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1. Introduction  

Injection directly into the conductive tissues of trees was a method first investigated 
systematically by Leonardo da Vinci, but some of the most early tree injection experiments 
were not recorded until early in the 20th century (Roach, 1939, May, 1941, Costonis, 1981). 
Dutch elm disease, a destructive vascular wilt disease of elm renewed interest in tree 
injection in the 1970s (Jones and Gregory, 1971; McWain and Gregory, 1971; Jones et al., 
1973; Gregory et al., 1973; Gregory and Jones, 1975; Shigo and Campana, 1979; Kielbaso et al. 
1979; Shigo et al., 1980), when more common fungicide applications proved ineffective. 
During this time, several injection methods, including trunk infusion (Schreiber 1969), and 
pressurized trunk injections (Filer 1973; Helburg et al. 1973; Reil and Beutel 1976, Sachs et 
al., 1977; Kondo, 1978, Darvas et al., 1984, Navarro et al., 1992), were developed. Tree 
injection was also used for treatment of other tree pathogens (Guest et al., 1994; Fernández-
Escobar et al.1994, 1999), insects, and physiological disorders (i.e., interveinal chlorosis) in 
the EU (Fernández-Escobar et al. 1993). Interest in tree injection technologies (McClure, 1992, 
Doccola et al., 2007; Smitley et al., 2010) in the US has also increased, with the introduction 
of several tree killing insects such as hemlock woolly adelgid (Adelges tsugae), Asian 
longhorned beetle (Anoplophora glabripennis) and emerald ash borer (Agrilus planipennis). In 
addition to new injection technology, formulations are being designed for injecting into 
trees that improve plant safety and reduce application time. Examples of the new 
technologies are the TREE I.V. micro-infusion system and Air/Hydraulic micro-injector 
(Arborjet, Inc. Woburn, MA, USA) and the Eco-ject® Microinjection System (Bioforest 
Technologies, Canada). Today, tree injection is an alternative method of chemical 
application with certain advantages: (1) efficient use of chemicals, (2) reduced potential 
environmental exposure, and (3) useful when soil and foliar applications are either 
ineffective or difficult to apply (Stipes, 1988; Sanchez-Zamora and Fernandez-Escobar, 2004). 
Tree injection into roots, trunks or limbs requires wounding of the tree, which has 
implications to the tree’s health. The question often asked is, does the benefit gained by tree 
injection outweigh the risk of the wound caused by treatment? This question of cost-benefit 
is certainly valid. However, this concern must also be weighed against environmental (and 
off target) exposures when trees are sprayed or insecticides are applied to the soil. An 
underlying assumption is that the value of the tree and its treatment is greater than 
sustaining tree loss. Key factors weigh in to wound responses in trees that likewise demand 
consideration. These include (1) the tree species, (2) tree health, (3) the attributes of the 
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chemistry applied and (4) the frequency that applications are made. Such issues present a 
broader and more complex paradigm and carry over into tree injection practices. In order to 
apply tree injections effectively, one needs a basic understanding of the (1) method of 
application, (2) the chemistry applied, and (3) tree condition. The aim of this paper is to 
recommend tree injection as an alternative application method for systemic insecticides to 
(1) protect trees against destructive insects, (2) to minimize potential environmental 
exposures, and (3) to manage tree wound responses. 

2. Tree anatomy and physiology 

The introduction and movement of liquid insecticides by injection is dependent upon tree 
vasculature. Anatomically, trees are highly connected systems (Shigo, 1989, 1991). Fibrous, 
non-woody roots absorb water and solutes (i.e., minerals in dissolved form) from the 
rhizosphere (root-soil environment). Hydraulic movement upward in the xylem is 
dependent upon transpiration from stomates, driven by the moisture lost from leaf surface 
to the ambient atmosphere (Greulach, 1973). Upward translocation of systemic insecticides 
also depends upon the rise of sap in trees.  
Although movement of sap in the stem is generally upward (i.e., straight sectorial ascent), 
there is considerable variation in the path of water movement across species (Zanne et al., 
2006). The ascent of water in trees follows two basic patterns, that of, spiral and vertical 
ascents. Systemic chemicals move upward in tree stems along the path of their respective 
ascents. Crown distribution of water is the most complete by spiral ascent (e.g., red oak), the 
least effective, by vertical ascent (e.g., white oak) (Rudinski and Vité, 1959). Spiral ascent 
occurs in a number of species, including conifer xylem (Kozlowski and Winget 1963, 
Kozlowski et al., 1967).  
The size, pattern and distribution of vessels vary in trees. Hardwoods may be grouped as 

ring- or diffuse- porous; conifers are considered non-porous species (Chaney, 1988). 
Angiosperm trees have large, wide vessels associated with comparatively high flow rates, 

while gymnosperms rely solely on very small diameter tracheids to move water. The rate of 
water flow differs with tree species. Hagen-Poiseulle law describes the rate of flow as a 

function of the xylem radius to the 4th power (Kramer et al., 1996). Therefore hardwoods 
(e.g., oaks, elms) move injected liquid at a faster rate than conifers (e.g., pines, hemlocks). In 

feet per hour, ring porous hardwoods (red oak, ash, elm) move water at 92, 85 and 20; 
diffuse porous hardwoods (black walnut, maple, beech) move water at 13, 8 and 4; while 

conifers (pine, hemlock) move water at 6 and 3 (Coder, 1999). Conifers and diffuse porous 
hardwoods tend to use a larger proportion of sapwood than the ring porous hardwoods for 

water movement. Drilling more deeply (i.e., 30 rather than 15 mm) in these species serves to 
access a larger area of sapwood for the injection of systemic chemicals. Sinclair and Larsen 

investigated wood characteristics that correlated with ease of injection for deciduous trees 
and suggested the formula, relative frequency of vessels divided by specific gravity (1981). 

3. Sapwood composition 

Xylem (sapwood) is the conductive tissue of plants, made up of cellulose, lignin and other 
substances. Cellulose (C6H10O5)n  is an organic polymer made up of glucose molecules 
linked together in long chains (Raven, Evert & Curtis, 1981). Lignin is a complex organic 
polymer that functions to strengthen wood. Cellulose makes up the cell wall of plants, and 
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is 44.4% carbon (Heukelekian, H. and S.A. Waksman. 1925). When mature, the xylem 
protoplast dies, leaving only cell wall. It is through the remaining lumen that water 
conduction occurs. The lumen simultaneously functions as  a continuous and extensive 
conductive and adsorptive structure.  

4. Soil and trunk spray applications compared to tree injection 

Water soluble insecticides are differentially absorbed by tree roots comparative to insoluble 
chemistries such as the avermectins (Wislocki, 1989). Imidacloprid and acephate are labeled 
in the US for soil application, but restricted in areas of ground water concern (for example, 
Long Island, N.Y., U.S.). In coarse textured, sandy soils and in areas with high precipitation, 
there is the potential for insecticide leaching. The insecticidal treatment of eastern hemlock 
(Tsuga canadensis) for hemlock woolly adelgid (Adelges tsugae) is an example. Eastern 
hemlock is a riparian species, which grows in moist soils, and near streams and rivers. In 
these environments, the use of trunk sprays increases the potential for exposure to off target 
organisms (e.g., aquatic invertebrates, fish). Tree injection of insecticides is an alternative 
method of application where these conditions exist. Tree injected imidacloprid applied 
directly to the vascular tissues is conducted upward within those tissues; the procedure 
reduces the potential for unintended exposures.  

5. Pros of tree injection 

Canopy sprays are used to control defoliating insects, but drift and limited reach are 

issues in very tall (>15 meters) trees, where coverage from hydraulic sprayers is 

inadequate. Employing tree injections resolves these issues; the chemistries move within 

the vascular system into the canopy for systemic activity. Systemic injections are used to 

effectively control borers that feed under the bark, where active ingredients sprayed onto 

the surface of trees may not penetrate in biologically active concentrations. Soil 

applications are also used, but have a number of limitations. For example, they may be 

slower acting, require higher amounts of product or repeated applications, may migrate 

off-target, and be subject to microbial degradation. Finally, tree injections may be more 

economical to use. Although hydrolysis occurs within the plant, systemically injected 

chemistries may provide greater residual activity compared to other methods, (i.e., spray, 

drench) which are subject to drift, leaching, photolysis or microbial degradation. Repeated 

spray applications each season are necessary for adequate insect control. Aqueous 

photolysis and mean aerobic soil half-life of selected chemistries appear in Table 1. Soil 

applications of systemic insecticides are often made at significantly higher volumes (e.g., 5 

to 10x) compared to tree injection in order to compensate for leaching, binding to soil 

particles, microbial degradation or the vagaries of pH and soil moisture. If there are good 

reasons to utilize tree injection, why are they not employed more often? The objection 

most often cited is that the application requires drilling into trees. This concern includes 

the physical wound, and the tree defenses triggered by the introduced formulation. 

Wounding in trees needs to be placed within context of other types of wounding against 

which trees evolved effective survival strategies. Trees are wounded in nature when 

insects bore into the bark and sapwood and when woodpeckers peck and bore into trees 

after them. People also create wounds in trees for specific purposes. 
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Half-lives (days) 

Insecticide Water Sol (g/L) Ko/c* 
Aqueous 
Photolysis 

Soil+ 

Acephate  
700  
(Worthing, 1987) 

0.48  
(Montgomery, 1993) 

stable  
(Chevron, 1972d) 

0.5  
(Chevron, 1972g) 

Imidacloprid 
0.514  
(Yen & Wendt, 1993) 

300-400  
(Cox et al., 1997) 

3.98x10-2 
(Anderson, 1991) 

38.9  
(Yoshida, 1990) 

Emamectin 
0.024 
(Tomlin, 2004) 

>25000  
(Mushtaq et al. 1996)  

3.6-10.9 (Mushtaq 

et al., 1998) 

193.4  
(Chukwudebe et 
al., 1997a) 

*organic carbon adsorption coefficient 
+mean aerobic 

Table 1. Water solubility’s, organic carbon adsorptions and half-lives of three chemistries 
systemically injected into trees. 

6. Wood boring insects 

Insect borers include species of Lepidoptera, Hymenoptera and Coleoptera. Borers may be 

further categorized as wood or cambium borers. Most native insects are opportunistic, 

attacking stressed and declining trees. When conditions favor epidemiology, trees are 

attacked and killed. Exotic insects are comparatively more aggressive and attack and kill 

healthy trees.  

Lepidoptera: Clear-winged borers (Sessidae) include some serious pests including the ash 

borer (Podesia syringae). Dioryctria borers (Pyralidae) attack pines causing large masses of sap 

to exude. The Zimmerman pine moth (Dioryctria zimmermani) is a pest of Austrian and 

Scotch pines (Pinus nigra, P. sylvestris) in ornamental landscapes (Cranshaw & Leatherman, 

2006).  

Hymenoptera: Horntails (Siricidae) are sawflies that develop in damaged or stressed trees. 

A recent introduction in the US, the Sirex woodwasp (Sirex noctilio), a native of Europe, Asia 

and northern Africa has the potential to cause significant mortality in native pine stands 

(Haugen & Hoebeke, 2005).  

Coleoptera: Several families of beetles bore into trees, which include the Scolytidae (bark 

beetles), Cerambycidae (Longhorned beetles or roundheaded borers), and Buprestidae (flat-

headed borers). Some species vector spores of destructive pathogens.  

Scolytidae: In Lodgepole pine (Pinus contorta) a native scolytid mountain pine beetle 

(Dendroctonus ponderosae) vectors Ophiostoma clavigerum, a blue staining fungus (Solheim and 

Krokene, 1998). MPB also infests ponderosa (P. ponderosa), sugar (P. lambertiana) and white 

(P. monticola) pines (Amman et al., 2002). An epidemic can cause widespread tree mortality. 

The Smaller European Elm bark beetle (Scolytus multistriatus) vectors spores of the bluestain 

fungus (Ophiostoma novo-ulmi) that cause Dutch elm disease, a vascular wilt disease that has 

devastated the American elm (Ulmus americana) in the United States.  

Cerambycidae: Locust borer (Megacyllene robiniae) is a native that attacks, and can severely 
damage or kill stressed and healthy black locust (Robinia pseudoacacia) (Galford, 1984). The 
Asian longhorned beetle (Anoplophora glabripennis) was introduced from Asia (China) and 
identified in Brooklyn, New York in 1996. ALB has a broad host range in the US but 
preferentially infests maple (Acer), and birch (Betula) trees (Sawyer, 2010). 
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Buprestidae: Emerald Ash Borer (Agrilus planipennis), an exotic introduced from Asia 
(China) was identified in Detroit, MI in 2002 (McCullough and Siegert, 2007; Anulewicz et 
al., 2008.). EAB attacks native ash (Fraxinus) species, preferentially Green (F. pennsylvanica) 
and Black (F. nigra), but also White (F. americana) and Blue (F. quadrangulata) ashes. EAB 
mines the phloem, cambium and scores the xylem as an actively developing larva. The 
vascular disruption reduces water movement upward into the canopy, and photosynthate 
transport through the phloem; unchecked infestations result in tree death. Unlike maple 
and birch attacked by ALB, ash trees do not bleed and EAB larvae do not remove frass 
from their galleries, so there are no visible signs of early infestation. Infestations often go 
undetected for several years, and symptoms in ash (epicormic sprouts, bark cracks, 
woodpecker flecks) and signs (d-shaped exit holes) do not occur until the damage has 
occurred. Goldspotted Oak Borer (Agrilus coxalis) is native to Southeastern Arizona, 
detected in San Diego County, California in 2004. It attacks coast live oak (Quercus 
agrifolia), canyon live oak (Q. chrysolepis) and California black oak (Q. kelloggii). Regarded 
as an invasive species in California, larval feeding kills phloem and cambium, which 
results in crown dieback and tree mortality (Coleman & Seybold, 2008). Other Buprestid 
borers include the two-lined chestnut borer (A. bilineatus) and the bronze birch borer (A. 
anxius). Adult two-lined chestnut borers attack stressed or declining oak trees. The bronze 
birch borer preferentially attacks European cutleaf birches such as Betula jacquemontii, B. 
pendula and B. pendula ‘Youngii’ (Dirr, 2009). 

7. Birds that drill into trees 

The yellow-bellied sapsucker (Sphyrapicus varius) bores into the bark of trees to obtain sap. 

More than 250 species of woody plants are known to be attacked, but birch (Betula spp.), 

maple (Acer spp.) and hemlock (Tsuga spp.) are preferentially attacked (Ostry & Nicholls, 

1978). Sapsucker damage is characterized by many closely spaced holes on the tree. The tree 

responds by proliferating new tissues at the wound sites. Woodpeckers feed primarily on 

wood boring insects. The Northern flicker (Colaptes auratus), Red-bellied woodpecker 

(Melanerpes carolinus), Downy woodpecker (Picoides pubescens), Hairy woodpecker (Picoides 

villosus) and Red-headed woodpecker (Melanerpes erthrocephalus) drill holes into trees to 

extract insects or sap (Barnes, 1989). These woodpecker behaviors are generally not 

regarded as detrimental to trees. 

8. People drill into trees 

People drill into trees for sap extraction and to apply treatments, including injection. In 
the northeastern US and Canada, Sugar maples (Acer saccharum) are tapped annually for 
maple syrup production. Healthy trees that are tapped according to established 
guidelines do not suffer adverse health effects and remain productive (Davenport & 
Staats, 1998), some for over 100 years. Arborists drill into trees to install cabling and 
lightning protection (ANSI A300 Part 3, 2006; ANSI A300 Part 4, 2008). Tree care 
specialists treat by injection to protect trees against destructive pests. In the US, 
destructive, exotic insects such as hemlock woolly adelgid (USDA/FS 2003), Asian long-
horned beetle (USDA/FS 2008) and emerald ash borer (USDA/FS 2008a) have recently 
renewed interest in tree injection technology as an alternative method of insecticide 
application (McClure, 1992, Doccola et al., 2007; Smitley et al., 2010). To apply tree 
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injections effectively, one needs a basic understanding of the (1) method of application, (2) 
the chemistry applied, and (3) tree condition.  

9. Tree injection methodology 

Systemic tree injections effectively treat destructive insect pests of trees. Examples of the 
new technologies are the TREE I.V. micro-infusion system and the Air/Hydraulic micro-
injector (Arborjet, Inc. Woburn, MA, USA) and the Eco-ject® Micro-injection System 
(Bioforest Technologies, Inc., Canada). The TREE I.V. micro-infusion system and 
Air/Hydraulic micro-injector deliver 0.50 and 2.0 liters at injection pressures of 172 to 1379 
kPa, respectively. These methods require the insertion of an interface into the sapwood 
(ArborplugTM) to inject a systemic insecticide. The Arborplug has an internal rubber septum 
which is pierced by an injector needle for liquid delivery. The Arborplug is 15 mm in length 
and has a diameter of either 7 or 9 mm. Drilling 15 mm deep provides a volumetric capacity 
of 0.6 to 1.1 cm3, respectively. The Eco-ject Micro-injection System loads re-usable micro-
injection capsules, but does not use a plug. Using such devices, one may deliver a number of 
systemic chemistries by tree injection. Here we discuss three insecticides which are, (1) 
acephate, (2) imidacloprid and (3) emamectin benzoate.  

9.1 Acephate  
Acephate (O,S-dimethyl acetylphosphoramidothioate) is water soluble (700 g/L) and 
readily absorbed by tree roots for systemic activity (Worthing, 1987; Kidd & James, 1991). It 
has a low Ko/c (organic carbon adsorption coefficient) of 0.48 (Montgomery, 1993); it is only 
weakly adsorbed in the soil. Acephate is an organo-phosphate insecticide designed for 
insecticidal activity and quick degradation. Acephate’s stability is affected by pH. It has a 
comparatively shorter half-life (of 16-d, pH 9) in alkaline environments (Chevron, 
unpublished 1972b). Acephate is particularly mobile in coarse textured soils and has the 
potential to leach (Yen et al., 2000), but it is quickly degraded by microbial activity. In 
plants, acephate’s half-life is approximately 5 to 10-d. Approximately 5 to 10% of acephate is 
degraded to methamidophos (which has insecticidal activity), the remainder to salts (of N, P 
and S) (Chevron, unpublished 1973). Acephate has both translaminar and systemic activity 
in plants. Acephate is a broad spectrum systemic, used for control of aphids, leaf miners, 
Lepidopterous larvae, sawflies, and thrips. 97.4% acephate is a soluble granular offered as 
an implant (Ace-Cap, Creative Sales, Fremont Nebraska) or tree injection formulation (ACE-
jet, Arborjet, Inc.).  

9.2 Imidacloprid 

Imidacloprid (1-[(6-chloropyridin-3-yl) methyl]-N-nitro-4, 5-dihydroimidazol-2-amine) is a 
chloronicotinyl (neonicotinoid) chemistry with a water solubility of 0.51 g/L (Yen and 
Wendt, 1993). Imidacloprid has moderate binding activity (Ko/c of 300 to 400) to clay and 
organic matter (Cox et al., 1997), however there is potential for the compound to move 
through porous, coarse textured soils (Jenkins, 1994). Imidacloprid has translaminar and 
systemic activity in plants (Buchholz and Nauen, 2002). Imidacloprid controls sucking 
insects such as adelgids, aphids, thrips, whiteflies, and some beetles, including 
Cerambycids. Examples of tree injection formulations of imidacloprid are Imicide (JJ 
Mauget, Arcadia, CA), Xytect (Rainbow Treecare Scientific Advancements, Minnetonka, 
MN) and IMA-jet (Arborjet, Inc.). 
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9.3 Emamectin benzoate 

Emamectin benzoate is a semi-synthetic compound derived from the fermentation by-
product of a soil actinomycete, Streptomyces avermitilis (Jansson et al., 1996). Emamectin 
benzoate is a mixture of the benzoic acid salt of two structurally complex heterocyclic 
(glycoside) compounds. It occurs as a mixture of ≥90% benzoic acid salts of 4'-epi-
methylamino-4'-19 deoxyavermectin B1a and <10% 4'-epi-methylamino-4'-deoxyavermectin 
B1b (Wood, 2010). Emamectin benzoate is poorly (0.024 g/L) soluble in water (Tomlin, 
2004). It has a Ko/c of >25,000 and is immobile in soils (Mushtaq et al. 1996). Emamectin 
benzoate has translaminar activity, but limited plant systemic activity when applied to the 
foliage (Copping, 2004). A novel micro-emulsion formulation (TREE-äge, Syngenta Crop 
Protection, LLC, Greensboro, NC) used for systemic tree injection is registered for use in the 
US  against specific Coleoptera and Lepidoptera pests.  

10. Behaviors of injected chemistries  

Injected chemistries differ in their rate of movement in the vascular system, and in their 
residual activity. In Avocado (Persea americana), Acephate peaked in foliage 2 weeks 
following tree injection, whereas peak imidacloprid residues were not observed for 7-9 
weeks following application (Morse et al., 2008). The slow upward movement of 
imidacloprid may be explained by its comparatively higher carbon adsorption, and may 
play a role in the extended activity observed in field studies (Doccola et al., 2007; Morse et 
al., 2008). Studies in green ash (Fraxinus pennsylvanica Marsh) and white ash (F. americana L.) 
have demonstrated that imidacloprid accumulates in the canopy, but tree injection could 
also provide a reservoir for continued systemic activity (Cregg et al., 2005; Tanis et al., 2006, 
2007, 2009). Takai et al. (2003), reported 3 years of protection in pine trees against pine wilt 
nematode after injecting a liquid formulation of emamectin benzoate. In the US, emamectin 
benzoate was reported to provide 2 or more years of protection against Lepidopterous and 
Coleoptera pests, including Pine cone worm (Dioryctria), Southern pine beetle (Dendroctonus 
frontalis) and Emerald ash borer (Agrilus planipennis) (Grosman et al., 2002, Grosman et al., 
2009; Smitley et al., 2010).  
Injection into plant tissues protects the chemistry from phytolysis and microbial 
degradation, mechanisms that breakdown the chemistry in the environment relatively 
quickly. Although hydrolysis occurs within the plant, some of the metabolites have 
insecticidal activity (for example, olefinic-, dihydroxy- and hydroxy-imidacloprid 
breakdown products of imidacloprid) (Sangha & Machemer, 1992; Suchail et al., 2001). 
Residual activity is based on the half-life of the chemistry, but carbon adsorption may also 
play a role in the activity observed in perennial tissues (such as in twig, branch and stem) 
over time. Injected formulations that provide multiple years of activity must move 
(spatially) from the original injection site in the xylem tissue  into new vascular tissue in 
order to be effective against insects that perennially attack and feed in the lateral cambium. 
Residual activity of an injected insecticide provides protection against insect pests that have 
extended emergence periods, multiple generations per year, or are epidemic (i.e., increase 
exponentially over time).  

11. When to treat trees 

Apply treatments before damage (defoliation, vascular mining) occurs  for optimum 
results. Oak trees defoliated by gypsy moth must use stored carbohydrates for recovery 
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(Shigo, 1989; Shigo, 1991). Furthermore, native insects are opportunistic: oaks that have 
been defoliated by insects such as gypsy moth (Lymantria dispar) are predisposed to attack 
by the two-lined chestnut borer (Haack & Acciavatti, 1992). Minimizing defoliation in 
trees is a sound practice to protect tree health. Rather than resorting to “rescue” 
treatments to save trees at risk of wood and bark infesting insects, treat them when they 
still appear visibly healthy. Late insecticide treatments (e.g., >33% canopy dieback, 
epicormic sprouting, bark cracks, woodpecker flecks, exit holes) are contra-indicated. This 
approach minimizes negative outcomes, such as canopy dieback, delayed recovery or tree 
mortality. 
As discussed earlier, the upward movement of an injected chemistry is dependent upon 
plant evapo-transpiration. Therefore, tree injections are most efficiently applied when trees 
are transpiring. Transpiration is dependent on a number of factors, such as soil moisture, 
soil and ambient temperature, the relative humidity and time of day. For optimal uptake, 
apply when the soil is moist, soil temperatures are above 7.2°C (45˚F), and during the 24 
hour period when transpiration is greatest.  
When using insecticides with short-residual activity (an example is acephate), make the 
application when the pest is active. Application of chemistries with greater residual activity 
are somewhat less dependent upon insect feeding activity (e.g., imidacloprid, emamectin), 
but are typically applied 30-d or more of expected pest activity. Fall applications may be 
applied in some instances. For example, imidacloprid applications in evergreen trees may be 
applied late in the season. Imidacloprid applications for HWA applications are made in the 
autumn to coordinate with resumption of sistens nymphal activity following summer 
aestivation. Imidacloprid activity is retained in hemlock (leaves of 3-6 age classes persist in 
trees) for extended residual activity (Doccola et al., in press). In addition, systemic 
insecticides with high adsorption coefficients (>5000) may be applied in the fall (at leaf 
senescence) for activity in the next growing season. TREE-äge (emamectin benzoate) is an 
example of a fall application used to protect ash trees against EAB (Smitley et al., 2010).  

12. Tree defense responses 

When trees are wounded, whether by an insect boring into the tree or by a mechanical drill 
bit, tree defense mechanisms come into play. These defense reactions and responses were 
systematically described by Shigo and Marx (1977). Dujesiefken and Liese have elaborated 
on the (CODIT) model taking into account the role of air exposure and embolism formation 
in the process of walling the damage in trees (2008). Individual trees may vary considerably 
in the strength of their response to similar types of wounds depending on genetics or tree 
health (Shigo, 1999). A discussion of tree wound responses must consider basic tree 
anatomy, in particular the secondary vascular tissues. Of most interest is the lateral 
meristem (cambium). This secondary cambium is only a few cells thick and occurs between 
the sapwood (xylem) and inner bark (phloem). This tissue is embryonic in nature. Periclinal 
divisions form xylem cells inward and phloem cells outward. The cambium is not transport 
tissue. Sapwood consists of living (symplast) and non-living (apoplast) cells. The living cells 
within the sapwood are non-differentiated parenchyma. The parenchyma cells store starch, 
oils and ergastic substances (Esau, 1977). Parenchyma occurs both as radial and axial tissues. 
Radial parenchyma extends into the phloem. The conductive xylem is functional when it 
matures and dies. The side walls of the xylem are pitted. Parenchyma cells sometimes 
balloon into the lumen of the xylem through the sidewall pits to form a tylose, or a physical 
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barrier. Tyloses may be formed in older wood naturally (e.g., white oak, Quercus alba, forms 
tyloses in second year wood), or are a consequence of trauma (e.g., red oak, Q. rubra, forms 
tyloses in response to wounding) (Shigo, 1999). When a tree is physically injured, both 
biochemical and structural changes occur. The biochemical reactions (changes of stored 
carbohydrates to phenolic and terpene defense chemicals) are observed in tree sections in 
three dimensions. These were named reaction zones (or boundary walls) 1 – 3. Reaction 
zone 1 occurs in the axial direction (i.e., with the stem axis) and is the least limiting 
boundary. Reaction zone 2 occurs in the radial direction (i.e., with the tree radius, inward 
toward the pith), and reaction zone 3 occurs in the tangential direction (i.e., with the tree’s 
circumference), and is the strongest limiting boundary of the three reaction zones. The 
fourth wall, referred to as the barrier zone occurs after injury, and is the strongest limiting 
boundary. Meristematic cells (cambium) divide to form callus tissue, which later 
differentiates into new woundwood (new xylem, cambium and phloem). Native insect 
attacks to healthy trees are fended off by the biochemistry and by the subsequent physical 
responses. Emerald ash borer attacks to Asian species of ash (Fraxinus chinensis, F. 
manchurica) do not result in tree mortality: plant defense responses effectively isolate the 
larva in early stages of attack and limit its progression. In F. pennsylvanica (a native), the 
larvae are compartmentalized via physical boundaries (wall 4), but the biochemistry 
(phenols, terpene chemistries) does not effectively stop the insect’s development. Injection of 
an insecticidal chemistry to compensate for insufficient tree response is the basis of 
successful tree protection. EAB research has demonstrated that this strategy is very effective 
(Smitley et al., 2010).  
Tree wound responses are dependent upon a number of intrinsic and extrinsic variables 
such as tree species, tree health, method of treatment and chemistry applied. Tree wound 
response is under genetic control (Santamour, 1979). For example, birch (Betula spp.) poplar 
(Populus spp.) and willow (Salix spp.) are considered weak compartmentalizers, whereas 
oak (Quercus spp.), sycamore (Platanus spp.) and linden (Tilia spp.) are considered strong 
compartmentalizers (Dujesiefken and Liese, 2008). Santamour (1986) described fourteen 
cultivars of maple (Acer), ash (Fraxinus), oak (Quercus) and linden (Tilia) that were strong 
wall 2 compartmentalizers. As a group, trees have evolved to resist assaults and are 
successful, long-lived perennial plants. Tree health is another variable with numerous 
contributing factors. These include the age of the tree, soil conditions (texture, structure, 
moisture, pH, minerals and drainage), and exposure (sun, shade). Trees require light, water 
and minerals for essential life functions (including defense). Photosynthesis is the basis of 
carbohydrate synthesis. Woundwood responses utilize energy (carbohydrate, lipid) stores. 
When injections are made to trees in relatively good health (preventative-early therapeutic 
treatments) tree woundwood development readily proceeds to close wounds. However, the 
prognosis for recovery is comparatively lower, when making late therapeutic (rescue) 
applications, because energy stores are reduced. Optimal wound responses are observed 
when applications are made early, relative to infestation (Doccola et al., 2011). To further 
manage wounds in trees, make the fewest number of injection sites to apply the dose, and 
whenever possible, avoid drilling in the valleys between roots (Shigo and Campana, 1977). 
The Wedgle Direct-Inject (ArborSystems, LLC, Omaha, NE) is a method of tree injection that 
does not require drilling into the sapwood. The system relies on forcing the de-lamination 
(slippage) of the bark from the sapwood to apply a small amount of a formulation. This 
method directly exposes the lateral cambium to concentrated solvents. A consequence is 
phytotoxicity (e.g., hypersensitive reactions, necroses) to the tissues of the lateral meristem 
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(the initials for woundwood development). The small doses and exposures to the lateral 
cambium by this  method offers no clear advantage over drilling into trees for injection. 
Protection of the lateral cambium is of greater consequence to tree wound response 
compared to drilling into the sapwood. Further, wound closure rates of trees are positively 
correlated with trunk growth, and greater callus is produced around larger wounds than 
around smaller diameter wounds (Neely, 1988). Arborjet, Inc. employs a (7 or 9 mm) 
diameter drill hole to efficiently deliver higher volumes of insecticides into trees. The larger 
diameter hole is strongly limited by boundary wall 3 (this strong boundary reduces the 
likelihood of girdling and is an advantage to tree survival). With this system, a plastic 
Arborplug is inserted into the drilled hole, which creates the injection interface. The 
Arborplug from a tree wound defense perspective, reduces exposure of the lateral cambium 
to the solvent carriers in the injection formulation and minimizes wood exposure to air. 
Placing backflow preventers into the bark do not function in the same manner. Further, 
when the Arborplug is set correctly (at the sapwood-bark plane), it provides a flat surface 
for callus and woundwood development and wound closure. This encapsulation is the 
survival strategy of trees following injury (Dujesiefken and Liese, 2008). 

13. Multiple-year activity 

It is possible to make applications that are effective against a persistent and destructive tree 

pest and not require an annual treatment. The residual activity of tree injected imidacloprid 

may be due to protection against photolysis and microbial degradation. Foliar half-life of 

imidacloprid is ~9.8-d (Linn, 1992d, unpublished). Plants metabolize imidacloprid via 

hydrolysis, but some of the metabolites have insecticidal activity. The predominant 

metabolites associated with toxicity in insects are olefinic-, dihydroxy- and hydroxy-

imidacloprid (Sangha & Machemer, 1992; Suchail et al., 2001). In studies of large (50 cm) 

diameter hemlock infested with HWA,  both soil and tree injections with imidacloprid were 

made (Doccola et al., in press). Two methods of tree injections were employed, one using 

low volume micro-injection (QUIK-jet, Arborjet, Inc.) and the second using high volume 

micro-infusion (TREE I.V., Arborjet, Inc.). The soil applications were made using the Kioritz 

injector (Kioritz Corporation, 7-2, Suehirocho 1 –Chome, Ohme, Tokyo, 198 Japan). Tree 

injection administered 0.15 g imidacloprid per 2.5 cm dbh, micro-infusion applied 0.3 g per 

2.5 cm dbh whereas soil injection applied 1.45 g per 2.5 cm dbh. In that study, data was 

collected on HWA infestation, tree growth and imidacloprid residues in the foliage over a 

three year period. Tree foliage responses were greater in the tree injection treatments. 

Imidacloprid residues taken annually from 70 to 1165-d were above the LC50 value of 0.30 

µg/g for HWA (Cowles et al., 2006) for all the imidacloprid treatments. At 1165-d, foliage 

residues (of 1.35 μg/g) in the lowest dose injections continued to protect trees. This residual 

activity of imidacloprid was attributed to both the perennial nature (of 3-6 years) of the 

foliage, and to the slow, upward movement of imidacloprid. Green ash trees treated with 

emamectin benzoate tree injections were protected from EAB for up to four years (Smitley et 

al., 2010). A recently completed 3 year study using low dose injections of emamectin 

benzoate protected trees for three years (Deb McCullough, personal communication). These 

studies point to efficacy and duration of tree injection methods. The TREE-äge label is 

approved (by US EPA) for up to two years of control against listed arthropods, including 

EAB. Injection is a very efficient use of insecticidal chemistry to protect trees. 
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14. Tree injection as an alternative 

Today, tree injection is an alternative method of chemical application with definite 
advantages: (1) efficient use of chemicals, (2) reduced potential environmental exposure, 
and (3) useful when soil and foliar applications are either ineffective or difficult to apply 
(Stipes, 1988; Sanchez-Zamora and Fernandez-Escobar, 2004). Tree injection is used when 
trees are at risk from attack from destructive or persistent pests. It may be put to good use in 
tall trees. They are administered in trees growing in environmentally sensitive locations 
(e.g., near water, in sandy soils). Tree injection does create wounds, however the benefit of 
the introduced chemistry to protect trees often outweigh the drilling wound. The new 
paradigm weighs the potential of off target consequences of application to the consequences 
of the drilled wound made by tree injection. Unintended off target exposures include 
toxicity to earthworms, fish, aquatic arthropods, pollinators and applicator. Insecticides are 
by design, toxic, albeit useful, substances. Tree injection is a method to deliver specific 
toxicants to the injurious pest and to minimize non-intended exposures. In this chapter, 
three specific insecticides used in tree injection were considered, each with unique attributes 
for specific applications in trees. Tree injection is an alternative methodology to apply 
systemic insecticides for tree protection.  
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