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1. Introduction 

The commonest hematological malignancy chronic lymphocytic leukemia (CLL) is 

currently incurable with a high incidence of morbidity and mortality (Chiorazzi et al., 

2005; Dighiero & Hamblin, 2008; Hallek & Pflug, 2011). Clinically, the disease is 

diagnosed in most cases accidentally as an indolent form of leukemia but subsequently it 

may turn rapidly into an aggressive form.  Moreover, in a subset of patients, CLL is 

presented as high-risk progressive form at diagnosis. This heterogeneous clinical course 

of CLL relies on the variable expression of defined several biological factors which may 

affect susceptibility to apoptotic cell death upon treatment (Hamblin 2007; Kipps 2007;; 

Lanasa 2010; Caligaris-Cappio & Chiorazzi 2010; Zenz et al., 2011; Parker & Strout 2011; 

Fabris et al., 2011).  Our understanding of the molecular alterations leading to the 

leukemogenesis of CLL, even if these appeared already complex, remains still far to be 

achieved. Current researches by performing new genomic approaches, allowed an 

identification of new genes recurrently mutated in CLL suggesting their oncogenic role 

of potential clinical relevance ( Fabri et al., 2011; Puente et al., 2011). Two major 

biological features such as the usage of mutated or unmutated immunoglobulin heavy 

chain variable region genes (IGHV) and the number and the type of chromosomal 

aberrations, clearly distinguish distinct clinical patients’ subgroups (Fais et al., 1998; 

Damle et al., 1999; Hamblin et al., 1999; Maloum et al., 2000; Zenz et al., 2007; Klein & 

Dalla-Favera, 2011). While the IGHV status may appear in some cases as a more complex 

and complicated prognostic marker (Ghiotto et al., 2011; Langerak et al., 2011), specific 

genomic aberrations appear as an accurate “drivers” of the disease and of its clinical 

characteristics (Zenz et al., 2011). In some high-risk CLL cases, there is an association 

between these two independent makers of poor prognosis such as the presence of 11q22 

deletions in cells with unmutated IGHV.  
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Another biological hallmark of CLL cells, with an evident therapeutic impact, is the 

aberrantly increased B cell receptor (BCR) signaling. It consists of surface immunoglobulin 

associated with heterodimer CD79 and CD79 This aberrant BCR signaling consequently 

activates the Src family protein tyrosine kinases Lyn and Syk which promotes an activation 

in cascade of downstream signaling pathways including phosphatidyl-3-kinase (PI3K, see 

below), which generates phosphatidylinositol-3-phosphate necessary for the activation of 

the kinase Akt. Simultaneously to PI3K activation, the phospholypase  C2 is also activated. 

This last enzyme is involved in protein kinase C (PKC) activation which is an essential cell 

surviving factor. Effectively, an activation of PKC leads to an activation of the 

transcriptional anti-apoptotic factor NF-B (see later) and to activation of mitogen-activated 

kinases (MAPKs) such as MEK/ERK, JNK and p38 MAPK as well as mTorc1 inhibitor 

rapamycin and cyclin-dependent protein kinase. The final consequence of these cascades of 

events is an anti-apoptotic “attitude” of CLL cells that may present a major source of the 

identification of novel therapeutic targets (for review see Wickremasinghe et al., 2011 and 

references within). 

Men are more frequently affected by an aggressive form of the disease and develop it at a 

younger age than women (Mauro et al., 1999; Cartwright et al., 2002). In addition, CLL cells 

in men more commonly display no mutations in IGHV genes that allow, according to gene 

expression profiling, putting in evidence that male patients may segregate in a distinct CLL 

subgroup (Haslinger et al., 2004). We have reported that the gene expression profiles may 

also be discriminating not only between apoptosis resistant and sensitive cells (Vallat et al., 

2003), but also according to patients’ gender (Marteau et al., 2011).  

In addition to not yet fully defined defect in  apoptotic death, the homeostatic balance or 
imbalance in a dynamic interplay between proliferation and cell death may underline the 
stable (indolent) or progressive forms of CLL, respectively (Messmer et al., 2005; Chiorazzi 
& Ferrarini, 2011). The mechanisms that induce a switch from indolent to more aggressive 
form of this malignancy remain unclear. Hence, clinical and biological heterogeneities may 
allow us to postulate two models of CLL cell origin; single- or multiple-cell origin model 
(Chiorazzi & Ferrarini, 2011). Although the microarray data suggested the same cell origin 
for two major subsets of CLL (i.e. CLLs with mutated and CLLs with unmutated IGHV 
genes, Klein et al., 2001; Rosenwald et al. 2001), according to B-cell receptors (BCRs) 
repertory and signaling capacity as well to the specific IGHV usages, a model of two-cell 
origin would be more appropriated to explain clonal cell expansion and thus an emergence 
of indolent and aggressive form of disease (Hamblin et al., 2000; Damle et al., 1999; 
Schroeder & Dighiero, 1994; Fais et al., 1998; Zupo et al., 1996; Lanham et al., 2003; Herve et 
al., 2005; Colombo et al., 2011).  Both of these two models converge to an antigen-
experienced lymphocyte(s) according to the membrane phenotype of CLL cells.  Because of 
the possibility that  CLL clones may develop and diversify its Ig receptor (with either 
mutated or unmutated IGHV genes), T-cell dependent, droved to the concept of the unique 
follicular marginal zone B cell origin. In spite of differences in poly- and auto-antigen-
binding activities among CLL clones, the analyses of the amino acid sequences of B-cell 
receptor showed remarkably similarity in some but not all of these clones (Chiorazzi & 
Ferrarini, 2011), seeding thus a doubt of one-cell origin. However, if the normal B cell 
counterparts should absolutely be searched, we should consider also the arguments that 
human marginal zone B cell population is a separate population that develops and 

www.intechopen.com



DNA Damage Response/Signaling and Genome  
(In)Stability as the New Reliable Biological Parameters Defining Clinical Feature of CLL 

 

65 

diversifies Ig receptor outside T cell-dependent or –independent immune responses (Weill 
et al., 2009). In addition, considering the possibility of somatic diversification independent 
of antigen-driven responses and the existence of the subpopulation of circulating “memory” 
long-lived B cells harbouring a pre-diversified immunoglobulin repertoire in humans, then 
the concept of CLL cell origin may also radically differ from above hypotheses of two origin 
models (Weller et al., 2004; Weill & Reynaud, 2005; Weller et al., 2008). Alternatively, 
irrespectively to normal cellular counterparts, CLL cells may emerge from initially damaged 
cell in bone marrow which subsequently followed a development and immunoglobulin 
diversification according to the extend of its initial damage.    

Although, the characterizations of several biological markers fit well with the appearance 
and/or maintenance of progressive disease, none of them are considered in a clinical 
decision regarding when and by applying which type of treatment the therapy should really 
start. The current front line therapies for CLL include drugs that directly or indirectly 
induce DNA damage which ultimately should result in apoptotic cell death. 

2. Two classes of CLL cells according to their ability to activate or not DNA 
damage-induced apoptosis: Clinical relevance? 

The aggressive form of disease resistant to front line treatment develops in approximately 

one third of patients who succumb rapidly due to the lack of effective therapies and/or a 

lack of prospective tools enabling the predicting treatment response including early relapse. 

Alkylating agents (i.e. chlorambucil) or purine nucleoside analogues such as fludarabine, 

mediate cell death of CLL cells through DNA damage, including double strand breaks 

(DSBs) and p53-dependent apoptosis (Rosenwald et al., 2004; Austen et al., 2007; Amrein et 

al, 2007; Döhner et al., 1995). Further, fludarabine treatment in vivo induces a gene 

expression response similar to that induced by the in vitro exposure of cells to ionizing 

irradiation (Rosenwald et al., 2004), suggesting the common mechanisms achievable by 

these two treatments. The loss of functional p53 or a defect in the ataxia telangiectasia 

protein (ATM) which acts upstream of p53, leads to a more rapid disease progression, is 

associated with resistance and shortened overall survival times as well as with an 

appearance of signs of disease complications (i.e. lymphadenopathy, Döhner et al. 1997). 

 We have reported that ~20% of patients harbor B cells resistant to DNA damage-induced 

apoptosis, irrespective of p53 status, while the remaining 80% of patients have p53wt-

expressing cells sensitive to genotoxic agents (Figure 1). Although p53 deficiency (through 

point mutations or 17p13 deletions) defines poor disease outcome (Döhner et al., 1995; 

Grever et al., 2007; Catovsky et al., 2007; Mohr et al., 2011), we hypothesized that specific 

pathways independent of p53 and/or acting upstream of this tumor suppressor could 

operate in resistance mechanisms of CLL cells.  

This last observation led us to perform a retrospective study to definitely establish: i) the 
relevance of whether an inherent resistance to DNA damage induced-apoptosis underlines 
poor disease outcome; ii) which dynamic biological alterations shepherd otherwise sensitive 
cells to become resistant and iii) whether these biological features of CLL cells should be 
considered by clinicians in a decision to apply or not the front line treatment (including 
DNA damaging drugs such as alkylants and base analogues) for patients harboring these 
cells.  
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Fig. 1. Fluorescent labeling of apoptotic CLL cells.  

Apoptotic cells are revealed by double staining of chromatin-DNA by Hoechst 33342 (a, c) 
and of phosphatydyl-serine externalization on membrane surface by annexin V-FITC (b, d). 
Resistant cells (a, b) are clearly distinguished from sensitive cells (c, d) by bright Hoechst 
staining (a) of annexin V positive cells (b).  

A cohort of 308 CLL cases was examined for cell sensitivity/resistance to DNA damage-
induced apoptosis and this biological parameter was correlated to the 
presence/expression of at least another bad prognostic factor described in literature. 
Together, these biological factors were correlated to the clinical features of each patient 
covering up to 25 years period.  

As shown in Figure 2, 18,8% of CLL cell samples were resistant to DNA damage-induced 
apoptosis in vitro while remaining 82,2% were sensitive. Consistent with data in literature, 
in this cohort of CLL patients, men appear to be affected more frequently than women. Of 
note, this gender-dependent ratio appears also to be conserved for the subset of patients’ 
samples resistant to DNA damage-induced apoptosis. 
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Fig. 2. Incidence of CLL cells resistant (CLL-R) or sensitive (CLL-S) to DNA damage-
induced apoptosis in vitro in a cohort of 308 patients’ samples according to patients’ 
gender.   
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Percentage of apoptotic cells were determined by fluorescent labeling and microscopic 

counting at 24h of culture of CLL cells exposed in vitro to genotoxic stress (10Gy of -rays or 
1µM of Neocarcinostatine). Y-axis: number of patients’ samples. 

After these first observations, our goal was to determine whether and how the presence of at 
least one biological factor  (such as Zap70 and CD38 positivity, elevated level of sCD23, 
deletions/mutations of TP53 and ATM and/or the presence of other multiple cytogenetic 
aberrations or complex karyotype), considered to be associated with poor disease outcome 
(“Bad prognostic factors” in graph 1), the IGHV status (graph 2), and the resistance or 
sensitivity to DNA damage-induced apoptosis (graph 3a, 3b and 3c) may influence overall 
time survival by comparing the survival curves of two well-defined groups on the basis of 
these phenotypes from this cohort of CLL patients.  

 
 
 
 

 
 
 
 

Graph 1. Bad prognostic factors influence on survival time.  

50 patients with at least one bad prognostic factor (yes) out of 84 have been censured 
(survival) vs. 66 of 80 without bad prognostic factor (no). We confirmed that the median 
survival time was significantly lower for the group of patients harboring malignant B cells 
with “unfavorable phenotype” than for its counterpart (15.200 ± 1.208 years vs. 18.529 ± 
0.757 years). The difference between these two survivor functions is very significant (Log-
rank, Wilcoxon and Tarone-ware -tests p < 0.001). Thus, the comparison of the two survival 
curves allows us to confirm that in our cohort, patients with one or more bad prognostic 
factors have significantly lower survival time than patients without the presence of these 
factors. These results are in agreement with other studies reported in literature. 
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Graph 2. The status of variable regions of heavy chains of immunoglobulin genes (IGHV) 
influence on CLL patients’ survival time.  

In patients harboring mutated (M) IGHV genes, 88 patients from 108 have been censured 
(survival) and 29 of 52 in the unmutated (UM) group. We notice that the median survival 
time is a lot lower for the IGHV unmutated group than for the IGHV mutated group (12.852 
± 0.879 years vs. 21.033 ± 0.876 years). The difference between the two survivor functions is 
very significant (Log-rank, Wilcoxon and Tarone-ware -tests p < 0.0001). The comparison of 
the two survival curves allows us to conclude and to confirm that the IGHV mutated status 
impacts significantly positively the survival time of patients. 

We next addressed the question whether the resistance to DNA damage -induced apoptosis 
may be a new parameter that also may influence on overall survival of CLL patients and if 
yes, whether this influence was concomitant to that observed with other bad prognostic 
factors. For this purpose we designed three comparisons. Two groups of patients’ cell 
samples were selected on the knowledge of their status according to the sensitivity or 
resistance to DNA damage-induced apoptosis (graph 3a) and then splitted according to the 
lack (graph 3b) or the presence (graph 3c) of at least one bad prognostic factor (i.e. Zap70, 
CD38 and sCD23 positivity, UM IGHV, ATM or TP53 mutations or deletions or other 
cytogenetic abnormalities or aberrant karyotype). 

In the resistant sub-group, 21 patients out of 58 have been censured (survival) and 203 out of 
245 in the sensitive group.  We noticed that the median survival time was significantly lower 
for the resistant group of patients (R) than for the sensitive (S) group of patients (11.562 ± 
1.097 years vs. 19.773 ± 0.672 years). The difference between the two survivor functions is 
very significant (Log-rank, Wilcoxon and Tarone-ware -tests p < 0.0001). The comparison of 
the two survival curves allows us to conclude that the resistance to DNA damage-induced 
apoptosis in vitro negatively impacts in a very significant manner on the survival time of 
CLL patients. 
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Graph 3. a) Survival time in sub-group of patients harboring CLL cells resistant (R ) to DNA 

damage-induced apoptosis vs. sub-group harboring sensitive (S) cells. b) Influence of time 
survival between patients harboring resistant (R) or sensitive (S) CLL cells with at least one 

bad pronostic factor expression. c) Influence of time survival between R and S patients 
without any bad pronostic factor. 

When patients have at least one bad pronostic factor (graph 3b), the same reduction of 
overall survival time was observed for the resistant group (11 censored out of 33) i.e. 10.593 

± 1.611 years in contrast to a higher survival time for the sensitive patients (39 censored out 
of 51) 15.946 ± 1.014 years (Log-rank, Wilcoxon and Tarone-ware –tests, p < 0.0001).  

In the group of CLL cell samples resistant to radiation induced apoptosis, 2 patients out 
of 6 have been censured (survival) and 64 of 74 in the sensitive group.  We noticed that 

the median survival time is a much lower for the resistant group (R) group than for the 
sensitive (S) group (9.92 ± 1.208 years vs. 19.773 ± 0.672 years). The difference between 

the two survivor functions is very significant (Log-rank, Wilcoxon and Tarone-ware -
tests p < 0.0001). The comparison of the two survival curves allows us to conclude that 

the resistance to DNA damage-induced apoptosis negatively impacts the patients’ 
survival time and, despite of the small number of patients without any bad pronostic 

factor, resistance to DNA damage-induced apoptosis can clearly be considered as a 
unique independent prognostic factor defining a subset of CLL with poor clinical 

outcome (graph 3c). 

In our cohort seven patients (2,2%) clinically evolved during the study and their cells 
changed the apoptotic status. Effectively, initially sensitive cells became resistant to DNA 
damage-induced apoptosis in vitro. In five patients these changes occurred following front-
line treatment because they expressed at least another bad prognostic factor (i.e. UM status 
of IGHV, delTP53, CD38+ or Zap70+ or presented two chromosomal aberrations). Disease 
evolved in two other patients who did not received chemotherapy and who did not 
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expressed another bad prognostic factor. Of note, concomitant to this change of the 
sensitivity toward resistance to activate apoptotic death pathway, increased activity of DNA 
repair through non-homologous end-joining as well as a shortening of telomeric sequences 
(see next two paragraphs), have been observed in these evolving cases. These observations 
let us to speculate that both front-line treatment, when inefficient, may contribute to an 
emergence of resistant cells and that in patients without an expression of another biological 
bad prognostic factor, the resistance to DNA damage-induced apoptosis may be a new 
independent bad prognostic factor for a subset of CLL patients.  

Together, data clearly demonstrate that the resistance to DNA damage-induced apoptosis in 

vitro is a parameter reliable of resistant form of disease and that the switching from sensitive 

to resistant cell status in vitro is concomitant to disease progression from indolent to 

aggressive form. Acquisition of resistant phenotype, critical telomere shortening and NHEJ 

defect are proposed as events preceding disease switching according to other established 

parameters (i.e. TP53 and ATM status, chromosomal aberrations, Zap70+, CD38+).  

Defining the molecular origin of the underlying mechanisms of cell resistance to DNA 

damage-induced apoptosis in vitro should open new perspectives of clinical use in CLL. 

3. Biological features of CLL cells resistant to DNA damage-induced 
apoptosis 

3.1 DNA repair defect? 

Our initial observation was that one CLL patient displayed malignant cells sensitive to 
ionizing irradiation-induced apoptosis in vitro while cells from a second patient were 
completely resistant. These first two cases were confirmed and validated in a large cohort of 
CLL samples thus allowing us to propose that CLL could be stratified into at least two new 
subgroups: resistant and sensitive groups. We next asked if this resistance to activate 
apoptotic death pathway could be due to DNA double strand breaks (DSBs) or to other 

effects induced by -rays. To answer this question we addressed comet assay to measure 
DNA damage directly in irradiated cells. This assay, performed in alkaline experimental 
conditions, allows assessing of resting single and double strand breaks directly in interphase 
nuclei. Surprisingly, an excess of resting DNA damage was established in sensitive rather 
than in resistant cells 20 min after radiation exposure (Blaise et al., 2001), emphasizing that 
resistant cells removed DNA damage more rapidly than sensitive cells. To further address 
DNA damage causality in apoptotic response, we next treated cells with radiomimetic drugs 
such as neocarcinostatin which is known to specifically induce DNA DSBs without other 
side effects in cell, or drugs currently used in cancer therapy (topoisomerase I and II 
inhibitors or fludarabine), also able to induce indirectly DSBs. In this way, we tested 

whether cell resistance to -rays-induced apoptosis would be validated by the same 
resistance induced by these drugs. Effectively, we reported (Deriano et al., 2005), that these 
cells were resistant to all tested DNA damaging agents concluding that the resistance to 
apoptosis should underscore a defect in DNA damage repair/signaling. DNA repair has 
already been postulated as the mechanism causing drug resistance in CLL (Panasci et al., 
2001; rev. Guipaud et al., 2003). First observation of a defective nucleotide excision repair 
(NER, as the main pathway employed in modified DNA bases clearance after UV exposure 
or alkylating agent treatments during cancer therapy), occurring in CLL was first reported 
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in 1972 (Huang et al., 1972). Alkylation and interstrand cross-links produced by nitrogen 
mustards (i.e. chlorambucil) may activate recombinational DNA repair in CLL cells 

(Bramson et al., 1995). Non-homologous end-joining (NHEJ) was first suspected to play a 
role in CLL drug resistance through an increased activity of DNA-PK complex (including 

both, the DNA end-binding activity of heterodimer Ku70/Ku80 and the phosphorylation 
activity of DNA-PKcs; Muller and Salles, 1997). In consequence, use of wortmanin, an 

inhibitor of PI3-Kinases along with DNA-PKcs (which is PI3-K like kinase), was able to 
potentialize cytotoxic effect of chlorambucil in CLL cells (Christodoulopoulos et al., 1998). 

Also, a DNA-PKcs specific inhibitor Nu7441 combined with drugs inducing DNA DSBs has 
been pointed as a potential therapy for high risk CLL (Elliott et al., 2011). After genotoxic 

stress and first cell division, structural chromosomal aberrations (dicentric, acentric or ring 
chromosomes) occurred more frequently in resistant than in sensitive CLL cells (Blaise et al., 

2001), suggesting an accelerated but certainly unfaithful DNA repair. We addressed an in 

vitro assay enabling us to measure the overall activity and fidelity of non-homologous end-

joining (NHEJ) DNA repair and the activities of two essential components of NHEJ 
heterodimer Ku70/Ku80 and DNA-PKcs. Accelerated DNA repair, an increased activity of 

Ku DNA end-binding as well as an increased kinase activity of DNA-PKcs were observed in 
resistant cells (Deriano et al., 2005). Moreover, this upregulation of NHEJ was found to be 

error-prone and thus potentially mutagenic since large DNA deletions occurred at sites of 
repair (Deriano et al., 2006). The potential impact of such resistance upon the onset of 

malignancy is likely to be increased by the resulting block on apoptosis induction which 
may in consequence contribute to the emergence of additional resistant clones from a 

proliferative pool of mutant cells. Recent reports have shown that drug-induced DSBs in 
cells in culture in vitro (such as CsA or fludarabine) are repaired exclusively by NHEJ 

(O’Driscol & Jeggo 2009; De Campos-Nebel et al., 2009) which is the main cell cycle-
independent repair pathway for this type of DNA damage in mammalian cells (Lieber 2008; 

Delacote and Lopez, 2008; Mari et al., 2006). According to protein components needed to 
achieve repair activity, two NHEJ pathways have been found operating in cells (for rev. see 

Mladenov and Iliakis, 2011); classical NHEJ depending on the activities of at least 7 
identified factors (i.e. Ku70, Ku80, DNA-PKcs, Arthemis, XRCC4, Cernunos (also called 

XRCC4-like factor, XLF) and Ligase IV) and alternative NHEJ which depends on MRN 
trimmer complex but its repair activity is, obviously, independent of proteins needed for 

classical pathway (Corneo et al., 2007, Yan et al., 2007; Deriano et al., 2009; Lee-Theilen et al., 
2011). This alternative NHEJ was demonstrated to be error-prone and consequently, 

mutagenic since it uses microhomology pairing and thus nucleotides loss. Whether this 

pathway may be really involved in initiation of malignant process in humans remain still to 
be elucidated. An upregulated classical NHEJ was reported to take place in Bloom’s 

syndrome exhibiting high chromosomal instability and cancer susceptibility as well as in 
myeloid leukemia harboring multiple chromosomal aberrations (Rasool et al., 2003). Defect, 

also in classical NHEJ, due to ligase IV dysfunction, has been associated with the 
appearance of radiosensitive leukemia in patients exhibiting developmental delay and 

immunodeficiency (Riballo et al., 1999; O’Driscoll et al., 2001). ATM deficiency, occurring 
mainly through point mutations or 11q22 deletions, has been observed in high risk CLLs 

(Stankovic et al., 1999; Austen et al., 2005). This deficiency causes a defective DNA repair 
through homologous recombination and consequently, resistance to therapy. One of new 

concepts to overcome cancer resistance consists in a conversion of one form of DNA damage 
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 into another form, that in a cell harboring defective gene involved in DNA damage 

response, cannot be repaired and inevitably leads to cell death (Helleday et al., 2008). Using 

this concept, inhibitors of poly (ADP-ribose) polymerase 1 (PARP), a component of the DNA 

single strand break (SSB) repair complex, may convert unrepaired SSB lesions of DNA into 

DSBs during DNA replication that require activation of HR repair proteins (i.e. BRCA1/2) 

for their resolution. If tumor cells defective in BRCA1/2 were treated with PARP1 inhibitor, 

they accumulate extensive DNA DSBs and underwent cell death (Bryant et al., 2005; Farmer 

et al., 2005).  Stankovic’s group investigated whether this synthetic lethality resulting from 

inhibition of PARP would also be applicable to ATM mutant lymphoid tumors and 

consequently, may result in their specific killing. They demonstrated a differential in vitro 

and in vivo sensitivity of primary and transformed ATM mutant CLL and MCL tumor cells 

to a new clinically tested PARP inhibitor (olaparib) which may be a new promising therapy 

in high risk CLLs (Weston et al., 2010).  Considering a functional overlapping between ATM 

and XLF (Cernunos) involved in classical NHEJ (Zha et al., 2011), then this strategy would 

be emphasized from homologous recombination to NHEJ in parallel. Another combined 

strategy to avoid the fludarabine-resistance of CLL cells uses simultaneously fludarabine 

and oxaliplatin treatment. In this case, synergistic killing of malignant cells was due to an 

inhibition of DNA repair by fludarabine that was incorporated into DNA at sites of 

nucleotide excision repair initiated by oxaliplatin-DNA adducts (Zecevic et al., 2011).   

In conclusion, there are now several lines of evidences that aggressive form of CLL displays 

molecular characteristics of DNA repair defect (i.e. caused by p53 or ATM deficiency or by 

an upregulation of NHEJ). This new biological feature severely affects overall survival and 

therapy issues. Taking into account that defect in DNA damage repair and/or signaling 

contribute to the appearance of genome instability, the results obtained in CLL cells highly 

suggest that the defect in NHEJ should be a new reliable biological parameter critically 

impairing efficacy of DNA damaging agent therapies for this subgroup of patients. In 

consequence, particularly because of a possible mutagenic effect of this type of drugs, the 

front line treatment should be proscribed for these patients in which malignant cells 

apparently adhere to the creed of “better wrong than dead” with a deregulated NHEJ that 

help their illegitimate survival. 

3.2 Telomere dysfunction 

Telomeres are the capping structures of chromosome ends composed of repeated DNA 
sequences (~10kb in somatic cells) and a specific complex of associated proteins. Telomeric 
DNA contain two main domains: a double strand region composed of tandem TTAGGG 
repeats and a single strand G-rich 3’ overhang (Henderson & Blackburn, 1989). A change in 
telomere function is one of the mechanisms developed by malignant cells enabling the 
evolution and maintenance of cancers (Blasco et al., 1997; Stewart & Weinberg, 2006; Cao et 
al., 2008; Ségal-Bendirdjian & Gilson 2008). The length of telomeric DNA is regulated during 
cell cycle and couples stress response to cell division and genome integrity (Blasco, 2007; 
Lansdorp, 2008; Aubert & Lansdorp, 2008). The regulation of telomere length results from 
the action of telomere lengthening mechanisms, such as the telomerase complex (hTERT, 
hTR and dyskerin), and of telomere shortening mechanisms, such as replication and 
recombination. Telomerase activity is regulated in cis by the shelterin hexa-protein complex 
(TRF1, TRF2, hRAP1, POT1, TIN2 and TPP1).  Many other proteins involved in DNA 
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replication and repair are also associated in telomeric structure and function (De Lange 
2005; Longhese, 2008; Horard & Gilson, 2008). The telomeric nucleoprotein complex ensures 
chromosome stability and protection. The shortening of telomere sequences upon cell 
divisions in most somatic cells results in irreversible cell growth arrest called senescence or 
in apoptosis. Telomere erosion may be critical in tumor suppression as it impairs cell 
proliferation. To circumvent this, cancer cells have developed molecular strategies to 
maintain their telomere length by reactivating expression and/or activity of telomerase or 
by alternative telomere lengthening (ALT) through homologous recombination (Stewart & 
Weinberg, 2006; Blasco, 2007; Collado et al., 2007; Gilson & Geli, 2007; Lansdorp, 2008). In 
CLL, telomeric DNA may shorten in a subset of patients in Binet B or C stage compared to 
patients in A stage. This correlation appears inversed for telomerase activity which increases 
in B and C stage and decreases for A stage derived cells (Bechter et al., 1998). CLL cells 
exhibiting unmutated IgVH genes display also short telomeres suggesting both, an 
increased proliferation history of these resistant cells (Damle et al., 2004) and short 
telomeres association with the disease of poor prognosis. Effectively, this association of 
short telomeric DNA sequences further fits with genetic complexity, high-risk genomic 
aberrations, and short survival in CLL (Roos et al., 2008).  

 

Fig. 3. Telomere labelling in interphase nuclei of CLL cells 

Fluorescent in situ hybridization with peptide nucleic acid probe (FISH-PNA) was applied 
to reveal telomeric DNA sequences in interphase nuclei. Interphase nuclei (blue labelling by 
Hoechst H33342) of CD19+ B cells from healthy donor (a), sensitive (b) and resistant (c) CLL 
cell samples. Telomere-specific (C3TA2)3 –PNA probe Cy3-labelled (red fluorescence) 
reveals subtle scattered  labelling throughout the nucleus of telomeres in resistant cells (c) 
while sensitive cells  (b) and normal B cells display very similar brighter and larger spots 
which may be indicative of longer telomeres and/or of telomeric associations. 

Simple FISH-PNA labelling of telomeres in interphase nuclei (Figure 3) show very similar 
pattern in sensitive CLL cells and in B cells from healthy donors. This labelling in resistant 
cells was organised in more weaker and discreet spreader spots suggesting that in these 
cells telomeres are shortened. Effectively, by using Southern blot analysis,   we found that 
CLL cells resistant to DNA damage-induced apoptosis have the mean telomere length 
below 4 Kb, whereas in sensitive cells telomeric sequences are longer than 6 Kb. 
Moreover, G-rich 3’ single stranded overhangs that stabilize telomeric structure were 
found also shortened in resistant cells (Brugat et al., 2010a and 2010b). By chromatin 
immunoprecipitation assay we further showed that the telomeres of resistant cells are 
associated with increased levels of Ku70, an essential component of classical NHEJ, as 
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well as with histone H3 lysine 9 trimethylation (3met-H3K9), a hallmark of 
heterochromatic structures. No difference was observed in the expression of the shelterin 
components or the hTERT protein complex between resistant and sensitive cell. Together, 
these results define alterations in telomere structure in resistant forms of CLL that may 
result from aberrant epigenetic regulation. This altered telomeric structure in resistant 
cells may confer their recognition as DNA damage since both, DSBs signaling and repair 
proteins colocalize at these short telomeres (Brugat et al., 2010b). Effectively, in human 
cells, 5 Kb is considered to be of a critical length since it may induce the DNA damage 
response and cellular senescence (d’Adda di Fagagna et al., 2003). Thus, we evaluated 
whether altered telomeres in resistant cells could be revealed by assaying classical DNA 
damage double-strand break (DSB) signaling and testing for the induction of telomere 
dysfunction-induced foci (TIF). This hypothesis has been supported by our previous 
results showing that resistant cells were able to upregulate non-homologous end-joining 
and in particular, by evidencing an upregulation of the activity of Ku heterodimer DNA 
end-binding (Deriano et al., 2005). Both, Ku80 and Ku70 have been identified in telomeric 
complexes, thus emphasizing the deregulation of these factors also at the telomeres in 
resistant cells. We showed that resistant cells formed TIFs and displayed an increased 
telomeric concentration of two NHEJ factors Ku70 and phospho-S2056-DNA-PKcs 
(marker of DSBs). Moreover, these cells display telomeric deletions at one or two 
chromatids. It is noteworthy that the appearance of these telomeric anomalies in resistant 
cells is concomitant with the appearance of the multiple chromosomal aberrations and 
complex karyotypes which are the markers of a poor disease outcome. Thus, in addition 
to previously identified chromosomal aberrations (i.e. del13q14; del17p13; del11q22; del6q 
or trisomy12), telomeric deletions appear as new type of chromosomal aberration 
occurring in cells from patient having aggressive form of disease. It may be speculated 
that these deletions coincided with extremely short telomeres revealed by a single-
molecule telomere length (STELA) method (Lin et al., 2010). This method allows the 
measurement of individual telomeres without bias in the detection of short telomeres 
unlike the determination of telomere length by conventional analysis by telomere 
restriction fragment (Baird et al., 2003). The authors from same group suggested that this 
critical telomere shortening could results in telomere fusions contributing to disease 
progression since their frequency increased with advanced disease. When fusion 
sequences were analyzed, then limited numbers of repeats, subtelomeric deletion, and 
microhomology (alternative NHEJ), were observed (Lin et al. 2010).  Telomeric DNA 
damage signaling as detected by a recruitment of factors involved in DNA damage, at an 
early stage of CLL may also be correlated with a down-regulation of two protecting 
proteins of shelterin complex (TPP1 and TIN2), rather than with shortening of telomeric 
sequences (Augereau et al., 2011). 

Together, it is now widely accepted that mean telomere length may be considered as a 
reliable prognostic marker for CLL. Moreover, telomere dysfunction appears to precede 
and/or to evolve in parallel with setting of progressive form of disease suggesting telomere 
shortening mechanisms to be involved in CLL leukemogenesis (Lin et al., 2010). In 
agreement with this, in our CLL cohort, 5% of sensitive cases developed the resistance to 
DNA damage-induced apoptosis in vitro and this resistance appeared simultaneously with 
clinical and biological phenomena such as disease progression, telomeric dysfunction 
(particularly characterized by TIF signaling and telomere shortening) and an acquisition of 
second chromosomal aberration (Brugat et al., 2011).  
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3.3 Epigenetic control and CLL cells resistance to DNA damage-induced apoptosis 

The proper gene expression is subjected to epigenetic control through enzymatic 
modifications of chromatin at both DNA and histone levels. Thus, in addition to DNA code 
as genetic information, epigenetic modifications are another layer of heritable information 
controlling gene expression. The stepwise accumulation of genetic alterations and 
prominent epigenetic abnormalities are tightly coordinated in cancer initiation and 
maintenance. Effectively, DNA methylation of CpG islands in the promoter regions of 
specific cancer-relevant genes, which often occur concomitantly with covalent modifications 
of histones and/or with the appearance of their variants, establishes a direct epigenetic basis 
for cell transformation. In consequence, cancer cells display genetic lesions (mutations, 
deletions and translocations) and significant epigenetic changes that convey heritable gene 
expression profiles critical for tumorigenesis (Ting et al., 2006). With this regard, in addition 
to transcriptional changes defined by the microarray approach, it has become evident that 
epigenetic alterations should be integrated into approaches of genome activity in CLL cells. 
Indeed, molecular profiling in CLL has allowed the identification of new genes for which 
the expression is dependent on CpG island methylation (Plass et al., 2007). In parallel, global 
DNA hypomethylation have been reported to take place in CLL (Wahlfors et al., 1992). The 
evidences of down-regulation of the death-associated protein kinase 1 (DAPK1, involved in 
apoptotic cell death regulation) gene through promoter CpG methylation in CLL indicate 
that both genetic and epigenetic factors may define both the sporadic and inherited forms of 
this disease (Raval et al., 2007).  

Thus, altered structural changes of telomeric chromatin regions due to an increased 

heterochromatinisation (i.e. through 3methylation of histone3-lysine9, Brugat et al., 2010; 
2011)), appear to not be restricted to chromosome termini but rather may spread throughout 

euchromatin to. Effectively, non-coding repetitive DNA sequences (such as Alu sequences, 

long interspersed nuclear element-1 and satelit- sequences), have been demonstrated as 
under-methylated and to be associated with 17p13 deletions in CLL. Moreover, a lower level 

of satelit- sequence methylation has been proposed as a new independent prognostic 
marker associated with shorter therapy-free survival (Fabris et al., 2011).   

By using microarray approach (Affymetrix technology), we have established that resistant 
cells display a specific subset of deregulated genes (Vallat et al., 2003).  Intriguingly, we also 
showed that in male CLL cells resistant to DNA damage-induced apoptosis the global gene 
expression was down-regulated when compared to sensitive cells, whereas this was not the 
case in cells derived from female patients. This gene down-regulation was found to be 
associated with an overall gain of heterochromatin hallmarks (i.e. increase in trimethylated 
histone 3 lysine 9 (3met-H3K9) and 5-methylcytidine). This approach allowed us to identify 
RELB gene as a discriminatory candidate gene repressed in the male and upregulated in the 
female resistant cells. Epigenetic control was demonstrated to be involved in RELB silencing 
in male cells through an increase in 3met-H3K9 (Marteau et al., 2010). This finding may be of 

particular interest because RelB is one of five essential members of NF-B family of 
transcriptional factors involved in cellular response to stress and inflammation as well as in 

cancer development and progression (Hayden and Ghosh, 2008). Another NF-B member, 
RelA has already been involved in CLL aggressiveness (Hewamana et al., 2008) suggesting 

that an imbalance in both canonical and alternative NF-B pathways may contribute to CLL 

progression. Considering that NF-B pathway regulates both apoptosis (after its activation 

www.intechopen.com



DNA Damage Response/Signaling and Genome  
(In)Stability as the New Reliable Biological Parameters Defining Clinical Feature of CLL 

 

77 

by exogenous stress by reactive oxygen species or DNA damage or by death receptor 
activation) and early and late B cell differentiation (Mills et al., 2007; Goldmit et al., 2005), 
then an imbalance in expression of each member of this pathway should be crucial not only 
in cell response to therapy but also in course of early steps of cell transformation and 
leukemogenesis of CLL. In this regard, epigenetically up-regulated Aiolos, a member of 
Ikaros family of transcriptional factors involved in lymphocyte differentiation and lineage 
specification (rev. Mandel and Grosschedl, 2010; John and Ward, 2011), whose 

transcriptional regulation is under NF-B control, may contribute to the resistance of CLL 
cells to activate apoptotic cell death (Billot et al. 2011). 

More recently, emerging evidence imply epigenetic deregulation of microRNAs in 

carcinogenesis including CLL (Nicoloso et al., 2007). microRNAs are small (22nt) noncoding 
RNAs that regulate expression of downstream targets by messenger RNA (mRNA) 

destabilization and translational inhibition resulting in a specific profiling of gene 
expression. Thus, in cell, a large number of  mRNAs are targeted each by multiple miRNAs. 

Also, a single miRNA can target several hundreds of mRNAs, making microRNAs 
extremely powerful and dynamic strategy of control of vital cell functions (rev. 

Subramanyam et al.,2011). Reports in cancer biology underlined general down-regulation of 
microRNAs. In CLL, microRNAs expression also profile disease prognostic and outcome. 

Effectively, Calin and co-workers (Calin et al., 2005) ,reported a unique microRNA signature 
enabling to differentiate the CLL cases with low versus high Zap-70 expression as well as 

the cases with unmutated from those with mutated IgV(H). Moreover, microRNAs are 
proposed to underlie the novel model of pathogenesis of indolent subset of CLL through a 

newly discovered regulation of TP53 (Fabbri et al., 2011). Moreover, microRNAs allowed 
putting in evidence a novel molecular link between critical chromosomes defects involved 

in CLL pathology such as interplay between 13q-17p and 17p-11q. In this model, miR-
15a/miR-16-1 that regulate the expression level of TP53, are lost by 13q deletions resulting 

in increased levels of antiapoptotic proteins Bcl2 and Mcl1 and that of TP53. This last 
pathway remaining intact may explain relatively stable form of disease. Another microRNA, 

miR-181b, also involved in Mcl1 and Bcl2 regulation, have been associated with disease 
progression (Visone et al., 2011). In parallel to the loss of microRNAs due to chromosome 

deletions (at least those by 13q and 11q deletions), they are often down-regulated 
epigenetically. Effectively, overexpression of PLAG1, a putative oncogene in CLL due to a 

deregulated microRNAs, and an inactivation of miR-124-1 are another type of  examples of 
epigenetic deregulations (Pallasch et al., 2009; Patz et al., 2010; Wong et al., 2011). 

4. Future researches 

Although genetic data teach us that CLL is a single disease, the main unsolved biological 
problem of CLL cells lays on not yet defined cell origin and/or differentiation step when 
transformation of B cell has been committed. This of course should not been so surprising 
because our understanding even of normal B cell differentiation remains still far from being 
complete. While in majority of CLL cases, the disease is preceded by a preleukemic 
monoclonal B cell lymphocytosis (MBL), the normal counterparts of both CLL and MBL 
remain unclear. Classical view of CLL resumes it as a mature B cell malignancy in which 
transformation of cells occurred after V(D)J recombination and germinal center reaction 
(Chiorazzi and Ferrarini, 2011). New concept of investigation of CLL-initiating cells was 
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open recently by Akashi’s group reporting that self-renewing hematopoietic stem cells 
(HSCs) have already acquired necessary modifications enabling them to develop CLL-like 
phenotype after xenogeneic transplantation (Kikushige et al., 2011). Depicting the molecular 
events occurring in HSCs in CLL patients enabling their strict maturation into mono- or 
oligo-clonal CLL cells phenotype should certainly shed new insights into leukemogenesis of 
this type of mature B lymphomas. Further, although several biological abnormalities have 
been established to appear in cells specifying progressive or aggressive disease, none of 
them were clearly yet involved in causality of evolving of indolent form and/or of directly 
switching towards aggressive form of disease. Hence, whether DNA repair defect or 
telomere dysfunction resulting in telomere deletions and/or fusions should be a 
consequence or a cause of disease progression remain still elusive. This is of crucial 
importance since depicting causality should shed light on new potential targets in clinical 
trials and in impeding disease progression. Further, having insights into how the resistance 
has been developed, should also help our understanding of CLL cell origin. Actually, the 
refractoriness and/or relapse of front-line (i.e. fludarabine) treated CLL patients with 
complex karyotype and chromosomal aberrations known to confer poor outcome of disease, 
may be proved as a major obstacle without favorable therapeutic issues (Badoux et al., 
2011). The fact that resistant cells are able to upregulate DNA damage error-prone repair 
allowed us to speculate that the upsetting of this event may be involved in observed 
chromosomal and telomeric abnormalities whose appearance in aggressive disease remain 
still murky. This hypothesis is further strengthened by the progressive feature of these two 
abnormalities in the course of disease. Our current research targets the molecular origin of 
how NHEJ could become upregulated in these cells allowing them to survive upon 
treatment. The molecular ways through which repair of chromatin DNA could be modified 
are multiples and relay on epigenetic and genetic control. Thus, DNA methylation and 
hydroxymethylation are not only associated with the control of gene expression (including 
genes involved in DNA repair), and differentiation but also conditioned the DNA repair; all 
of these functions which are controlled by the local and global presence of 5-methylcytosines 
may underlie malignant process (Schär and Fritsch, 2011). Effectively, CLL cells display both 
local DNA hypermethylation and global hypomethylation (Wahlfors et al., 1992; Plass et al., 
2007; Raval et al. 2007; Marteau et al., 2010). While the consequences of global genome 
hypomethylation on DNA damage repair remain still to be established, local CpG island 
methylation controls the expression level of nearby genes (such as DAPK1, RELB or Aiolos 
works cited above). In addition to yet not identified target genes which could be directly or 
indirectly linked to DNA repair, the expression level of identified transcriptional factors was 
already suggested to define cell resistance to treatment.  

Among other epigenetic modifications affecting vital cell functions, including DNA repair, 

are post-translational modifications of histones. Thus, following DSBs formation, in their 
vicinity, histones are modified (mainly through phosphorylation, methylation and 

acetylation) creating thus a dynamic platform for assembly of DNA repair protein 
complexes (Greenberg, 2011). The best defined histones modification, directly involved in 

the promotion of DNA repair is the ATM-dependent phosphorylation of histone variant 
H2AX at S139 in vicinity of DNA damage (rev. Dickey et al., 2009). This modification is the 

first and key step involved in the recruitment of other proteins in an ordered dynamic and 
strikingly hierarchical manner to form so-called DNA repair foci. This formation is achieved 

by an orchestration of protein-protein interactions which is triggered by a plethora of post-
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translational modifications such as phosphorylation, acetylation, SUMOylation and 
ubiquitination.  Thus, the formed foci involve protein complexes that should assure not only 

proper DNA repair but are also coupled with the relaxation of chromatin and the blockage 
of transcription. Interestingly, H2AX null mice exhibit reduced immunoglobulin class 

switching but not V(D)J recombination (involving NHEJ). However, in a p53 deficient 
background, these mice exhibit compromised genomic stability, an increased sensitivity to 

genotoxic stress and increased cancer susceptibility (Celeste et al., 2002, Celeste et al., 2003). 

Thus, the cellular level of -H2AX and foci formation have been proposed as an indicator of 
DNA DSBs which could be valuable in monitoring not only a detection of the genotoxic 

stress but also in monitoring cancer development and progression (rev. Dickey et al., 2009). 

Remarkably, resistant CLL cells as compared to sensitive, display an increased level of -
H2AX foci which colocalized at telomeric sequences (Brugat et al., 2010). 

Histone methylation involved in an epigenetic control of genome transcription activity also 

affects DNA repair function. Effectively, dimethyl histone H3 lysine 36 is generated as major 

event by DSBs induction. This histone modification has been demonstrated to be essential in 

recruitment of NBS1 and Ku70 to the site of DSB and is followed by an enhanced NHEJ 

DNA repair (Fnu et al., 2011). Cancer cells often display a plethora of covalent modifications 

of histones, called “histone onco-modifications” achieved by altered activity of modifying 

enzymes. These modifications are involved in both development and maintenance of 

malignant process and which may confer them the resistance to treatment (Füllgrabe et al., 

2011). One could notice that the processing of DSBs may also be controlled by enzymes 

belonging to the family of histone acetyltransferases and deacetylases (HAT and HDAC) 

which acetylate/deacetylate DNA end-resection factors and participate in this way in DNA 

damage response and chromosome stability (Robert et al., 2011).  

Another way to control the activity of NHEJ repair of DNA in the context of chromatin 

DNA in human cells involves interaction between Ku70 and ATP-dependent chromatin-

remodeling factor (ACF1). This interaction is required for the accumulation of Ku 

heterodimer at DSBs (Lan et al., 2010).  

Finally, protein ubiquitination is another post-translational modification shown to be altered 

in CLL  (Delic et al., 1998; Masdehors et al., 2000; Ma et al., 2008; Sampath et al., 2009), and 

to be involved in DNA repair (Daigaku et al., 2010; Shanbhag et al., 2010; Larsen et al., 2010; 

Weitzman et al., 2011; Ramadan and Meerang, 2011). This modification may be of particular 

interest since it may affect DNA repair through local structural alteration of chromatin (i.e. 

through histones H2A and H2B and/or chromatin-associating factors’ ubiquitination), and 

directly, through an ubiquitination of the payers involved in DNA repair by NHEJ such as 

Ku70 or by homologous recombination such as BRCA1 (Gama et al., 2009; Ohta et al., 2011). 

Phospho-S473-AKT kinase which  is activated in many types of human cancers including 

CLL (Shehata et al., 2010; Hofbauer et al., 2010; Wickremasinghe et al., 2011), is a DNA 

repair promoting factor through an activation of NHEJ. Moreover, this activity is dependent 

on the histone ubiquitin ligase RNF 168 (Fraser et al., 2011). Based on an induction of NHEJ 

in this way by exogenously produced DSBs (irradiation or drugs), it is highly suggestive 

that this pathway would be involved in resistance mechanisms developed by cancer cells. In 

agreement with this, in CLL cells decreased phosphorylation of Akt (and other PI3-K family 

kinases and tensin homolog detected on chromosome 10, PTEN) induces apoptosis in 
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response to fludarabine treatment. A combined inhibition of PI3-K/Akt and recovery of the 

activity of PTEN has been suggested as a novel concept for CLL therapy (Shehata et al., 

2010). A prolonged effect of these kinases may be further strengthen by an over expression 

of SET oncoprotein which is documented as a potent physiological inhibitor of protein 

phosphatases 2A (Christensen et al., 2011). 

The fact that CLL cells resistant to apoptosis exhibit a constitutive higher activity of Ku 
heterodimer to bind in vitro free ends of DNA (that mimics DSBs), suggest a post-
translational modification of Ku70 and/or of Ku80 as well as a presence/absence of 
enzyme(s) involved in this modification.  This hypothesis is supported by the fact that both 
cells derived from indolent or aggressive form of disease express Ku proteins at same level 
(protein and mRNA). Proteomic analysis of each subset of CLL cells should help to identify 
new factors which in turn, would shed light on a NHEJ defect expressed by resistant cells. 
This knowledge should indicate the new targeted strategies to be developed to improve 
clinical trials.  

5. Conclusion 

Biological defects we have identified in CLL cells resistant to DNA damage-induced 
apoptosis should functionally be interconnected (i.e. DNA repair defect may be impaired by 
epigenetic modifications; these modifications affect telomere chromatin structure which is 
also affected by components of DNA repair machinery). Whether and how these defects 
would be involved in a promotion of observed chromosomal aberrations occurring in 
majority of aggressive CLL cases, remain still to be demonstrated but their convergence 
highly suggest a common mechanisms. 

Considered together, all biological data we have obtained with CLL cells led us to conclude 
that: 

i. the resistant subset of CLL cells displays a defect in apoptotic pathway  triggered by 
DNA damage in vitro and in vivo;  

ii. resistant cells display a dysfunction of NHEJ DNA repair system (of yet unknown 
molecular origin) associated with heterochromatinisation of telomeric regions but, 
heterochromatinisation may also widespread throughout euchromatin regions affecting 
gene expression;  

iii.  in some CLL cases, sensitive cells may became resistant to apoptosis and then, 
telomeric dysfunction drive to an acquisition of new chromosomal abnormality which 
is associated with an appearance of an additional aberration characteristic of aggressive 
form of disease.  

Since all of these features are hallmarks of cells resistant to DNA damage-induced 
apoptosis, then a simple and easy-to-perform test of cell susceptibility to activate or not 
apoptotic death pathway following genotoxic stress in vitro, should be useful and highly 
indicative of whether front line treatment would be appropriated or proscribed for CLL 
patients. 

Future research in this domain should bring further insights into mechanisms of the origin 

of deregulated NHEJ in this particular subset of CLL. Knowing that during the course of 

disease progression, biological susceptibility to DNA damage apoptosis in vitro 
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simultaneously also evolve (i.e. otherwise sensitive cells become resistant), then this 

mechanistic knowledge should be certainly of new potential applications in clinic.    
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