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1. Introduction  

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by 
progressive muscle weakness caused by loss of central and peripheral motor neurons. 
Symptoms typically have a localized limb or bulbar onset and progress to other muscle 
groups of the body. Denervation of respiratory muscles and dysphagia leading to 
respiratory complications are the most common causes of death. There is no cure for this 
rapidly progressive disease. 
Approximately 5% of patients have a family history of ALS (fALS) (Byrne et al., 2011). All 
other cases are considered to have a sporadic form of the disease (sALS). A twin study of 
sALS patients has estimated hereditability to be considerable (0.38-0.76), indicating an 
important genetic component in disease etiology (Al-Chalabi et al., 2010). sALS, therefore, is 
considered to be a disease of complex etiology with both genetic and environmental factors 
contributing to disease susceptibility. 
This chapter will provide an overview of the current knowledge of the genetics of both fALS 
and sALS. There will be, however, particular emphasis on two sALS associated regions 
identified in a large genome wide association study namely, chromosomal region 9p21.2 
and 19p13.11. Evidence for the association with these regions as well as the function of the 
relevant genes in these regions will be discussed. 

2. Genetics of familial amyotrophic lateral sclerosis 

Familial ALS is a genetically heterogeneous group of diseases for which linkage has been 
found for over 13 different loci (Table 1). These loci account for approximately 25-30% of all 
fALS cases. In addition, variants in several other genes have been implicated in fALS but 
most of these data are still inconclusive. All currently known fALS loci and the genes 
involved will be briefly discussed in this section. 

2.1 ALS1 (SOD1) 
Linkage analysis in autosomal-dominant fALS pedigrees associated the copper-zinc 
superoxide dismutase (SOD1) gene on chromosome 21q to ALS. Several point mutations in 
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Name of 
Disease 

Locus Gene Protein Inheritance Clinical features 

ALS1 21q22 SOD1 
Cu/Zn superoxide 

dismutase 
AD/AR Typical ALS 

ALS2 2q33 ALSin ALSin AR 

Juvenile onset, slowly progressive, 

predominantly upper motor neuron 

signs 

ALS3 18q21 N.K. - AD Typical ALS, disease onset in legs 

ALS4 9q34 SETX Senataxin AD 

Childhood/Adolescent onset, slowly 

progressive, no respiratory and 

bulbar involvement 

ALS5 15q15-21 SPG11 Spatacsin AR Juvenile onset, slowly progressive 

ALS6 16p11.2 FUS Fused in sarcoma AD/AR Typical ALS 

ALS7 20p13 N.K. - AD Typical ALS 

ALS8 20q13 VAPB 
VAMP-associated 

protein B 
AD Typical ALS, SMA and atypical ALS 

ALS9 14q11 ANG Angiogenin AD 
Typical ALS, frontotemporal 

dementia, Parkinson’s disease 

ALS10 1q36 TARDBP 
TAR-DNA binding 

protein 
AD Typical ALS 

ALS11 6q21 FIG4 
PI(3,5)P(2)5- 

phosphatase 
AD 

Adult onset, prominent corticospinal 

tract signs 

ALS12 10p13 OPTN Optineurin AD/AR Adult onset 

ALS14 9p13-p12 VCP 
Valosin-containing 

protein 
AD Adult onset with or without FTD 

ALS-FTD1 9q21-22 N.K. - AD ALS, FTD 

ALS-FTD2 9p13.2-21.3 C9ORF72 

Chromosome 9 

open reading frame 

72 

AD ALS, FTD 

ALS-

FTDP 
17q21.1 MAPT 

Microtubule-

associated protein 

tau 

AD Adult onset with FTD 

ALS-X Xcen N.K. - XD Adult onset 

AD = Autosomal dominant, AR = Autosomal recessive, XD = X-linked dominant, FTD = frontotemporal 
dementia, SMA = spinal muscular atrophy, N.K. = not known, FTDP = frontotemporal dementia with 
parkinsonism 

Table 1. Classification of familial ALS. 
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SOD1 that co-segregated with the disease were identified in several of these pedigrees 
(Rosen et al., 1993). To date, over 150 different mutations in SOD1 have been identified (see 
http://alsod.iop.kcl.ac.uk). Mutations have been reported in ~20% of fALS patients and in 
1-4% of sALS patients (Pasinelli and Brown, 2006; Valdmanis and Rouleau, 2008). 
The SOD1 protein is a cytoplasmic enzyme that converts superoxide radicals, a by-product 
of oxidative phosphorylation, to hydrogen peroxide and molecular oxygen. The exact 
mechanism by which SOD1 mutations lead to ALS pathology is unknown although several 
toxic properties of mutant SOD1 such as aberrant oxidative stress, protein instability, and 
mitochondrial damage have been proposed to be causative (reviewed in Pasinelli and 
Brown, 2006). Interestingly, the presence of mutant SOD1 in non-neuronal cells contributes 
to pathogenesis and is needed for disease progression (Ilieva et al., 2009). SOD1 mutations 
most likely result in a toxic gain of function pathology since SOD1 knockout mice do not 
develop motor neuron degeneration whereas transgenic mice overexpressing mutant SOD1 
show motor neuron degeneration and ALS-like pathology (Gurney et al., 1994; Reaume et 
al., 1996). 

2.2 ALS2 (ALSin) 
ALS2 is an autosomal recessive form of juvenile ALS that was first reported in a large 
consanguineous Tunisian kindred and linkage analysis in this family associated locus 2q33-
q35 to ALS (Hentati et al., 1994). This led to the discovery of causal mutations in the gene 
encoding ALSin (Hadano et al., 2001; Yang et al., 2001). Mutations in ALSin have been 
scarcely reported and do not appear to be a common cause of ALS. 
ALSin is a Rab5 and Rac1 guanine exchange factor that acts as a regulator of 
endosomal/membrane trafficking. The protein is able to promote neurite outgrowth in 
neuronal cultures through activation of the small GTPase Rac1 (Otomo et al., 2003; Topp et 
al., 2004). Overexpression of ALSin protects cultured motor neuronal cells from mutant 
SOD1 toxicity suggesting a neuroprotective role. Mutations in ALSin may induce a loss of 
this neuroprotective function (Kanekura et al., 2004). ALSin knockout mice do not develop 
overt motor neuron disease but degeneration of the corticospinal tract has been reported 
(Cai et al., 2008; Hadano et al., 2006). 

2.3 ALS3 (18q21) 
Linkage to chromosome 18q21 was identified in a large European family of which 20 
members had autosomal-dominant ALS (Hand et al., 2002). This region contains 50 genes 
but the causal mutation at this locus remains to be identified. 

2.4 ALS4 (SETX) 
ALS4 is a rare, childhood- or adolescent-onset, autosomal dominant disease, which is also 

known as distal hereditary motor neuronopathy with pyramidal features. Linkage to 

chromosome 9q34 was found in a large family from the USA with 49 affected members 

(Chance et al., 1998).  Sequencing of 19 genes in this locus revealed that missense mutations 

in the senataxin (SETX) gene were the cause of ALS4 in several families (Chen et al., 2004). 

Since then, mutations have been identified in additional ALS patients from China, Italy and 

the USA (Avemaria et al., 2011; Hirano et al., 2011; Zhao et al., 2009). Interestingly, 

mutations in SETX leading to a premature termination in the protein product have also been 

identified in ataxia oculomotor apraxia 2 (Moreira et al., 2004). 
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Senataxin contains a seven-motif domain characteristic for DNA/RNA helicases. It displays 
strong homology to several genes involved in RNA processing such as the immunoglobulin 
mu binding protein 2 gene (IGHMBP2), in which mutations are known to cause spinal 
muscular atrophy with respiratory distress type 1 (Grohmann et al., 2001). SETX was shown 
to be involved in the termination of RNA transcription (Skourti-Stathaki et al., 2011). It is 
therefore possible that mutations in SETX cause neuronal degeneration due to aberrant 
RNA processing. Overexpression of wild-type senataxin in primary hippocampal neurons is 
sufficient to trigger neuronal differentiation by protecting cells from apoptosis and 
promoting neuritogenesis (Vantaggiato et al., 2011).  

2.5 ALS5 (SPG11) 
This is the most common form of recessive fALS and is characterized by a juvenile onset. In 
seven families from Tunisia, Pakistan, and Germany, linkage to chromosome 15q15-21 was 
found (Hentati et al., 1998). Recently, 12 mutations in the spatacsin (SPG11) gene were 
identified in 10 unrelated pedigrees from Italy, Brazil, Canada, Turkey, and Japan (Orlacchio 
et al., 2010). Ten out of 12 mutations are frameshift or nonsense mutations. Mutations in 
SPG11 are known to cause autosomal recessive hereditary spastic paraplegia with a thin 
corpus callosum (Stevanin et al., 2007).  
Spatacsin contains four putative transmembrane domains, a leucine zipper and a coiled-coil 
domain. The exact function of spatacsin is unknown although it may play a role in axonal 
transport (Salinas et al., 2008). 

2.6 ALS6 (FUS) 
Linkage to a 42-Mb region containing more than 400 genes on chromosome 16 was reported in 
several families (Sapp et al. 2003). Recently, mutations in the fused in sarcoma/translated in 

liposarcoma (FUS/TLS) gene were shown to cause ALS6 (Kwiatkowski et al., 2009; Vance et al., 
2009). Several subsequent studies have identified additional mutations in FUS in ALS cohorts 

from different populations with an overall frequency of ~4% in fALS and ~1% in sALS (Belzil 
et al., 2009; Corrado et al., 2010; Hewitt et al., 2010; Groen et al., 2010). FUS mutations have also 

been detected in fALS patients with frontemporal dementia (FTD) and patients with juvenile 
ALS with basophilic inclusions (Bäumer et al., 2010; Huang et al. 2010; Yan et al., 2010).  

The FUS gene encodes for a DNA/RNA binding protein that is involved in several cellular 

pathways including the splicing, transport and maturation of RNA (Lagier-Tourenne et al., 
2010). FUS positive ubiquitinated cytoplasmic inclusions have been observed in spinal cord 

tissue of sALS and fALS patients without SOD1 and FUS mutations (Deng et al., 2010). The 
majority of FUS mutations identified reside in its C-terminal nuclear localization signal which 

results in an abnormal cytoplasmic localization of FUS and localization to stress granules (Bosco 
et al., 2010; Dormann et al., 2010; Ito et al., 2010). In yeast, overexpression of human FUS leads to 

toxicity, cytoplasmic inclusions and FUS localization to stress granules as can be seen in ALS 
patients  (Ju et al., 2011; Sun et al., 2011). In addition, transgenic rats overexpressing ALS mutant 

FUS develop progressive paralysis due to motor axon degeneration as well as neuronal loss in 
the cortex and hippocampus which are phenotypes seen in ALS and FTD (Huang et al., 2011). 

2.7 ALS7 (20p) 
Linkage to chromosome 20p was found in a large autosomal dominant fALS pedigree 
from the USA. A 5-Mb segment was identified that was shared between two affected 
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siblings (Sapp et al., 2003). This region contains 24 genes but no causal mutation has been 
identified. 

2.8 ALS8 (VAPB) 
In a large family from Brazil with 28 affected members across 4 generations, linkage was 
found at chromosome 20q13.3. Sequencing identified a mutation (P56S) in the vesicle 
associated membrane protein (VAMP)/synaptobrevin-associated membrane protein B 
(VAPB) gene in all affected members of this family (Nishimura et al., 2004). The same 
mutation was also identified in six additional families with different clinical courses 
including, ALS8, late-onset spinal muscular atrophy and typical severe ALS with rapid 
progression. A different mutation (T46I) was detected in a family from the UK (Chen et al., 
2010). 
The VAPB protein has been implicated in various cellular processes including the formation 
of the presynaptic terminal in neurons, vesicle trafficking and the unfolded protein response 
(Chen et al., 2010). Transgenic mice overexpressing ALS mutant VAPB or wild-type VAPB 
do not develop an overt motor neuron phenotype. However, transgenic mice 
overexpressing ALS mutant but not wild-type VAPB show TAR DNA-binding protein 43 
(TDP-43) positive cytoplasmic inclusions, a pathological hallmark of ALS (Tudor et al., 
2010). It has been suggested that mutant VAPB exerts a dominant-negative effect by forming 
dimeric complexes with wild-type VAPB thereby recruiting it into aggregates (Teuling et al., 
2007). 

2.9 ALS9 (ANG) 
Angiogenin (ANG) was identified as a candidate gene for ALS because it is located 237kb 

downstream of apurinic endonuclease, multifunctional DNA repair enzyme (APEX) and 

because of its functional similarity to vascular endothelial growth factor (VEGF) (Greenway 

et al., 2004). Both APEX and VEGF are candidate genes for sALS and will be discussed in the 

next section. A single nucleotide polymorphism (SNP) in ANG was associated with ALS in 

patients from Ireland and Scotland (Greenway et al., 2004). Missense mutations in ANG 

were found in 4 fALS cases and 11 sALS cases (Greenway et al., 2006). Subsequent 

sequencing in populations from Europe and the USA identified additional mutations in 

approximately 2% of fALS cases and 1% of sALS cases (Conforti et al., 2008; Fernández-

Santiago et al., 2009; Gellera et al., 2008; Paubel et al., 2008; Wu et al., 2007). However, ANG 

mutations have also been observed in healthy controls suggesting that not all mutations are 

pathogenic (Corrado et al., 2007). A K17I mutation was identified in a 4-generation family of 

which one patient presented with ALS, FTD, and Parkinsonism (Van Es et al., 2009a). An 

obligate carrier did not develop the disease suggesting incomplete penetrance. Two ANG 

mutations (K17I and K54E) were identified in two fALS cases from France who also had a 

mutation in FUS (Millecamps et al., 2010). An R145C mutation has been observed in a sALS 

patient with a G93D SOD1 mutation (Luigetti et al., 2011). A recent study showed a 

significantly higher frequency of ANG variants in both ALS and Parkinson’s disease (PD) 

patients which could reflect a genetic susceptibility to widespread neurodegeneration (Van 

Es et al., 2011). 

The ANG protein is a member of the pancreatic ribonuclease superfamily and a potent 
mediator of new blood vessel formation. In endothelial cells, the protein can promote 
ribosomal RNA (rRNA) production and cellular proliferation and is able to cleave transfer 
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RNA which results in inhibition of protein translation (Yamasaki et al., 2009). ANG is also 
expressed in spinal motor neurons (Sebastià et al., 2009). It is thought that ANG mutations 
cause ALS due to a loss of function and it has been shown that wild-type but not mutant 
angiogenin is neuroprotective and that mutant angiogenin impairs neurite outgrowth in 
vitro (Sebastià et al., 2009; Subramanian et al., 2008; Wu et al., 2007).  

2.10 ALS10 (TARDBP) 
TDP-43 was identified as one of the main components of ubiquitinated cytoplasmic 
inclusions in ALS and FTD (Neumann et al., 2006).  Sequencing of the gene encoding this 
protein (TARDBP) identified mutations in ALS patients (Kabashi et al., 2008; Shreedharan et 
al., 2008). To date over 40 mutations in TARDBP have been identified in several different 
populations with a frequency of ~5% of fALS cases and up to 2% of sALS cases (Corrado et 
al., 2009; Iida et al., 2010; Millecamps et al., 2010; Ticozzi et al., 2009; Van Deerlin et al., 2008). 
TARDBP mutations have also been observed in ALS-FTD and FTD patients (Benajiba et al., 
2009; Gitcho et al., 2009b). Despite the presence of TARDBP mutations in only a portion of 
ALS and FTD patients, TDP-43-positive cytoplasmic inclusions are found in almost all ALS 
patients but they are also seen in other neurodegenerative diseases such as FTD, 
Huntington’s, Alzheimer’s, and Parkinson’s disease  (Da Cruz and Cleveland, 2011). 
TDP-43, like FUS, is a DNA/RNA binding protein that is part of the heterogeneous 
ribonucleoprotein family. It has a role in gene transcription, regulation of splicing, and 
mRNA transport and stabilization (Buratti and Baralle, 2010). Except for one truncation 
mutation, all TARDBP mutations identified in ALS patients are missense mutations 
clustered in the glycine-rich C-terminal region which is involved in protein-protein 
interactions (Lagier-Tourenne et al., 2010). TARDBP mutations lead to an abnormal 
distribution of the protein to the cytoplasm. 

2.11 ALS11 (FIG4) 
Mutations in the PI(3,5)P(2)5-phosphatase (FIG4) gene on chromosome 6q21 are known to 

cause a severe form of Charcot-Marie-Tooth (CMT) disease with early onset and loss of 

sensory and motor neurons, CMT4J (Chow et al., 2007).  In a screen for FIG4 mutations in a 

large cohort of sALS and fALS patients, several variants were detected that were unique to 

fALS and sALS patients (Chow et al., 2009). Two mutations were identified in patients 

diagnosed with primary lateral sclerosis. To date, no other studies have replicated the 

finding of ALS-associated FIG4 mutations in other cohorts and it is unclear whether FIG4 

mutations are pathogenic in ALS patients. 

FIG4 is a phosphoinositide 5-phosphatase that regulates PI(3,5)P2 abundance. PI(3,5)P2 is a 

signalling lipid that mediates endosomal trafficking to the trans-Golgi network (Rutherford 

et al., 2006). Pale tremor mice, which are homozygous for null mutations in FIG4, show 

neurodegeneration in sensory and autonomic ganglia, motor cortex, striatum, and 

cerebellum. Motor neurons in the ventral spinal cord contain vacuoles (Chow et al., 2007). 

Mutant mice lacking Vac14, a gene encoding for a FIG4 interactor, show a similar 

neurodegeneration (Zhang et al., 2007). 

2.12 ALS12 (OPTN) 
Using homozygosity mapping in six ALS patients from consanguineous marriages, an 
overlapping region on chromosome 10 was identified as the candidate region. Screening of 
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17 genes in this region revealed a homozygous deletion in the gene for optineurin (OPTN), a 
gene known to cause primary open-angle glaucoma, in two siblings and an individual from 
a different family (Murayama et al., 2010; Rezaie et al., 2002). In addition, a homozygous 
nonsense (Q398X) mutation was identified in one fALS case (Murayama et al., 2010). 
Subsequent screening in a larger cohort of fALS and sALS patients identified a heterozygous 
missense mutation (E478G) in a four individuals with ALS from two families (Murayama et 
al., 2010). A homozygous E478G mutation was identified in a Japanese fALS case in a 
different study (Iida et al., 2011).  One additional nonsense mutation and one missense 
mutation in OPTN were identified in fALS cases from Italy (Del Bo et al., 2011). Two 
separate studies identified novel variants in fALS patients but the authors state that these 
variants may be a genetic predisposition to glaucoma instead of causing ALS (Belzil et al., 
2011; Millecamps et al., 2011).  One study also detected mutations in sALS patients with a 
rapid disease progression (van Blitterswijk et al., 2011). Another study could not identify 
OPTN mutations in fALS and sALS patients (Sugihara et al., 2011). 
OPTN is a multifunctional protein involved in membrane trafficking, maintainance of the 
Golgi complex, and exocytosis (Sahlender et al., 2005). OPTN can inhibit the activation of 
NFκB and it has been proposed that mutations in OPTN causing ALS may relieve this 
inhibition and cause neuronal death (Murayama et al., 2010).  

2.13 ALS14 (VCP) 
Recently an exome sequencing study detected a mutation in the gene encoding valosin-

containing protein (VCP) in an Italian family. Subsequent screening in 210 ALS cases from 

unrelated families identified four mutations in VCP in four different families from Italy and 

the USA (Johnson et al., 2010). Mutations in the gene for VCP, located on chromosome 

9p13.3, are a known cause for the multi-system degenerative disease inclusion body 

myopathy with Paget’s disease and frontotemporal dementia (IBMPFD) (Watts et al. 2004). 

IBMPFD, like ALS, is characterized pathologically by TDP-43 inclusions (Weihl et al., 2008). 

VCP is an AAA+-ATPase that mediates ubiquitin-dependent extraction of substrates from 

multiprotein complexes for subsequent recycling or degradation by the proteasome. It plays 

a role in a variety of cellular functions including Golgi biogenesis, cell cycle regulation, 

DNA damage repair and protein homeostasis through the ubiquitin-proteasome system (Ju 

and Weihl, 2010). It is thought that VCP mutations result in the impairment of protein 

degradation trough both the ubiquitin-proteasome system and autophagy leading to the 

formation of inclusions. VCP mutations found in FTD and ALS have been shown to disrupt 

TDP-43 localization from the nucleus to the cytoplasm which could be caused by the 

disruption in protein homeostasis (Gitcho et al, 2009a; Ju and Weihl, 2010). In mice, a 

missense mutation in vacuolar sorting protein 54, the mouse homologue of VCP, causes 

motor neuron degeneration (Schmitt-John et al., 2005). 

2.14 Other fALS associated genes  
In addition to the genes listed in the previous sections, several other genes have been 
implicated in fALS.  
Dynactin 1 (DCTN1) was discovered as a candidate gene for ALS when a G59S mutation in 
this gene was identified in a family with a slowly progressive, autosomal dominant form of 
lower motor neuron disease without sensory symptoms (Puls et al., 2003; Puls et al., 2005). 
Subsequent sequencing of the DCNT1 gene in 250 ALS patients revealed the presence of 
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three heterozygous missense mutations in one sALS and three fALS cases with typical ALS 
(Münch et al., 2004). An additional mutation was detected in a patient with ALS and his 
brother who had FTD (Münch et al., 2005). The pathogenicity of these variants has however 
not been established. Screening for DCTN1 mutations in a cohort of ALS, FTD or ALS-FTD 
patients did not result in the identification of disease segregating variants (Vilariño-Güell et 
al., 2009). One of the missense variants identified in a sALS case was also found in controls 
in the same study (Vilariño-Güell et al., 2009). Interestingly, five mutations in DCTN1 were 
found in eight families with Perry syndrome, a disease that is characterized by 
Parkinsonism and TDP-43- and ubiquitin- positive inclusions (Farrer et al., 2009).  
In a 3-generation family with typical ALS, a mutation in the D-amino acid oxidase (DAO) 
gene was identified (Mitchell et al., 2010).  However, screening of an additional 322 
unrelated fALS cases did not reveal any other causal mutation in this gene (Mitchell et al., 
2010). Additional screening will be needed but DAO mutations seem to be very rare in ALS.   
Because of their structural and functional similarities to FUS, the genes encoding TAF15 
RNA polymerase II, TATA box binding protein associated factor (TAF15) and Ewing 
sarcoma breakpoint region 1 (EWS) were screened in fALS cases (Ticozzi et al., 2010). Two 
missense mutations in TAF15 (A31T and R395Q) were identified in three fALS cases and not 
in 1159 controls. However, one of the fALS cases with an R395Q mutation also carried a 
mutation in TARDBP. Moreover, the R395Q is in close proximity to two non-pathogenic 
variants, suggesting it is a benign polymorphism (Ticozzi et al., 2010). 
Recently, a mutation in the sigma non-opioid intracellular receptor 1 (SIGMAR1) gene was 
identified in an autosomal recessive family with juvenile ALS (Al-Saif et al., 2011). 
Interestingly, variants in the 3’UTR of SIGMAR1 were described in three ALS-FTD families 
(Luty et al., 2010). 
An X-linked dominant ALS locus has been reported but has not been further described 
(Siddique et al., 1998). Recently, mutations in the gene encoding ubiquitin-like protein 
ubiquilin 2 (UBQLN2) were identified as the cause of dominantly inherited X-linked ALS 
and ALS/dementia (Deng et al., 2011). 
Several family pedigrees contain individuals affected by ALS, FTD or both. The first linkage 
study performed in 16 of these ALS-FTD families found linkage to chromosome 9q21-q22, 
designated as ALS-FTD1 (Hosler et al., 2000). This association has thus far not been 
replicated in other ALS-FTD families. Linkage to chromosome 9p in ALS-FTD families 
(ALS-FTD2) has also been reported. A hexanucleotide repeat expansion in the chromosome 
9 open reading frame 72 (C9ORF72) gene was recently identified as the causal genetic defect 
of ALS-FTD2 and will be discussed in a next section (Dejesus-Hernandez et al., 2011; Renton 
et al., 2011). Mutations in the gene encoding microtubule-associated protein tau (MAPT) 
have been reported in patients with ALS or FTD (Hutton et al., 1998).  
Finally, mutations in the neurofilament heavy (NEFH) gene and the paraoxonase genes 

(PON1, 2, 3) have been identified in fALS cases and these genes will be discussed in more 

detail in the following section. 

3. Genetics of sporadic ALS 

Sporadic ALS is considered to be a complex disease, where both genetic and environmental 
factors contribute to pathogenesis. Several association studies have been performed to identify 
the genetic contribution in sALS with mixed success, possibly due to the small sample sizes in 
many of these studies. Although their precise contribution to sALS is often unclear, a few of 
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the risk factors identified to date have been consistently replicated. Furthermore, several of 
these associated genes have overlapping cellular functions such as in RNA metabolism, vesicle 
trafficking, and axonal transport. In this section, genes that have been associated with sALS 
will be discussed (Table 2). In addition to these genes, mutations in several fALS associated 
genes that were discussed in the previous section have been found in a portion of sALS cases. 
 

Associated 
Gene 

Protein 
Positive 
studies 

Negative 
studies 

Type of 
association 

found 
Additional information 

APEX 

Apurinic 

endonuclease, 

DNA repair 

enzyme 

2 2 SNP association 
Protein has a role in oxidative 

stress 

ATXN2 Ataxin-2 6 0 PolyQ repeats 

Intermediate polyQ repeats 

increase risk 

for sALS/interaction with TDP-43 

CHMP2B 

Chromatin 

modifying 

protein 2B 

2 0 Mutations 

Mutations are known to cause FTD. 

All patients have lower motor neuron 

signs consistent with PMA. 

HFE 
Haemo-

chromatosis 
5 1 SNP association 

Mutations cause hereditary 

haemochromatosis 

NEFH 
Neurofilament-

heavy 
5 3 

Deletions/ 

insertions/ 

mutations 

Neurofilament-containing 

inclusions are a 

pathological hallmark of ALS 

SMN1 
Survival motor 

neuron 1 
3 1 

Abnormal copy 

number 
SMN1 deletions cause SMA 

SMN2 
Survival motor 

neuron 2 
1 5 Deletions 

SMN2 copy number variation 

affects SMA 

disease severity 

PON1, 2, 3 Paraoxonase 7 3 

SNP 

association/ 

mutations 

Possible gene-environment 

interaction 

PRPH Peripherin 3 0 Mutations 

Peripherin-containing inclusions 

are a pathological hallmark of 

ALS. Possible involvement of 

abnormal splice forms. 

VEGF 

Vascular-

endothelial 

growth factor 

2 6 SNP association 

Deletion of HRE in promoter 

results in an 

ALS phenotype in mice. 

Possible gender association. 

Table 2. Genes associated with sporadic ALS 

3.1 Apurinic endonuclease, multifunctional DNA repair enzyme (APEX1) 
A study in 117 Scottish sALS patients showed association of a common SNP resulting in a 

D148E amino-acid change with ALS (Hayward et al., 1999). This finding was replicated in 169 

Irish sALS patients (Greenway et al., 2004). In one study, DNA extracted from CNS tissue from 

81 sALS patients was screened but the D184E SNP was not associated with ALS (Tomkins et 

al., 2000). A different study assessing 134 Italian sALS patients also failed to detect significant 

association between this SNP and ALS (Coppedè et al., 2010).  These inconsistent association 

results might reflect a population-specific effect of the APEX1 D184E allele.  
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APEX1 is involved in DNA repair and maintains and stimulates the DNA binding activity of 

transcription factors (Fishel and Kelley, 2007). Frontal cortical levels and activity of APEX1 

were significantly reduced in 11 ALS patients as compared to six controls (Kisby et al., 1997). 

However, in a different study, increased expression levels and activity in ALS brain and 

spinal cord motor neurons were observed (Shaikh and Martin, 2002). 

3.2 Ataxin-2 (ATXN2) 
In a screen for toxicity modifiers of TDP-43 in yeast, ataxin-2 (ATXN2) was identified 

(Elden et al., 2010). ATXN2 and TDP-43 form a RNA-dependent complex and are 

mislocalized in spinal cord motor neurons in ALS patients. ATXN2 has a polyglutamine 

(polyQ) region which is normally 22-23 repeats long. Expansion of this region of the 

protein to 34 repeats causes spinocerebellar ataxia type 2 (SCA2) (Imbert et al., 1996; Pulst 

et al., 1996; Sanpei et al. 1996). The polyQ repeat length of ATXN2 was determined in 915 

ALS patients and 980 controls and intermediate length polyQ repeats (23-34) were found 

to be more common in ALS patients and thus may be a risk factor for ALS (Elden et al., 

2010). This finding was replicated in several studies with ALS patients from different 

populations. Interestingly, the exact length of the polyQ repeat region seems to vary 

between populations (Chen et al., 2011; Daoud et al., 2011; Lee et al., 2011; Ross et al., 

2011; Van Damme et al., 2011).  

Longer polyQ repeats in ATXN2 possibly stabilize the protein and enhance its interaction 

with TDP-43. Under stress conditions, increased mislocalization of TDP-43 to the cytoplasm 

was observed in cells harbouring expanded polyQ repeats in ATXN2 (Elden et al., 2010). 

ATXN2 was shown to be part of stress granules and interacts with poly-A-binding-protein 1 

(PABP), which is involved in poly(A) shortening and translation initiation (Ralser et al., 

2005). ATXN2 was also shown to interact with endophilin A1 and A3, which are involved in 

synaptic vesicle endocytosis (Nonis et al., 2008). 

3.3 Chromatin modifying protein 2B (CHMP2B) 
A mutation in a splice-site of CHMP2B was first identified in a large Danish family with 

FTD and mutations have since been detected at low frequency in other FTD patients 

(Skibinski et al., 2005). Screening of the CHMP2B gene in ALS patients identified two 

mutations in two fALS patients. These patients displayed a predominant lower motor 

neuron phenotype and one of the patients showed signs of FTD (Parkinson et al., 2006). 

Sequencing of the CHMP2B gene in 433 ALS patients identified three missense mutations in 

one fALS case and three sALS cases (Cox et al., 2010). 

The exact function of CHMP2B is unknown but its yeast homologue, vacuolar protein 

sorting 2 (VPS2), is a component of the ESCRTIII complex (Skibinski et al., 2005). This 

complex is involved in the trafficking of proteins between plasma membrane, trans-Golgi 

network, and lysosomes. The CHMP2B mutation identified in FTD results in dysmorphic 

endosomal structures similar to what is seen in ALSin overexpression (Skibinski et al., 2005). 

In cortical neurons, overexpression of the FTD related CHMP2B splice-site mutant leads to 

dendritic retraction prior to cell death and the accumulation of autophagosomes (Lee et al., 

2007). In hippocampal neurons, the same FTD related CHMP2B mutant causes a decrease in 

large dendritic spines suggesting that CHMP2B is needed for dendritic spine growth and 

maturation (Belly et al., 2010).  
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3.4 Haemochromatosis (HFE) 
Mutations in the HFE gene are a cause of hereditary haemochromatosis and have been 

associated with Alzheimer’s disease and PD (reviewed by Nandar and Connor, 2011). The 

first report examining the presence of HFE mutations in ALS found no association between 

two mutations (H63D and C282Y) and ALS patients from the USA (Yen et al., 2004). 

However, several subsequent studies in a total of 1133 ALS patients and almost 7000 

controls individuals from the USA, Ireland, UK, Italy, The Netherlands, and China reported 

association between the HFE H63D polymorphism and an increased risk for ALS (Goodall et 

al., 2005; He et al, 2011; Restagno et al., 2007; Sutedja et al., 2007; Wang et al., 2004).  

The most important function of HFE is the regulation of iron homeostasis by binding to the 

transferrin receptor and reducing the transport of iron molecules (Feder et al., 1998). When 

HFE with the H63D mutation binds to the transferrin receptor, iron transport is reduced 

leading to iron accumulation and increased oxidative stress. In addition, it has been shown 

that in neuronal cell lines the H63D mutation induces increased oxidative stress, altered 

glutamate regulation and prolonged ER stress, all cellular processes affected in ALS (Liu et 

al., 2011; Mitchell et al. 2011). 

3.5 Neurofilaments (NEFL, NEFM, NEFH) 
One of the pathological hallmarks of ALS is the presence of neurofilament-containing 

inclusions in the cell body and proximal axon of spinal motor neurons (Delisle and 

Carpenter, 1984). Neurofilaments are intermediate filaments that constitute the most 

abundant cytoskeletal element in large myelinated axons. Neurofilaments are formed by the 

co-polymerization of light (NEFL), medium (NEFM), and heavy (NEFH) subunits, which 

are each encoded by different genes.  

Several lines of evidence suggest a role for neurofilaments in neurodegeneration. Initial 
evidence came from mouse models overexpressing or deficient for neurofilaments 
(reviewed in Lariviere and Julien, 2004).  Overexpression of NEFL or NEFH resulted in an 
abnormal accumulation of neurofilaments, as seen in ALS patients, and in axonal atrophy 
and motor dysfunction but not degeneration. Surprisingly, both overexpression and 
knockout of neurofilaments in transgenic mutant SOD1 mice increases life span (Couillard-
Després et al., 1998; Williamson et al., 1998). This indicates that the role of neurofilaments in 
ALS is complex and more research is needed to examine the possible contribution of 
neurofilaments to ALS pathogenesis. 
Additional evidence for a role for neurofilaments in ALS comes from genetic studies. 
Mutations in NEFL have been identified in some forms of the sensory and motor neuropathy 
Charcot-Marie-Tooth disease (Mersiyanova et al., 2000; Shin et al., 2008). The C-terminal tail 
region of NEFH contains phosphorylation motifs known as KSP repeats. In humans there 
are two common polymorphic variants of 44 (short) or 45 (long) repeats. Homozygosity for 
the short repeat allele is associated with Russian sporadic motor neuron disease patients 
(Skvortsova et al., 2004). Deletions and insertions in the KSP repeats of NEFH were detected 
in ALS patients (Al-Chalabi et al., 1999; Figlewicz et al., 1994; Tomkins et al., 1998). 
However, another study in 117 unrelated fALS patients could not identify deletions or 
insertions in the KSP repeats of NEFH (Rooke et al., 1996). A missense mutation in the NEFH 
gene was identified in a sALS case and not in controls (Garcia et al., 2006). Moreover, in a 
recent candidate gene sequencing study, three missense mutations were identified in the 
NEFH gene in two sALS and one fALS case. However, co-segregation of the mutation in the 
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fALS case could not be tested and none of the missense mutations were predicted to be 
deleterious (Daoud et al., 2011). One study did not identify ALS specific variation in the 
NEFH gene in fALS and sALS samples (Vechio et al., 1996).  

3.6 Paraoxonase genes (PON) 
The paraoxonase gene cluster consists of 3 genes (PON1, PON2, and PON3) and is located in 
an 80-kb block on chromosome 7q21.3-22.1. PON1 and PON3 are primarily expressed in 

liver where they are associated with high-density lipoproteins, whereas PON2 is 
ubiquitously expressed (Costa et al., 2005; Draganov et al., 2000; Ng et al., 2002). Both PON1 

and PON2 expression has been shown in mouse brain (Giordano et al., 2011). All PON 
proteins are able to hydrolyze lactones and PON1 is able to detoxify organophosphate 

pesticides and neurotoxins. Since neurotoxins are not normally present in the body the 
biological function of PON1 is thought to be protection of low-density lipoproteins from 

oxidation (Mackness et al., 1991). PON2 and PON3 share this function (Draganov et al., 
2000; Ng et al., 2001). A higher incidence of ALS among Gulf war veterans and farmers 

suggested that chemical exposure may be a risk factor for ALS (Chió et al., 1991; Horner et 
al., 2003). Because PON proteins reduce oxidation and are able to detoxify neurotoxins these 

proteins have been investigated for association with ALS.  
Polymorphisms in PON1 and PON2 as well as a haploblock spanning PON2 and PON3 were 

found to be associated with sALS (Saeed et al., 2006; Slowik et al., 2006). Since then several 
other studies in different populations have reported association of SNPs in the PON genes 

with sALS (Cronin et al., 2007; Landers et al., 2008; Morahan et al., 2007; Valdmanis et al., 
2008). However, a meta-analysis including 4037 cases and 4609 controls from five case-

control studies and several genome-wide association studies showed no significant 
association between PON polymorphisms and ALS (Wills et al., 2009). More recently, two 

other studies failed to detect association between PON polymorphisms and ALS (Ricci et al. 
2011; Zawislak et al., 2010). In a recent sequencing study, eight mutations in all three PON 

genes were identified in fALS and sALS patients (Ticozzi et al., 2010). Mutations in the PON 
genes might play a role in ALS but additional sequencing is needed to confirm this. 

Interestingly, PON1 activity can vary greatly depending on polymorphisms in its coding 

region (Costa et al., 2005). Thus, mutations in the PON genes could affect PON activity and 

thereby contribute to ALS pathogenesis. Toxicity in neurons caused by oxidative stress was 

higher in cells from PON2 knockout mice than in wild-type mice, suggesting that PON2 has 

a protective effect against neurotoxicity caused by oxidative stress (Giordano et al., 2011). 

3.7 Peripherin (PRPH) 
Peripherin is an intermediate filament similar to neurofilaments and is also associated with 
axonal spheroids in the proximal axon of spinal cord motor neurons of ALS patients (Corbo 
and Hays, 1992). It is also present in Lewy body-like inclusions and Bunina bodies that are 
seen in a portion of ALS patients (He and Hays, 2004; Mizuno et al., 2011). Peripherin is 
predominantly expressed in the peripheral nervous system and in spinal motor neurons in 
the central nervous system. After neuronal injury, peripherin expression is upregulated in 
spinal motor neurons and this upregulation has been linked to axonal regeneration (Troy et 
al., 1990). However, transgenic mice with wild-type overexpression of peripherin develop a 
late-onset and selective motor neuron disease characterized by intermediate filament 
inclusions (Beaulieu et al., 1999). For these reasons, the possibility of PRPH mutations in 
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ALS patients was investigated. Two missense mutations and a frameshift deletion in the 
PRPH gene have been identified in sALS patients (Corrado et al., 2011; Gros-Louis et al., 
2004; Leung et al., 2004).  Additional screening of the PRPH gene for mutations in larger 
cohorts of ALS patients and controls is needed to determine the frequency and 
pathogenecity of PRPH mutations.  
Expression of abnormal peripherin splice variants has also been suggested to play a role in 

ALS pathogenesis. A toxic splice variant of peripherin (Per61) was found in motor neurons 

of mutant SOD1 transgenic mice but not wild-type mice (Robertson et al., 2003). Expression 

of Per61 has more recently also been observed in mutant TDP-43 transgenic mice but not in 

wild-type TDP-43 transgenic mice (Swarup et al., 2011). In addition, Per61 specific 

antibodies stain aggregates in human ALS but not in control spinal cord (Swarup et al., 

2011). The presence of abnormal peripherin splice variants (Per28) has also been shown in 

humans (Xiao et al., 2008). Per28 overexpression results in peripherin aggregation and an 

upregulation of peripherin expression at the mRNA and protein levels in ALS patients as 

compared to controls (Xiao et al., 2008). A different study showed expression of Per28 in 

lumbar spinal cord lysates of ALS patients but not control cases (McLean et al., 2010). 

Although the functional significance of these abnormal splice forms is unknown they seem 

to play a role in the development ALS. 

3.8 Survival motor neuron (SMN) 1 and 2  
Two highly homologous copies of the survival motor neuron gene exist in humans, 

telomeric SMN1 and centromeric SMN2. SMN2, which lacks exon 7 due to a nucleotide 

difference in a splice enhancer site, produces a less stable SMN protein and has only 20% of 

the biological function of SMN1 (Lorson et al., 1998). It has been shown that TDP-43 

overexpression regulates the inclusion of exon 7 during pre-mRNA splicing of SMN2 (Bose 

et al., 2008).   

Deletions or mutations in SMN1 cause the autosomal recessive disorder spinal muscular 

atrophy (SMA), whereas variation in SMN2 copy number affects SMA disease severity 

(Lefebvre et al., 1997). SMA patients with a higher copy number of SMN2 generally have 

a milder form of the disease (Gavrilov et al., 1998). SMN1 is widely expressed and 

functions in the assembly of the spliceosome as part of the SMN complex. SMN1 also 

interacts with several proteins involved in mRNA editing, transport, splicing, 

transcriptional regulation, and post-transcriptional processing and modification of rRNA 

(Eggert et al., 2006). The impaired assembly of the spliceosome could lead to neuronal 

degeneration. 

Thus far, five different studies have failed to detect homozygous SMN1 deletions in ALS 
patients (Gamez et al., 2002; Jackson et al., 1996; Moulard et al., 1998; Orrell et al., 1997; 
Parboosingh et al., 1999). However, an increased frequency of abnormal copy number (one 
or three copies) of SMN1 was found in ALS patients compared to controls (Corcia et al., 
2002). However, these results were inconsistent with other reports (Corcia et al., 2006; 
Veldink et al., 2001; Veldink et al., 2005). Recently, a large study was published including 
new samples of 847 sALS patients and 984 controls, showing that SMN1 duplications were 
associated with ALS susceptibility (odds ratio [OR] = 2.07, 95% confidence interval [CI] = 
1.34 - 3.20. (Blauw et al, 2011)). A meta-analysis of all previously published data, taking 
possible heterogeneity between studies into account, confirmed this association with SMN1 
duplications. Other work has shown that homozygous deletions of SMN2 are associated 
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with sporadic adult-onset lower motor neuron disease (Echaniz-Laguna et al., 2002; 
Moulard et al., 1998). Homozygous deletions of SMN2 were also found to be 
overrepresented in 110 ALS patients (16%) compared to 100 controls (4%) (Veldink et al., 
2001). SMN2 deletions were associated with shorter survival in this study. However, a study 
by the same group using more ALS and control samples and several other studies did not 
find a higher frequency of SMN2 deletions in ALS patients versus controls (Corcia et al., 
2006; Gamez et al., 2002; Moulard et al., 1998; Parboosingh et al., 1999; Veldink et al., 2005). 
The recent meta-analysis showed that there is no increased frequency of homozygous SMN2 
deletions in ALS patients, and that neither SMN1 nor SMN2 appear to influence survival or 
age at onset of disease (Blauw et al. 2011).  
Homozygous deletions in SMN1 or SMN2 do not play a role in ALS but an abnormal copy 
number in SMN1 could increase risk for ALS and it is important to study the consequences 
on protein level in brain and spinal cord of having three copies of SMN1 in order to 
determine the potential damaging effect.  

3.9 Vascular endothelial growth factor (VEGF) 
VEGF, a protein that stimulates angiogenesis in response to hypoxia, was identified as a 

candidate gene for ALS based on the finding that a deletion in the hypoxia response element 

(HRE) in the promoter of this gene in mice, resulting in decreased VEGF expression, led to 

progressive motor neuron degeneration (Oosthuyse et al., 2001). In addition, VEGF gene 

delivery in muscle and VEGF overexpression prolongs survival in mutant SOD1 transgenic 

mice. Furthermore, intracerebroventricular VEGF administration prolongs survival in 

mutant SOD1 transgenic rats (Azzouz et al., 2004; Storkebaum et al., 2005; Wang et al., 2007). 

Finally, decreased expression of VEGF and its receptor VEGFR2 is observed in spinal cords 

of ALS patients (Brockington et al., 2006). 

Sequencing of the VEGF gene and its promotor in ALS patients failed to identify ALS 

specific mutations (Brockington et al., 2005; Gros-Luois et al., 2003; Lambrechts et al., 2003). 

However, a large study in 750 ALS patients and over 1200 controls from Sweden, Belgium, 

and England found association between two haplotypes determined by three SNPs and an 

increased risk for ALS (Lambrechts et al., 2003). These haplotypes lowered the circulating 

levels of VEGF and VEGF transcription (Lambrechts et al., 2003). This association was 

replicated in a study with small sample size (Terry et al., 2004). In contrast, subsequent 

studies could not confirm the association between VEGF and ALS in Dutch, British, 

American, Italian, Polish and Chinese populations (Brockington et al., 2005; Chen et al., 

2006; Del Bo et al., 2008a; Golenia et al., 2010; Van Vught et al., 2005; Zhang et al., 2006). 

Furthermore, a meta-analysis on several of these studies found no association between 

VEGF polymorphisms and ALS (Lambrechts et al., 2009). A study in German ALS patients 

identified an association of a VEGF SNP with sALS in women (Fernández-Santiago et al., 

2006). A different SNP was associated with ALS in male patients in a large meta-analysis 

(Lambrechts et al., 2009). This suggests that the role of VEGF in ALS may be gender 

dependent. An association of VEGF SNPs with age of onset in ALS was also reported 

although no such association was observed in the meta-analysis (Chen et al., 2007; 

Lambrechts et al., 2009).  

In summary, studies in rodent models suggest a role for VEGF in ALS, possibly as a 
therapeutic target. However, genetic studies do not yet provide conclusive evidence for a 
genetic role for VEGF in ALS, although gender dependent effects may exist. 
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3.10 Genome wide association studies in sporadic ALS 
Several genome-wide association studies (GWAS) have been performed in sALS patients. 

These studies have generated association results that have been replicated in the same study 

but rarely in independent studies. Although several of the associated genes discussed below 

are plausible to contribute to ALS considering their functional roles, the lack of consistent 

replication results makes it difficult to firmly establish their role in sALS. 

A GWAS in 276 ALS patients and 271 healthy controls identified 34 possible associated 

SNPs but none of these reached genome-wide significance after Bonferroni correction 

(Schymick et al., 2007). A SNP near the gene FGGY carbohydrate kinase domain containing 

(FGGY) was reported to be associated in a GWAS in 1152 ALS patients with an odds ratio of 

1.35 (Dunckley et al., 2007). However, two replication studies in a total of 2478 sALS patients 

and 2744 controls did not detect this association (Fernández-Santiago et al., 2011; Van Es et 

al., 2009b). No mutations in FGGY were found by sequencing in 190 ALS patients (Daoud et 

al., 2010).  

A GWAS in 461 ALS patients and 450 controls found a variant in the inositol 1, 4, 5-

triphosphate receptor 2 gene (ITPR2) to be associated with ALS. This association was 

replicated in the same study in a cohort of 876 patients and 906 controls and in the combined 

analysis (Van Es et al., 2007). ITPR2 has a role in glutamate-mediated neurotransmission, 

regulation of calcium concentration and apoptosis. However, the ITPR2 association has not 

been found in a replication study and in subsequent GWAS (Chiò et al., 2009; Cronin et al., 

2008; Fernández-Santiago et al., 2011; Laaksovirta et al., 2010; Shatunov et al., 2010; Van Es 

et al., 2009c).  

Variation in the dipeptidyl-peptidase 6 (DPP6) gene was found to be significantly associated 

with sALS in a GWAS performed in a combined GWA data set from the USA and the 

Netherlands (Van Es et al., 2008). This association was replicated in three additional 

independent populations from The Netherlands, Sweden, and Belgium (Van Es et al., 2008). 

The same variant was the top hit in a joint analysis of GWA data sets in an Irish population 

and the same Dutch and American populations, although it did not reach genome-wide 

significance (Cronin et al., 2008). Upon addition of a Polish data set the association could not 

be replicated which could point to a population-specific effect (Cronin et al., 2009). In an 

Italian cohort of 266 ALS patients association of the same SNP was replicated (Del Bo et al., 

2008b). However, subsequent replication studies and GWAS could not find evidence for a 

role of DPP6 in ALS (Chiò et al., 2009; Daoud et al., 2010; Fogh et al., 2011; Laaksovirta et al., 

2010; Li et al., 2009; Shatunov et al., 2010; Van Es et al., 2009c). Interestingly, in a genome 

scan for copy number variations, including 4434 ALS patients and over 14000 controls, a 

suggestive association was found for the DPP6 locus (Blauw et al., 2010). Not much data is 

available on the function of DPP6, but it is expressed in brain and able to regulate the 

activity of neuropeptides and to bind A-type neuronal potassium channels (Nadal et al., 

2003). 

Another two-stage GWAS in sALS patients was unable to find any associated SNPs that 
reached genome-wide significance, although suggestive association was found on 
chromosome 7p13.3 (Chiò et al., 2009). 
Survival analysis in a GWAS using samples from the USA and Europe revealed that a CC 
genotype of a SNP in the kinesin-associated protein 3 (KIFAP3) gene conferred a 14-month 
survival advantage on ALS patients (Landers et al., 2009). Expression data using RNA from 
brain tissue and lymphoblasts of patients showed that the favorable genotype significantly 
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decreased KIFAP3 expression (Landers et al., 2009). However, two subsequent studies in 
two Italian cohorts could not replicate the finding that the CC genotype had a beneficial 
effect on survival or decreased KIFAP3 expression in ALS patients (Orsetti et al., 2011; 
Traynor et al., 2010). KIFAP3 is part of the trimeric kinesin 2 motor complex KIF3 which 
mediates binding between proteins and their cargo. It serves multiple functions including a 
role in mitosis and intracellular transport of organelles and proteins in various tissues 
including neurons (Haraguchi et al., 2006; Takeda et al., 2000).  
The largest GWAS to date identified two loci, on chromosome 9p21.2 and 19p13.11, to be 
associated with sALS. The genetic variant in 19p13.11 maps to a haplotype within the 
boundaries of the UNC13A gene. Two studies failed to replicate this finding, but were 
underpowered, and more studies are needed to firmly establish genetic variation in 
UNC13A as being causative to sALS. 
The association to chromosome 9p21.2 will be discussed in more detail in the following 
sections. 

4. ALS-FTD2 (9p13.2-21.3) 

Several linkage studies associated chromosome 9p to ALS-FTD, designated as ALS-FTD2 
(Table 3). The first two independent studies found linkage to locus 9p13.2-21.3 in a Dutch 
and a Scandinavian family (Morita et al., 2006; Vance et al., 2006). Subsequently, eight 
other linkage studies in families from Canada, France, Belgium, North-America, Australia 
and Wales showed association to regions on chromosome 9p13.1-q21 (Boxer et al., 2010; 
Gijselinck et al., 2010; Le Ber et al., 2009; Luty et al., 2009; Momeni et al., 2006; Pearson et 
al., 2011; Valdmanis et al., 2007; Yan et al., 2006). Individuals in these families were 
diagnosed with ALS, FTD, and ALS-FTD. However, dementia, psychosis and 
Parkinsonism were also seen. Besides the co-occurrence of ALS and FTD in families, there 
is also considerable clinical overlap between ALS and FTD, i.e. mild cognitive 
abnormalities occur in up to 50% of ALS patients and in approximately 5% of ALS 
patients FTD is present with marked behavioral changes and language impairment 
(Elamin et al., 2011; Ringholz et al., 2005). Furthermore, ALS and FTD are both 
characterized by TDP-43 positive ubiquitinated cytoplasmic inclusions (Neumann et al., 
2006). This strongly supports the idea that there is a common genetic contribution to the 
pathogenesis of both diseases. 
A total of 41 genes, four micro RNAs, two pseudogenes, and a non-coding RNA in the 
associated chromosome 9p region have been screened for mutations but only in one 
study a premature stop codon in the intraflagellar transport 74 gene (IFT-74) was 
identified in two brothers from one family (Momeni et al., 2006). However, no mutations 
in IFT-74 were identified in any of the other ALS-FTD families that were linked to 
chromosome 9p and it is therefore unlikely that this mutation is the underlying cause in 
these families. 
Interestingly, a recent GWAS in sALS patients found association between ALS and 
chromosome 9p21.2. 2323 ALS patients and 9013 controls were genotyped and genome-
wide significance was found for SNPs on these two loci (van Es et al., 2009c). This 
finding was replicated in a second, independent cohort of 2532 ALS patients and 5940 
controls. The associated SNPs are in a 80-kb linkage disequilibrium (LD) block on 
chromosome 9 which overlaps with the common region found in the ALS-FTD linkage 
studies (Figure 1).  
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Study Linkage region Families 
Country/ 
Region 

fALS FTD 
ALS-
FTD 

Genes 
screened 

Mutatio
ns 

Yan  

et al. 2006 

9p13.3-p22.1 

(D9S1684-

D9S1678) 

15 N.K. N.K. N.K. N.K. 27 None 

Morita  

et al. 2006 

9p13.2-p21.3 

(D9S1870-

D9S1791) 

1 Scandinavia 5 9 - 2 None 

Vance  

et al. 2006 

9p13.2-p21.2 

(D9S2154-

D9S1874) 

1 
The 

Netherlands 
7 2 3 3 None 

Momeni  

et al. 2006 

9p13.2-p22.2 

(D9S157-D9S1874) 
2 

North-

America 
1 - 9 14 

p.Q342X 

in 

IFT-74 

Valdmanis 

et al. 2007 

9p13.3-p22.2 

(D9S157-D9S1805) 
2 

Canada/ 

France 
14 3 4 4 None 

Le Ber  

et al. 2009 

9p11.2-p21.2 

(AFM218xg11-

D9S301) 

6 France 9 10 12 
29 + 4 

miRNAs 
None 

Luty  

et al. 2008 

9p21.2-q21 

(D9S169-D9S167) 
1 Australia 2 5 2 11 None 

Gijselinck 

et al. 2010 

9p22.3-q21 

(D9S235-D9S257) 
1 Belgium 1 8 - 17 None 

Boxer  

et al. 2010 

9p21.2-p23 

(D9S1808-D9S251) 
1 USA 2 5 3 10 None 

Pearson  

et al. 2011 
9p21.2-p21.2 1 Wales 2 5 1 8 None 

Table 3. Overview of linkage studies in ALS-FTD families. N.K. = not known 

 

 

Fig. 1. Schematic overview of the associated regions found by linkage studies and GWAS. 

Since this initial report several other GWAS in ALS patients have replicated the association 
to chromosome 9p21.2. In a GWAS performed on 405 Finnish ALS patients, of whom 93 
patients had fALS, and 497 control individuals two association peaks were identified 
(Laaksovirta et al., 2010). One peak corresponded to the autosomal recessive D90A allele of 
the SOD1 gene. The other was identified in a 232-kb LD block on chromosome 9p21.2. The 
association signals in this study were mainly driven by the 93 fALS patients. A 42-SNP risk 
haplotype across the chromosome 9p21 locus was shared between 41 fALS cases with an 
odds ratio of 21.0 (Laaksovirta et al., 2010). In another GWAS in an ALS cohort from the UK 
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consisting of 599 ALS patients and 4144 control individuals two SNPs on chromosome 
9p21.2 were found to be associated with ALS (Shatunov et al., 2010). A joint analysis 
including 4132 ALS patients and 8425 controls from this UK cohort and from previously 
published data from the UK, USA, Netherlands, Ireland, Italy, France, Sweden, and Belgium 
also showed significant association to the locus on chromosome 9p21.2 (Shatunov et al., 
2010). In addition, replication of one of the associated SNPs on chromosome 9p21.2 was 
found in a GWAS performed in FTD patients when analyzing the ALS-FTD patients only. A 
different SNP in this locus was significantly associated with FTD (Rollinson et al., 2011). A 
trend towards significant genome-wide association between chromosome 9p21.2 and FTD 
was found when analyzing 426 FTD patients with TDP-43 pathology without mutations in 
the progranulin gene and 2509 control individuals (Van Deerlin et al., 2009). A replication 
study in Chinese and Japanese sALS patients failed to find association to one of the 
previously associated SNPs on chromosome 9p21.2 but this might be due to a lack of power 
(Iida et al., 2011).  
In summary, linkage studies in ALS-FTD families and GWAS in sALS, ALS-FTD and FTD 

patients provide compelling evidence for a role of chromosome 9p21.2 in ALS and/or FTD. 

As mentioned, recently two studies identified a GGGGCC hexanucleotide repeat expansion 

in intron 1 of the C9ORF72 gene as the cause of chromosome 9p-linked ALS-FTD (Dejesus-

Hernandez et al., 2011; Renton et al., 2011). 

5. Gene function 

A hexanucleotide repeat expansion in the C9ORF72 gene has recently been identified as the 

cause of chromosome 9p-linked ALS-FTD. The mechanism as to how this expanded repeat 

causes ALS is unknown. No causal mutations in UNC13a have been identified in ALS 

patients to date. Close examination of the reported function(s) of the proteins encoded by 

the C9ORF72 and UNC13a gene may help to design strategies for determining the functional 

role of these loci in ALS and/or FTD.  

In this section the current knowledge of the function of these genes will be discussed in light 

of a possible contribution to ALS pathogenesis. 

5.1 Chromosome 9 open reading frame 72 
The C9ORF72 gene encodes a protein of 481 amino acids. Alternative splicing of this gene is 

thought to produce five isoforms of which three are protein coding. Isoform 1 contains the 

entire sequence and consists of 481 amino acids, while isoform 2 and 3 have an asparagine 

to lysine change at amino acid 222 which results in the truncation of amino acids 223 to 481. 

Thus far, no C9ORF72 protein has been detected and nothing is known about the function of 

C9ORF72.  

The C9ORF72 gene has been sequenced in four linkage studies in 39 patients from different 

families, but no mutations have been identified. No changes in splicing, small deletions or 

duplications were detected in patients from an ALS-FTD family (Boxer et al., 2010). The 

gene has been sequenced in 16 sALS patients and 16 controls but no variants specific for 

sALS were identified (Laaksovirta et al., 2010). Hexanucleotide repeat expansions were 

recently found to be the most common cause of fALS and familial FTD and were also 

identified in sALS patients (Dejesus-Hernandez et al., 2011; Renton et al., 2011). The 

functional consequence of these repeat expansions are however unknown. 
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Further studies will be needed to characterize the C9ORF72 protein and to establish the 
consequences of the intronic repeat on ALS pathogenesis. 

5.2 UNCoordinated 13 homolog A (UNC13a) 
UNC13a is a member of UNC13 family of presynaptic proteins. The protein consists of 1791 

amino acids but several isoforms exist. It contains a zinc-finger like C1 domain that is 

homologous to a diacylglycerol and phorbol ester binding region of protein kinase C (PKC), 

three C2 domains that are similar to the calcium binding regulatory regions of PKC and 

synaptotagmin, a calmodulin binding domain and two Munc homology domains (Basu et 

al., 2005). 

In mammals, the Munc13 family comprises four homologous members, Munc13-1, 

Munc13-2, Munc13-3, and Munc13-4. Deletion mutants of Munc13-1 in mice, the murine 

homologue of UNC13a, shows that the protein is needed for presynaptic vesicle 

maturation and fusion competence in glutamergic hippocampal neurons (Augustin et al., 

1999). GABA-ergic neurons in the hippocampus show no spontaneous or evoked synaptic 

transmission in absence of both Munc13-1 and Munc13-2 (Varoqueaux et al., 2002). 

Neuromuscular junction (NMJ) axon terminals contain Munc13-1 and a splice variant of 

Munc13-2 (Varoqueaux et al., 2005). Mice deficient in Munc13 due to a double knockout 

of Munc13-1 and Munc13-2 form specialized neuromuscular endplates. However, the 

distribution, size and shape of these synapses are altered. Also, muscle morphology is 

abnormal and a larger number of motor neurons is present in the spinal cord in Munc13-

1/2 knockout mice, probably as a result of defective apoptosis. Furthermore, evoked 

synaptic transmission is impaired in these mutants but spontaneous transmission is 

unchanged (Varoqueaux et al., 2005). This indicates that vesicle priming in NMJs is 

partially independent of Munc13-1 or Munc13-2. However, despite the unchanged 

spontaneous transmission, muscle innervation is aberrant in Munc13-1/2 knockout mice 

(Varoqueaux et al., 2005).  

As exemplified by the defects observed in Munc13-1 and Munc13-1/2 knockout mice, it is 

plausible that a disruption in UNC13a expression affects motor neurons and muscle 

innervation. The effect of UNC13a on glutamate exocytosis is also interesting since Riluzole, 

the only drug with a proven effect on ALS, is a glutamate release inhibitor. Therefore, 

UNC13a is an interesting candidate gene to be investigated further for a role in ALS 

pathogenesis. 

6. Conclusion and future research  

The use of linkage analysis, candidate gene studies, and GWAS has led to the identification 

of several causal loci and genes for fALS and sALS. The overview above clearly shows the 

extent of heterogeneity in genes that underlie fALS, let alone sALS, illustrating the complex 

molecular basis of this disease. There is not one dominant biological process that is 

represented by these genes, although RNA-processing, axonal transport and synaptic 

dysfunction appear to emerge as being relevant in ALS etiology. Interestingly, several of the 

genes implicated in these processes are already known to be causal or have been implicated 

in other neurodegenerative diseases which suggests that there is, at least in part, a common 

underlying mechanism.  
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Since these findings explain only about a third of the genetic variability in fALS and a 
small percentage of the genetic contribution to sALS, there is a clear need for the 
identification of additional causal loci. This would require the collection of large family 
pedigrees with many affected individuals, which is difficult in ALS considering the adult 
onset with rapid disease progression. However, the development of next generation 
sequencing techniques provides a possible solution to this problem. Using exome and 
whole-genome sequencing, causal genes can be identified with a small number of affected 
and unaffected individuals as has been shown in several, mostly autosomal recessive 
disorders (Choi et al., 2009; Ng et al., 2009). Recently, exome sequencing in two affected 
individuals from the same family identified VCP as a causal gene for fALS, illustrating 
that this technique is a promising tool for gene identification in ALS as well (Johnson et 
al., 2010). In addition, the repeat expansion in C9ORF72 was also discovered with the use 
of whole-genome sequencing (Renton et al., 2011). 
The identification of causal genes for ALS has broadened our understanding of this motor 

neuron degenerative disease. Studying the function of associated genes in neurons and 

animal models has revealed several possible processes underlying ALS such as RNA 

processing, axonal transport, glutamate regulation, oxidative stress and synaptic 

dysfunction. However, the contribution of most genes to ALS pathogenesis has not been 

resolved.  SOD1 and TDP-43 transgenic animal models have provided valuable insights into 

ALS pathogenesis. Further research using existing animal models of ALS associated genes 

and the generation of new animal models are needed to further determine their role in the 

disease. Generation of animal models harbouring repeat expansions in C9ORF72 and 

ATXN2 could help to reveal the pathogenic mechanisms behind these repeats. The effect of 

overexpression or knockdown of ALS associated genes and the expression of repeat 

expansions in motor neurons or motor neuron-like cell lines on protein aggregation and cell 

survival could also help to unravel the contribution of these genes to ALS. In addition, some 

associated genes (e.g. DCTN1, PON1/2/3, TAF15, and VCP) remain to be sequenced in larger 

cohorts from different populations in order to determine the actual contribution of these 

genes to ALS.  

Additional new strategies in sALS include a more network oriented approach to gene 

identification. It is possible to detect networks of genes, proteins and metabolites that are 

misregulated in ALS, or that determine disease progression. By searching for subtle genetic 

variation that drives these network perturbations, new genes might be identified that are 

hard to detect with GWAS. Also, the focus in ALS genetics thus far has been on common 

variation in exonic DNA. The regulatory part of the genome is challenging to study, but 

might be relevant as well. This also requires the combined analysis of gene-expression and 

protein data with data on genetic variation. In addition, recent studies show that tandem 

repeats in DNA might be also relevant, as exemplified by the ATXN2 and C9ORF72 

findings. Typically, this type of variation is hard to detect by current high-throughput 

methods. Lastly, the type of copy number variation that has not yet been covered very well 

to date, including variation in microRNAs or inversions, deserves more attention. 

In summary, impressive progress in the understanding of the genetics of ALS has been 

made over the past several years with the identification of several causal genes. However, 

most of the genetic variability underlying ALS remains to be identified. The use of deep 

sequencing techniques and functional research will be needed to further broaden our 

understanding of ALS pathogenesis. 
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