using the aqueous } \text{K}_2\text{MoO}_4 \text{ solution})$

$= 702.7 \text{ g} \times 0.286 \text{ TBq/g-Mo} = 201.0 \text{ TBq} = 5,431.7 \text{ Ci}$

Here, the dilution effect by the unirradiated aqueous molybdate solution and the decay time of 99Mo from the generation to the shipment are considered. It is assumed that the volume of the aqueous molybdate solution in the capsule and the pipes in the irradiation system and the supply and circulation system of the 99Mo production system is about 2,500 cm3 and that the time from the post-irradiation to the shipment is one day. After one day, 99Mo decays to 0.78 times. Time from the irradiation to the shipment is one week. The 99Mo production rates at the shipment are estimated as follows:

$(^{99}\text{Mo shipping activity in the case using the aqueous } (\text{NH}_4)_6\text{Mo}_7\text{O}_{24}\cdot 4\text{H}_2\text{O} \text{ solution})$

$= 2,881.9 \text{ Ci} \times 1,663/2,500 \times 0.78 = 1,495.3 \text{ Ci/w}$

$(^{99}\text{Mo shipping activity in the case using the aqueous } \text{K}_2\text{MoO}_4 \text{ solution})$

$= 5,431.7 \text{ Ci} \times 1,663/2,500 \times 0.78 = 2818.3 \text{ Ci/w}$

The 99Mo production rate in the case using the aqueous K_2MoO_4 solution is about twice compared with that in the case using the aqueous $(\text{NH}_4)_6\text{Mo}_7\text{O}_{24}\cdot 4\text{H}_2\text{O}$ solution. It is a distinct advantage of the aqueous K_2MoO_4 solution. However, in order to aim to provide 100% of the 99Mo (5,000 Ci/w) imported into Japan and to increase the production rate, some ideas such as the concentration of 98Mo are needed.

5. Compatibility test between flowing aqueous molybdate solution and structural material

In the 99Mo production system with the solution irradiation method, a flowing target solution with a high concentration is in contact with the structural material of the capsule and the pipes, and then it is important to investigate compatibility between the flowing target solution and the structural material. In the previous tests (Inaba et al., 2009), the circulating solution test was carried out under γ-ray irradiation. However, the SUS304 specimen used in the test was only immersed in the bottom of an irradiation container with a volume of 2,000 cm3, and the specimen had no influence of the circulating solution flow, and then the compatibility was not cleared. Therefore, the compatibility test between the flowing target solution and the structural material was carried out, and the corrosivity of the flowing target solution for the structural material as well as the chemical stability of the solution was investigated.

An aqueous K_2MoO_4 solution, which was the first candidate of the irradiation target, was used in the test. The purity of K_2MoO_4 used in the test was over 98%.
5.1 Test apparatus

Fig. 4 shows the schematic diagram of a test apparatus, which was used in order to investigate compatibility between a flowing aqueous K_2MoO_4 solution and a structural material and the chemical stability of the solution. The test apparatus consists of an immersion container for immersing specimens under flow, a glass storage tank with a volume of about 700 cm3, a thermocouple inside the storage tank for solution temperature measurement, a feed pump to circulate the solution, a flowmeter, Teflon tubes with an inner diameter of 7.5 mm to connect each component, two syringes, which were used for depressurization, solution supply, air purge and solution sampling, a data logger to collect temperature data and to monitor the temperature and so on. Some components such as the immersion container and the storage tank were installed into a heating chamber to heat the solution.

The immersion container consists of a glass outer tube with an outer diameter of 22 mm and a height of 62.5 mm and a Teflon inner holder with an inner diameter of 13 mm and a height of 60 mm, and two specimens (specimen 1 and 2) were fixed in the center of the container by the holder as shown in Fig. 5 and they were arranged one above the other in the container. The storage tank was located upstream of the immersion container to keep the solution temperature constant and to prevent the solution from pulsating by the feed pump. In addition to the storage tank, a looped long Teflon tube connected between the pump and the storage tank was used to keep the solution temperature in the heating chamber. The total length of the circulation route of the solution was about 6.8 m, and the total quantity of circulating solution was about 300 cm3 except the volume of the storage tank.

![Fig. 4. Schematic diagram of test apparatus for compatibility test](image-url)
5.2 Test method and conditions

The compatibility test was carried out by using the test apparatus with a closed loop shown in Fig. 4. After the specimens were set in the immersion container, aqueous K_2MoO_4 solution was injected in the closed loop, and the solution was circulated at a constant flow rate. The flow rate was set at about $120 \text{ cm}^3/\text{min}$, considering the flow velocity assumed in an actual ^{99}Mo production system. The concentration of the solution was adjusted to about 90% of the saturation for the prevention of crystallization, and the temperature of the solution was maintained at about 80°C for the prevention of boiling. As the specimens immersed in the solution, stainless steel SUS304 was used based on the results of the previous immersion tests (Inaba et al., 2009). SUS304 has been used as the structural material of capsules and pipes in JMTR. The size of the specimens was $10 \times 30 \times 1.5 \text{ mm}$. Table 3 shows the chemical composition of a SUS304 specimen. The total immersion time of the specimens was 112.7 days, and the immersion time under flow was 84.5 days out of a total of 112.7 days. The total immersion time was longer than the immersion time under flow because the feed pump was temporarily stopped by the planned blackouts and the pump troubles.

During the test, at regular intervals, the specimen 1 was taken from the immersion container, and the specimen’s weight was measured after washing by pure water and drying, and its surface state was observed. In addition, the aqueous solution was sampled from the closed loop by using one of the syringes, and the pH and molybdenum concentration of the solution were measured, and the solution state was observed.

After the test, the specimen 1 and 2 were taken from the immersion container, and the specimens’ weight was measured, and their surface states were observed. In addition, the aqueous solution was sampled from the closed loop, and the pH and molybdenum concentration of the solution were measured, and the solution state was observed.
Table 3. Chemical composition of SUS304 specimen

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Cr</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.06</td>
<td>0.51</td>
<td>0.73</td>
<td>0.026</td>
<td>0.002</td>
<td>8.03</td>
<td>18.07</td>
<td>Balance</td>
</tr>
</tbody>
</table>

(Unit: wt%)

5.3 Results and discussions

The average temperature and flow rate of the aqueous K_2MoO_4 solution used in the test were 81°C for a total immersion time of 112.7 days and $123\text{ cm}^3/\text{min}$ for a total immersion time under flow of 85.5 days respectively.

5.3.1 Corrosivity of flowing aqueous K_2MoO_4 solution for SUS304

The surface states of the two SUS304 specimens before and after the immersion in the flowing aqueous K_2MoO_4 solution for a total of 84.5 days are shown in the Fig. 6, and the relationships between the immersion time and corrosion rates of the specimens are shown in Fig. 7. The corrosion rates were estimated by the following equation:

$$\text{Corrosion rate} = \frac{\text{Weight change}}{\text{Surface area} \times \text{Immersion time} \times \text{Density}}$$

(6)

Fig. 6. Surface states of SUS304 specimens before and after compatibility test

The equation (6) shows the wastage thickness per unit time. In the visual observation and comparison of the two specimens' surfaces before and after the compatibility test, whereas streamlined patterns, partly slight tarnish and the partly slight loss of metallic luster were found on the surfaces, obvious corrosion such as corrosion products was not found. The corrosion rate of the specimen 1 increased temporarily to 0.10 mm/y in the initial stage of the test (an immersion time of 21 days) and decreased finally to 0.02 mm/y. On the other hand, the corrosion rate of the specimen 2 was 0 mm/y at the beginning and end of the test. There was no change in the state of the specimen 1 surface in the initial stage of the test, and the temporary increase of the specimen 1 corrosion rate might be affected by taking out from the immersion container.
Fig. 7. Relationships between immersion time and corrosion rates of SUS304 specimens immersed in flowing aqueous K$_2$MoO$_4$ solution for 84.5 days

![Graph showing relationships between immersion time and corrosion rates.](image)

Solution conditions:
- Temp.: 81ºC (average)
- Conc.: 57 wt% (initial stage)
- Flow rate: 123 cm3/min (average)

Fig. 8. Inverted materials microscope photograph of specimen 2 surface immersed in flowing aqueous K$_2$MoO$_4$ solution for 84.5 days

For the confirmation of the detailed surface states, the specimen 2 as the representative of the two specimens were observed and analyzed with an inverted materials microscope and a field emission Electron Probe Micro Analyzer (EPMA). Fig. 8 shows the inverted materials microscope photograph of the specimen 2 surface. The black lines and dots in Fig. 8 are preexistent scratches and hollows. Tarnish is recognized on the surface. Fig. 9 shows the Scanning Electron Microscope (SEM) photograph of the specimen 2 cross-section surface taken with the EPMA, and Fig. 10 shows the color map of the specimen 2 cross-section surface analyzed with the EPMA. The cross-section surface was prepared by cutting the center of the specimen 2, mounting in a resin and polishing. A thin coating layer, which is thought to be the cause of the tarnish, is found on the surface as shown in Fig. 9. To see Fig. 10, K and Mo, which are the main components of K$_2$MoO$_4$, are not detected and a relatively-high level of Si is detected on the surface. After the test, the corrosion of the glass outer tube in the immersion container was found, and then it is considered that the main component of...
the coating layer is Si eluted from the tube. This Si coating layer might inhibit the corrosion of the specimens. In any case, the progress of the corrosion was not observed in the SUS304 specimens, and SUS304 has good compatibility with a flowing aqueous K$_2$MoO$_4$ solution.

![Coating layer](image1.png)

Fig. 9. SEM photograph of specimen 2 cross-section surface immersed in flowing aqueous K$_2$MoO$_4$ solution for 84.5 days

![EPMA color map](image2.png)

Fig. 10. EPMA color map of specimen 2 cross-section surface immersed in flowing aqueous K$_2$MoO$_4$ solution for 84.5 days

5.3.2 Chemical stability of flowing aqueous K$_2$MoO$_4$ solution

During the test term, the aqueous K$_2$MoO$_4$ solution was chemically stable, and the precipitation or the deposit was not generated in the solution. Then the molybdenum concentration of the solution was almost constant before and after the test, and the concentrations before and after the test were 396.2 mg/ml and 384.0 mg/ml respectively. The concentrations were measured with an Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). The pH of the solution was also almost constant at pH9.5-9.7.
6. Conclusion

In the 99Mo production system with the solution irradiation method, a static or flowing aqueous molybdenum solution in a capsule is irradiated with neutrons in a testing reactor, and 99Mo is produced by the 98Mo (n, γ) 99Mo reaction. The system aims to provide 100% of the 99Mo imported into Japan. As a part of the technology development, aqueous (NH_4)$_6$Mo$_7$O$_{24}$·$4\text{H}_2\text{O}$ and K$_2$MoO$_4$ solutions were selected as candidates for the irradiation target of the system, and compatibility between the static two solutions and the structural materials of the capsule and pipes in the system, the chemical stability, the radiolysis and the γ heating of the solutions were investigated. As a result, it was found that the solutions are promising as the target. In addition, compatibility between a flowing aqueous K$_2$MoO$_4$ solution, which was the first candidate for the irradiation target in terms of a 99Mo production rate, and the structural material and the chemical stability of the flowing solution were investigated. As a result, it was found that stainless steel SUS304 has good compatibility with a flowing aqueous K$_2$MoO$_4$ solution and that the solution is chemically stable. The fundamental characteristics of the selected aqueous molybdate solutions became clear, and SUS304 can be used as the structural material of the capsule and the pipes.

In the future, a neutron irradiation test will be carried out as an overall test of 99Mo production system with the solution irradiation method, and 99Mo production, the separation of activation by-products, the quantity of radiolysis gas, nuclear heating and so on will be investigated.

Aiming at the domestic production of 99Mo in Japan, the development of 99Mo production with the solution irradiation method is kept going.

7. Acknowledgment

The author would like to thank Dr. Tsuchiya, K. and Mr. Ishida, T. of JAEA and Mr. Ishikawa, K. of KAKEN. Inc. for their valuable comments.

8. References

This book presents a comprehensive review of studies in nuclear reactors technology from authors across the globe. Topics discussed in this compilation include: thermal hydraulic investigation of TRIGA type research reactor, materials testing reactor and high temperature gas-cooled reactor; the use of radiogenic lead recovered from ores as a coolant for fast reactors; decay heat in reactors and spent-fuel pools; present status of two-phase flow studies in reactor components; thermal aspects of conventional and alternative fuels in supercritical water-cooled reactor; two-phase flow coolant behavior in boiling water reactors under earthquake condition; simulation of nuclear reactors core; fuel life control in light-water reactors; methods for monitoring and controlling power in nuclear reactors; structural materials modeling for the next generation of nuclear reactors; application of the results of finite group theory in reactor physics; and the usability of vermiculite as a shield for nuclear reactor.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
