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1. Introduction 

Inorganic particles/conductive polymers composites in bulk or films have been subject of 

intense study during the last decade. This type of materials offer the potential to being used 

in batteries, electro-chemical display devices, molecular electronics, electromagnetic shields, 

opto-electronic applications, microwave-absorbing materials, and even for corrosion 

protection (Garcia et al., 2002; McNally et al., 2005). Conducting polymers have some 

specific problems that make difficult its use in the above applications. Instability under 

oxygen and UV exposure, easily doping and over-oxidation are the most common among 

others. A novel strategy have been reported to improve its properties and extend the 

application range of these materials, this is the incorporation of inorganic particles of 

metallic oxides such as MnO2, V2O5, TiO2, Fe2O3, Fe3O4 and WO3 or metallic particles of Zn, 

Cu, Au, Pt into the conductive polymer (Demets et al., 2000; Ferreira et al., 2001; Kawai et 

al., 1990; Kuwabata et al., 2000; Lenz et al., 2003; Montoya et al., 2010; Vishnuvardhan et al., 

2006). For example we have recently demonstrated that the incorporation of magnetite into 

polypyrrole (PPy) decreases the electric resistance of the polymeric film and not only 

stabilize the polaronic form of the polypyrrole, but also preserve the polymer from further 

oxidation (Montoya et al., 2010). 

Polypyrrole (PPy) exhibits interesting properties such as high conductivity, relatively good 

environmental stability, and wide technological applications. PPy can be obtained either by 

chemical and electrochemical polymerization. The electropolymerization is considered a 

controlled synthesis method that provides better control of thickness and morphology of 

films (by controlling parameters as current, voltage, and time), efficient (high material-

transfer efficiency with nearly 100% material utilization and recovery), and environmentally 

safe (usually a water-based process). The aim of this chapter is to show in detail, two 

particular cases concerning the development of PPy/inorganic particles composite coatings 

deposited on stainless steel. First of all, a brief introduction is presented discussing the 

electrochemical polymerization methods. Then, as a first case, the effect of magnetite (Fe3O4) 

nanoparticles on the polymer matrix is presented. The second case is the co-deposition of 

platinum/PPy. Both studies show the effect of the addition of the inorganic phase on the 
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electrical, morphological, structural and conductive properties of the polymer matrix. 

Finally we show the synergistic effect of PPy/Fe3O4/Pt composites on the final properties of 

the coating. 

2. Electrochemical polymerization of pyrrole 

 Polypyrrole can be obtained by the oxidation of pyrrole monomer. Such oxidation can be 

accomplished by the following methods: 1) chemical polymerization in aqueous or organic 

media by oxidizing agents. 2) by electropolymerization on a metallic or conductive substrate 

by applying a potential or external current. 3) by photochemical or enzymatic catalysis 

polymerization. In general by chemical oxidation a final powder is obtained. Thin films are 

obtained by electrochemical deposition and from colloidal dispersions by enzymatic 

polymerization (Wallace, 2003). 

Electropolymerization is a method in which a pyrrole monomer dissolved in an electrolyte 

solution, normally aqueous, is oxidized to form a conductive film over a work anodic 

electrode. Reported conductivities for electrochemically obtained PPy are between 10-10 – 

103S/cm, due mainly to variables as deposition time, concentration of the monomer, 

substrate and deposition method. Figure 1 shows a simplified mechanism of oxidation of 

PPy, where n can be 3-4 and m is related with the chain length and determining the 

molecular weight. A- is a counter ion from the electrolyte to balance the charge over the 

polymer. 

 

Oxidation

A-

n

A-
+

m
N
H

N
H  

Fig. 1. Simplified mechanism of the polymerization of polypyrrole. 

2.1 Steady state methods 
These methods consist in applying a constant potential or current to an electrode giving 

place to a constant response upon time in current or potential, respectively. Between two, 

potentiostatic method consist in fixing the work electrode potential to give as a result the 

curves illustrated in Figure 2. The galvanostatic method is the inverse to that mentioned 

above. Steady state methods allow following electrode processes and changes in a system. 

This can be achieved by recording an electrical parameter upon time whereas the other one 

is being fixed, they can be: 1) Potentiostatic, in which a potential pulse is applied to the 

electrode and the current is registered as a function of time. During the experiment, once the 

double layer is charged, the potential of the electrode remains at a constant value (Ea) over 

the open circuit voltage (Eocp) and the current decreases as the concentration of the 

electrodic specie decreases in the solution and is deposited in the working electrode. The 

described events are depicted in Figure 2. 2) Galvanostatic, when a constant current pulse is 

applied to the work electrode, the potential is shifted from the equilibrium and changes are 

registered against time. 
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Fig. 2. Potentiostatic polarization and the current response of a typical deposition process of 
PPy. 

2.2 Unsteady state methods 
Unsteady state methods allow following electrode processes and changes in a system that 
do not occur instantaneously. Between non–stationary methods available for studying 
electrode processes, potential sweep methods are probably the most widely used. They 
consist in the application of a continuously time-varying potential to the working electrode. 
The observed current is therefore different from that in the steady state. Resulting this in the 
occurrence of oxidation or reduction reactions of electroactive species in solution (faradaic 
reactions), possibly adsorption of species according to the potential, and a capacitive current 
due to double layer charging. There are two forms of sweep voltammetry techniques 
named, linear sweep voltammetry (LSV) and cyclic voltammetry (CV). In linear sweep 
voltammetry the potential is scanned only in one direction, stopping at a chosen value, Efin 
for example at t = t1 in Figure 3. 
The scan direction can be positive or negative and, in principle, the sweep rate can have any 
value. In cyclic voltammetry, the potential scan is done in two directions, on reaching t = t1 
the sweep direction is inverted as shown in Figure 3 and swept until Emin, then inverted at t2 
and swept to Emax. The faradaic current, If, due to the electrode reaction, is registered 
simultaneously to the applied potential where electrode reactions occur, giving place to a 
cyclic voltammogram like that shown in Figure 4. 
 

 

Fig. 3. Variation of applied potential with time in cyclic voltammetry, showing the initial 
potential, Eini, the final potential, Efin, maximum, Emax, and minimum, Emin, potentials. 
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Fig. 4. Typical Cyclic voltammogram for a reversible system. 

3. Polypyrrole/Fe3O4 composite films 

3.1 General issues Polypyrrole/Fe3O4 films 
Several studies have attempted to the development of PPy/Fe3O4 composite films; however 
there is not still a general consensus about the effect of magnetite on the final composite as 
well as the type of interaction between the PPy and Fe3O4 nanoparticles. Some researchers 
have found that the presence of Fe3O4 in the PPy causes an increase in the conductivity of the 
composite as compared with pure PPy (Chen et al., 2004; Chen et al., 2003). However, there are 
others authors claiming the opposite (Deng et al., 2003a; Pailleret et al., 2007). The controversy 
may be due to many factors such as oxide particle size, dopant agent, electrolyte, method of 
synthesis, electrodeposition rate, etc.; which influence the properties of the composite leading 
to changes in the electrical properties when the amount of magnetite incorporated into the 
polymer matrix is increased. Composites of organic conducting polymer and Fe3O4 particles 
have the advantage of having both good electrical and magnetic properties. In addition of 
being promising materials as protective coatings, they are attractive to be used in new 
batteries, fuel and solar cells, capacitors or magnetic materials. 

3.2 Electrochemical polymerization of the films 
The production of adherent coatings based on conductive polymers chemically synthesized 
is hampered by its low solubility in common solvents. Polymers obtained by this method 
cannot be processed by spin or dip coating. This disadvantage can be overcome by 
electrochemical polymerization, which can simultaneously allow to form and to deposit 
polymer coatings on the substrate from a monomer–electrolyte solution. Unfortunately, as 
shown by several previous studies, the attempts to electrochemically polymerize pyrrole on 
reactive metals such as iron or other oxidizable metals in aqueous medium, present some 
difficulties. In this case is necessary to find the electrochemical conditions that lead to a 
partial passivation of the metal and decrease its dissolution rate without avoiding the 
electropolymerization of the monomer. In acidic medium, no noble metals are preferentially 
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dissolved due to the polymerization potential of pyrrole, being this higher than the 
oxidation potential of the metal. These metals can be covered with passive films that prevent 
their dissolution in acidic medium. However, these passive films are either soluble in the 
polymerization medium or poorly wetted by the electrolyte–monomer solution and thereby 
preventing electropolymerization of the monomer. Therefore a coating process that can 
force simultaneous passivation and polymerization is desirable. Some researchers have 
developed a one-step in situ passivation and coating of steel for polypyrrole with good 
adhesion properties (Iroh and Su, 2000, 2002; Ocon et al., 2005; Wencheng and Iroh, 1998).  
In the same way, PPy/iron oxides composites can be prepared by electrochemical oxidation 
of the monomer in the presence of dopant anion and the iron oxide particles in suspension. 
Some works have reported composite films obtained by galvanostatic method on several 
substrates as: iron, stainless steel, carbon steel, platinum, etc. (Garcia et al., 2002; Montoya et 
al., 2010; Wencheng and Iroh, 1998). Instead, other electrochemical techniques as constant or 
variable electric potential have been imposed in order to synthesize the composite coatings. 
Independently of the electrochemical technique used to film formation the mechanism of 
electrosynthesis is the same and it involves different stages, as showed in Figure 5: 1. 
Monomer oxidation. 2. Radical–radical coupling. 3. Deprotonation/Re-aromatization and 4. 
Propagation or subsequent oxidation. The polymerization is believed to proceed via a 
radical–radical mechanism (Andrieux et al., 1991), wherein the natural repulsion of the 
radicals is supposed to be refused by the solvent, the counterion, and even the monomer. 
Chain growth then continues until the charge on the chain is such that a counterion is able 
to be incorporated. The backbone has a delocalized π-system and the polymer film 
incorporate dopant anions, stabilizing the charge on the  backbone of the polymer (Ocon et 
al., 2005). Eventually, as the polymer chain exceeds a critical length, the solubility limit is 
exceeded, and the polymer can be deposited on the electrode surface. However, in the early 
stages of polymerization the electrode substrate plays a critical role once the reaction is 
initiated. For example, when the PPy is electropolymerized on carbon steel by galvanostatic 
method, using oxalic acid as the electrolyte, three stages can be distinguished in the process 
of electropolymerization, as can be seen in Figure 6. In the first stage the dissolution of steel 
is observed, followed by its passivation by the formation of iron oxalate film and iron 
oxides, and finally the deposition of polypyrrole. Passivation time can be decreased by 
increasing the applied current, the increased pH and the concentration of pyrrole (Su and 
Iroh, 1997). Earliest results show that the passive layer has a well-defined crystalline 
structure, insoluble in water enough to encourage further electropolymerization. It is 
appropriate to emphasize the formation of iron/oxalic acid system, principally in terms of 
its complexing and salt-forming reactions (Giacomelli et al., 2004). It is worth noting that the 
process of electropolymerization of pyrrole on stainless steel is similar to carbon steel if the 
passive layer of stainless steel is removed prior to the electrosynthesis, otherwise, the time 
required to start the electropolymerization of the monomer is almost negligible, see Figure 7. 
During the electrodeposition of PPy and PPy/Fe3O4 coatings on stainless steel is possible to 
see some changes in the registered potentiometric curves. The Figure 7 shows the curves E 
vs. t for the electropolymerization of pure PPy and PPy/Fe3O4 composite films with 
different concentrations of magnetite present in the electrolyte of the synthesis. It can be 
observed that the increasing of magnetite content in the polymer decrease the 
electropolymerization potential. This could indicate that the presence of magnetite reduces 
the required energy for polymer film formation and prevents the overoxidation of the film 
during the polymerization process (Montoya et al., 2009). 
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Fig. 5. Mechanism of formation of polypyrrole by electropolymerization  
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Fig. 6. Potentiometric curve during the formation of Polypyrrole/Fe3O4 coatings on carbon 
steel in oxalic acid by galvanostatic method. 

 

 

Fig. 7. Potentiometric curve during the galvanostatic electrodeposition of PPy/Fe3O4 
coatings on stainless steel with several Fe3O4/Py mass ratios in the electrolyte of synthesis. 

3.3 Physical chemical interaction and stabilization of the polymer 
Several studies have shown the interactions between polypyrrole and Fe3O4 in polypyrrole–
Fe3O4 composite films. A recent study examined the effect of the magnetite particles on the 
structure of the polymer matrix. Films of polypyrrole were synthesized on stainless steel in the 
presence of magnetite particles (Montoya et al., 2010). The effect of the magnetite particles on 
the structure of the polymer matrix was determined using Raman spectroscopy and Scanning 
Electron Microscopy (SEM). Additionally, the changes in the electrical resistance of the films 
were evaluated over time by electrochemical impedance spectroscopy in solid state. These 
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results showed that the interaction between the incorporated magnetite and the polymeric 
matrix, leads to morphological and electronic changes in the composite film respect to pure 
PPy. It is possible to see in the micrograph of the Figure 8 that the polymer is preferentially 
deposited as globular chains along the lines of the polished surface. As the content of Fe3O4 
increases in the polymer matrix, it is possible to observe a change in the coating morphology 
going from agglomerated globular structures composed of average size about 100nm (Figure 
8a) to agglomerates with a star-like conformation (Figure 8b). These results clearly indicate the 
effect of Fe3O4 particles in the morphology of the polymer. 
Figure 9 shows the Raman spectra obtained for pure PPy film and Fe3O4/Py composite film 

with a mass ratio in the electrolytic solution of 0.75. The spectra present the characteristic 

bands already attributed to PPy vibrational modes located at 1592, 1382, 1320, 1252, 1082, 

1047, 982 and 931cm−1 (Santos et al., 2007). By comparing with reported data by in-situ 

Raman studies (Furukawa et al., 1988; Santos et al., 2007), it is clear that the polymer is in the 

oxidized state where both aromatic and quinoid structures coexist indicating a pseudo-

equilibrium between polaronic and bipolaronic structures at the same oxidation level as 

already pointed out by Santos (Santos et al., 2007) and Furukawa (Furukawa et al., 1988). 

Figure 9 shows that the intensity of the band at 931cm−1 decreases when the Fe3O4 is in the 

film. This band is characteristic of the bipolaronic structure (quinoid form) in the oxidized 

state and is attributed to out-of-plane C–H deformation. Additionally, two bands 

characteristic of the polaronic structure (aromatic form), at 982 and 1047cm−1, assigned to 

ring deformation mode and CH in-plane deformation mode respectively, increased when 

the Fe3O4 is present in the composite (Furukawa et al., 1988). Both the bands at 1500 and 

982cm−1 are assignable to aromatic segments but these are also present at the most oxidized 

state. The band at 1082cm−1, presents in both spectra is assigned to the most oxidized state, 

correlated to the bipolaron or dication state. The intensity of this band remains relatively 

constant for all the obtained composites. According to Yakushi et al. (Yakushi et al., 1983), 

the evidence of aromatic segments bands when the polymer is oxidized is due to the 

presence of different conjugation lengths in the PPy films, which are also observed in the 

composite PPy–Fe3O4. 

 

 

Fig. 8. SEM images of a. pure PPy film and b. Fe3O4/Py composite film with a mass ratio in 
the electrolytic solution of 0.75. 
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Fig. 9. Raman spectra of PPy film and composite film with a Fe3O4/Py mass ratio in the 
electrolytic solution of 0.75. 

The most important evidences in this work are as follows. The incorporation of magnetite 
into polymeric matrix decreases the electrical resistance of the polymeric films.  
Additionally, the presence of magnetite into the film not only stabilizes the polaronic form 
of the polypyrrole, but also preserves the polymer from further oxidation. These results 
were consistent with previous results showed by Elliot et al.(Elliott et al., 1991); the authors 
combined resistance and electron spin resonance (ESR) measurements of PPy films and they 
observed that electric resistance is minimum when the ESR signal is maximum, indicating 
that polaronic species are the main responsible by charge transportation (Elliott et al., 1991). 
In the same direction, investigations performed by Deng et al. suggested that the interaction 
mechanism between the PPy and the Fe3O4 may involve the interaction between lone pair 
electrons of the nitrogen atom in PPy chain with the 3d orbital of iron atom to form a 
coordinate bond, reducing the energy level interval of the pyrrole ring (Deng et al., 2003). 
Additionally, the work of Tzong-Ming et al. also shows evidences of the interaction between 
PPy and Fe3O4 nanoparticles (Wu et al., 2007). They observed by UV spectroscopy, a 
transition from the valence band to the antibonding polaron state in PPy, indicating that the 
produced PPy was in the doped state. When the spherical structure of PPy–Fe3O4 
nanocomposites was formed, the characteristic peak assigned to the polaron-p transition 
was slightly shifted to a smaller wavelength with increasing Fe3O4, suggesting the 
interaction between the quinoid rings of PPy and Fe3O4. This is also consistent with the 
results observed for us by Raman spectroscopy in a recent study (Montoya et al., 2010) and 
also with the fact that magnetite preserves the PPy film to further oxidation and the PPy–
Fe3O4 could preserve the conductive state for longer time due to the stabilization of the 
polaronic form of the oxidized state.  

4. Polypyrrole/Pt composite films 

4.1 Polypyrrole/Pt films general description 
Composite materials based on conducting polymers are alternatives with equal or better 
efficiency that metals typically used in fuel cell electrodes. These types of materials are 
considered one the most promising group of polymers to manufacture these cells because 
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their easy application and operation, being PPy one of them. In recent years it has been 
carried out the electrodeposition of PPy with the incorporation of platinum, silver or gold 
on substrates such as glassy carbon, gold and platinum. The electrochemical synthesis of 
PPy/Pt films and their morphological and structural properties are presented here (Marín et 
al., 2010; Marín et al., 2009). The results in this section show the formation of sandwich-like 
structures and the important stabilization effect that platinum provided to the polymeric 
film in terms of electroactive activity. The Polypyrrole/Pt films are a proposed system based 
on two configurations: two-layer and multiple-layer. The films were obtained by 
electropolymerization of pyrrole and cathodic deposition of platinum from ammonium 
hexachloroplatinate salt on stainless steel 304. Moreover, to improve PPy/Pt films, a 
multiple-layer configuration was obtained by using an electrolytic solution containing 
pyrrole and platinum salt. Finally the electrocatalytic activity of two-layer and multiple-
layer PPy/Pt films was evaluated for methanol oxidation.   

4.2 Electrochemical polymerization 
The experiments are classified into two groups, two-layer and multiple-layer, as shown in 
Table 1 and Figure 10. Ammonium Hexachloroplatinate was obtained by hydrometallurgical 
processes using alluvial platinum (Benner, 1991; Georgieva and Andonovski, 2003) and used 
as Pt source for the electrochemical synthesis. All potentials reported in this chapter are 
referred to calomel electrode. 
 

Two-layer PPy/Pt 
1. Electrochemical synthesis of PPy films 
2. Reduction of Pt (IV) by a potentiostatic 

method. 

Multiple-layer PPy/Pt 
Monomer oxidation and platinum reduction 
alternating. 

Table 1. Description of the experiments. 

 

 

Fig. 10. Schematic representation of PPy composite films a. two-layer, b. multiple-layer. 
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In the first film configuration the PPy films were obtained by a galvanostatic method, 
applying 0.001A for 2400s using a 0.1M pyrrole + 0.1M H2SO4 electrolyte solution. Once 
obtained the PPy film, a layer of platinum was cathodically electrodeposited on PPy film in 
order to obtain the two-layer PPy/Pt (1). The Pt layer was obtained by potentiostatic 
method from solution containing 0.001M of [(NH4)2PtCl6] and 0.5M of H2SO4 and applying -
0.2V during 1200s. The multiple-layer PPy/Pt (2) composite films were obtained by 
potentiostatic method applying 0.5V to get PPy films, and then applying -0.2V to get the 
platinum deposition using a solution containing 0.1M of Pyrrole, 0.001M of [(NH4)2PtCl6]  
and 0.5M of H2SO4. Each potential was applied during 1200s. 

4.3 Characterization 
4.3.1 Scanning electron microscopy (SEM) 
Figure 11a illustrates how the polymer was formed along the lines of the substrate, showing 
a globular morphology of sizes ranging from 4 to 5μm with a few smaller outer cores on the 
surface, which are highlighted on the entire matrix of the polymer. This globular 
morphology, as previous reported, is typical of polypyrrole when formed by 
electropolymerization  either by potentiostatic or galvanostatic methods (Lehr and Saidman, 
2007; Lu et al., 2006; Martins et al., 2008; Nie et al., 2008). In Figures 11b and 11c the same 
globular morphology is observed. However, in both films there are not small outer cores as 
in pristine PPy. It is then evident that platinum homogeneously covered the PPy film and 
copied its morphology. The obtained films were evaluated with EDS analysis to confirm the  
 

    
 

 

Fig. 11. SEM micrographs of films: a. pure PPy, b. two-layer PPy/Pt, c. multi-layer PPy/Pt. 

c. PPy/Pt

a. PPy b. PPy/Pt
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presence of platinum.  Figure 12 shows the results of this analysis. The atomic percentage of 
Pt is higher than that found for other elements. Fe, Ni and Cr are elements associated with 
the stainless steel substrate. It is observed that for multiple-layer films, elements of the 
substrate are in less percentage, given the increase in thickness. In both films it is evident the 
presence of platinum on the surface of the polymer matrix.  
 

 

Fig. 12. EDS spectra:  a. two-layer PPy/Pt ,  b. multi-layer PPy/Pt. 

Figure 13a shows a SEM micrograph taken at a cross section of the two-layer PPy/Pt film. In 
this micrograph two layers were clearly observed. The first layer is the PPy and second layer 
correspond to Pt. The Figure 13b represents a top view of the multi-layer PPy/Pt film. The 
micrograph shows the effect of electrical potential alternation during the films deposition in 
short times, giving as a result the formation of discontinuous regions covered by the 
polymer (black regions) and platinum (bright regions), without being able to cover the 
entire surface of the substrate. Finally it is expected that both films presented electrocatalytic 
activity (Bouzek et al., 2001, b; Holzhauser et al., 2005). However, the two-layer films can 
additionally act as a protective coating for stainless steel substrate, because complete 
coverage of the metal substrate by PPy. 
 

 

Fig. 13. SEM micrographs of: a. cross-sectional view of two-layer PPy/Pt films, b. top view 
of multiple-layer PPy/Pt films.  

4.3.2 Atomic force microscopy (AFM) 
All the obtained films were analyzed by AFM to study their homogeneity, the grain size and 
surface roughness. The Figure 14a shows a PPy image with granular morphology 
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heterogeneously distributed all over the surface. Some authors agree that this is the 
morphology adopted by PPy formed on a metal substrate (Bravo-Grimaldo et al., 2007; Okner 
et al., 2007). An average grain size is 0.125µm and a surface roughness of 33.6nm could be 
calculated, similar to that observed by J. Tamm (Tamm et al., 2004). In the Figure 14b the 
morphology of a typical two-layer PPy/Pt film is observed. That film showed similar 
morphology to that for PPy. This is an indication that platinum covers much of the polymer 
matrix and takes its morphology. Pt reduced the grain size up to 0.083µm. The surface 
roughness was less modified and a value of 33.3nm was calculated for this film. Figure 14c 
shows the morphology for multiple-layer PPy/Pt films and as the two-layer films, they have a 
granular morphology and platinum copies the polymer. Similar grain size values compared to 
two-layer film were obtained, and an increase of surface roughness of 10nm was observed. 
 

 
 

Fig. 14. AFM Image:  a. PPy, b. two-layer PPy/Pt, c. multiple-layer PPy/Pt films. 
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4.3.3 Surface profilometry 
This technique was used to obtain accurate results of film thickness. Table 2 reports the 
thickness data for each system. The obtained results are initially consistent with the patterns 
shown by Figure 10. The platinum coating deposited on the PPy film had a thickness of 
about 0.14 µm. 
 

Film Thickness (µm) 

PPy 1.28 

Two-layer PPy/Pt 1.42 

Multiple-layer PPy/Pt 1.98 

Table 2. Thickness of the films. 

4.4 Fuel cells applications 
Polypyrrole/Pt composite films were evaluated by cyclic voltammetry as anodes for fuel 
cells applications. The ability of the films to oxidize methanol was measured in 0.5M of 
H2SO4 and 1M of MeOH (Bouzek et al., 2001a; Holzhauser et al., 2005). The cyclic 
voltammetry curves were run without going through the over oxidation potential of the 
polymer, so these were taken from the open circuit potential to 0.8V in the anodic direction 
and to -0.5V in the cathodic direction. 
 

 

Fig. 15. Cyclic voltammograms of:  a. PPy, b. Pt, c. two-layer PPy/Pt and d. multiple-layer 
PPy/Pt in 0.5 mol.L-1 H2SO4 and 1 mol.L-1 methanol at 100 mV/s and atmosphere of N2.  

Although in both, two-layer and multiple-layer PPy/Pt films, the methanol oxidation occurs 
at 0.02V, the kinetics of methanol oxidation is different. This is mainly due to the fact that 
two-layer films presented higher oxidation current densities (11mA.cm-2) than those 
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observed for multiple-layer films (2mA.cm-2). The results show that two-layer films are 
more efficient to oxidize methanol because the more active layer of platinum is deposited on 
all the surface of the PPy film. While in the multiple-layer films the platinum is deposited 
heterogeneously all through the film.  

5. PPy/Fe3O4/Pt composite films 

In the present section the effect of the concentration of H2SO4 as the electrolyte used in the 
synthesis of PPy, PPy/Pt, PPy/Fe3O4, and PPy/Fe3O4/Pt films deposited on 304 stainless steel 
is evaluated. The oxidation potentials of all films were determined by cyclic voltammetry 
technique in order to assess the effect of the incorporation of Pt and/or Fe3O4 into the 
conductive polymer matrix. The inorganic particles significantly influence both the oxidation 
stability and morphology of the PPy matrix. The results showed that the incorporation of 
platinum and magnetite nanoparticles into the polypyrrole film increase the current density of 
the electrochemical response and shift the oxidation potential towards more anodic values. 
Moreover, the deposition of platinum and magnetite allows larger over-potential window to 
promote redox reactions without compromising the stability to oxidation of the polymer. 

5.1 Electrochemical polymerization 
Ammonium Hexachloroplatinate was obtained by hydrometallurgical processes of from 
alluvial platinum (Benner et al., 1991; Georgieva and Andonovski, 2003). This salt was used 
as Pt source for the electrochemical synthesis. The magnetite particles were obtained by 
hydrothermal method reported in the literature with some modifications (Deng et al., 2003b; 
Huang et al., 2005).  
The polypyrrole films were obtained by galvanostatic method applying 1mA during 2000s. 
0.1M of pyrrole and 0.1M of H2SO4 or 0.25M of H2SO4 were used as electrolyte. The 
PPy/Fe3O4 films were obtained by galvanostatic method with the same conditions as for 
PPy films. Before the electropolymerization, Fe3O4 particles were dispersed into the 
electrolyte solution, using an ultrasonic probe during 30 minutes. The PPy/Pt and 
PPy/Fe3O4/Pt composite films were made in two stages, each one in a separate experiment. 
In the first stage a PPy or PPy/Fe3O4 film was obtained by galvanostatic method. The 
platinum was cathodically electrodeposited on PPy or PPy/Fe3O4, from 0.001M of 
[(NH4)2PtCl6] + 0.5M of H2SO4 solution by potentiostatic method applying -0.2V during 
1200s. The experiments were classified as shown in Table 3. 
 

Film H2SO4 Test 

PPy 
PPy/Pt 
PPy/Fe3O4 
PPy/Fe3O4/Pt 

0.1M (1) 

PPy 
PPy/Pt 
PPy/Fe3O4 
PPy/Fe3O4/Pt 

0.25M (2) 

Table 3. Classification of experiments according to the concentration of the acid used as 
electrolyte in the polymerization. 
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5.2 Characterization 
5.2.1 Scanning electron microscopy (SEM) 
The effect of the electrolyte concentration in the morphology of PPy films was evaluated. In 
Figure 16 the resulting morphologies of PPy in the experiments (1) and (2) are presented.   
 

 

Fig. 16. SEM micrographs of the films: a. PPy (1), b. PPy (2). 

Figure 16a shows polypyrrole obtained in 0.1M of H2SO4 named as PPy (1). The typical 
globular morphology is observed (Lehr and Saidman, 2007; Martins et al., 2008). The Figure 
16b presents a polypyrrole obtained in 0.25M of H2SO4, PPy (2). The influence of increasing 
the electrolyte concentration can be clearly observed. A smaller size of about 100 nm was 
found for the smallest domain. Moreover these films did not show the formation of outer 
core on the surface. 

5.2.2 Cyclic voltammetry 
The effect of Fe3O4 and Pt particles incorporated into the polypyrrole matrix were evaluated 
by cyclic voltammetry technique. The oxidation potential of PPy film was analyzed in order 
to assess the effect of inorganic particles into the film. Figures 17, 18, 19, and 20 shows the 
PPy, PPy/Pt, PPy/Fe3O4 and PPy/Fe3O4/Pt cyclic voltammograms evaluated in 0.5M of 
H2SO4 as electrolyte solution for each of the concentrations in which the polymer was 
obtained, experiments (1) and (2).   Figure 17 is composed by three curves. The first one 
shows the response from stainless steel giving two oxidation current peaks at -0.3V and -1.4 
V being the last one the most intense. The second current peak also occurs during the sweep 
return, resulting in an anodic reactivation process of the substrate. The second and third 
voltammetry curves show PPy films obtained on stainless steel in solution of 0.1M and 
0.25M of H2SO4, respectively. The over oxidation potentials of polypyrrole appeared at 0.9V 
and 1.1V. These oxidation current peaks are responsible of the enhance presence of 
bipolarons rather than polarons in the polymer chain (Lamprakopoulos et al., 2004; 
Radhakrishnan and Adhikari, 2006) 
The over oxidation potential of polypyrrole is not influenced by the electrolyte 
concentration, oxidation current peaks are observed at the same potential in PPy films 
obtained with both electrolyte concentrations. However the current densities in these 
potentials are greater for PPy films obtained at 0.25M of H2SO4. This means that the 
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chemical doping is higher for the PPy (2) at higher electrolyte concentration than PPy (1) 
obtained at a lower concentration. The sweep return in cyclic voltammetry curves in the PPy 
films presented a reactivation peak at 1.4V due to the substrate, showing that after the over 
oxidation potential of the film the steel is exposed to an aggressive media.  
 

 

Fig. 17. Cyclic voltammograms of PPy films in the experiments (1) - left axis and (2) – right 
axis in 0.5 mol.L-1 H2SO4 at 5 mV/s.  

The Figure 18 shows cyclic voltammograms of  PPy/Pt (1) and PPy/Pt (2) composite films 

in 0.5M of H2SO4 electrolyte. Both films presented two oxidation peaks. The first peak in the 

anodic direction at 0.9V is an over oxidation of the polymer matrix.  The second peak in the 

cathodic direction at 1.4V corresponds to the substrate oxidation process. When comparing 

the voltammograms in Figures 17 and 18 it can be concluded that although platinum is able 

to cover all the electrodeposited PPy film, this does not inhibit the oxidation of the polymer. 

It was observed that both samples of PPy/Pt (1) and (2) presented an over oxidation 

potential at 0.9V and current density decreases in this potential for PPy (2) film.  

 

 

Fig. 18. Cyclic voltammograms of  PPy/Pt films in the experiments (1) and (2) in 0.5 mol L-1 
H2SO4 at 5 mV/s. 
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Figure 19 shows the voltammograms of PPy/Fe3O4 composite films. There are some 

differences compared to voltammetry response of PPy/Pt films. The first difference is that 

the oxidation potential of PPy film is shifted to more anodic potentials going from 0.9V to 

1.25V for PPy/Fe3O4 composite film obtained in 0.1M of H2SO4 and from 0.9V to 1.36V for 

PPy/Fe3O4 composite film obtained in 0.25M of H2SO4. The observed shift could be 

associated with a possible redox effect that magnetite provides to overoxidation of the 

polymer as demonstrated previously (Garcia et al., 2002; Montoya et al., 2009). The second 

event is an increase of the current density related to polymer oxidation, being considerably 

higher when the composite film is obtained in an electrolyte solution with high 

concentration of counter-ions as well as was observed for the PPy and PPy/Pt films. As 

expected, the PPy/Fe3O4 composite film obtained in 0.25M of H2SO4 shows greater doping 

degree of counter-ions than the PPy/Fe3O4 composite film obtained in 0.1M of H2SO4. From 

voltammograms of Figure 17 one current peak at 0.4V can be possibly associated to 

magnetite oxidation. The peak observed for the cathodic sweep at 1.4V was associated with 

substrate oxidation due to debonding of the film.  

Figure 20 shows the voltammograms of PPy/Fe3O4/Pt composites films for experiments (1) 

and (2). In these curves is clearly observed the new positive effect of magnetite due to a shift 

of the over oxidation potential of PPy to a more cathodic potential at 1.28V. On the other 

hand, the curves here showed oxidation current densities of the polymer higher than that 

observed for PPy films. The composite system showed a slightly difference when the 

electrolyte concentration increased, as observed in the Figure 20.  Hence, is likely that the 

platinum completely covers the surface of the polymer and decreases the counter-ions 

diffusion through the film when subjected to oxidation-reduction cycles. 

 
 
 
 

 
 
 

Fig. 19. Cyclic voltammograms of  PPy/Fe3O4 films in the experiments (1) and (2) in 0.5 mol 
L-1 H2SO4 at 5 mV/s. 
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Fig. 20. Cyclic voltammograms of  PPy/Fe3O4/Pt films in the experiments (1) and (2) in 0.5 
mol L-1 H2SO4 at 5 mV/s. 

6. Conclusions 

The addition of Fe3O4 to polypyrrole matrix modifies the final structure of the polymer 

films, as evidenced by SEM and Raman spectroscopy. The observed changes in morphology 

and structural vibrations of the polymeric matrix after particle incorporation indicate that 

magnetite interacts with polypyrrole and modifies its properties. The charge transfer 

process between PPy and Fe3O4 causes the stabilization of polaronic segments in decreases 

the bipolaronic states. This fact occurs in a diminution of the electric resistance of the 

composite upon Fe3O4 load and the preservation of the conductivity when the film is 

exposed to moisture. The presence of magnetite reduces the required energy for the 

polymerization and prevents over-oxidation of the polymer during the film formation. 

Incorporation of platinum into PPy films does not modify the chemical structure of polymer, 

however increases the electric conductivity of the composite film. When Pt is incorporated 

into PPy film the oxidation potential of the polymer is shifted to more positive potential. The 

increasing of the anodic overpotential window of the composite film makes possible to use 

these films as catalytic substrates to carry on reactions, like ethanol or methanol oxidation, 

without significant film deterioration. 

The inorganic particles significantly influence both the oxidation stability and morphology 

of the PPy matrix. Incorporation of platinum and magnetite nanoparticles into the 

polypyrrole film increase the current density of the electrochemical response and shift the 

oxidation potential towards more anodic values. Moreover, the deposition of platinum and 

magnetite allows larger over-potential window to promote redox reactions without 

compromising the stability to oxidation of the polymer. 
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