Human Papillomavirus:
Biology and Pathogenesis

José Veríssimo Fernandes¹ and
Thales Allyrio Araújo de Medeiros Fernandes²

¹Federal University of Rio Grande do Norte
²University of Rio Grande do Norte State
Brazil

1. Introduction

The human papillomavirus (HPV) is one of the most common causes of sexually transmitted disease in both men and women around the world, especially in developing countries, where the prevalence of asymptomatic infection varies from 2 to 44%, depending on the population and studied region (Sanjosé et al., 2007). Most HPV infection is transient and some studies show that the majority of sexually active individuals are exposed to and acquire infection from this virus at some phase in their lives (Baseman and Koutsky, 2005; Trottier and Franco, 2006). HPV infection is more prevalent in young adults, at the beginning of their sexual activity, with a subsequent decline in the prevalence rate with increasing age, likely as a result of development of an immune response against the virus and reduction of sexual activity (Castle et al., 2005; Fernandes et al., 2009; Chan et al., 2010).

HPV can infect basal epithelial cells of the skin or inner-lining tissues and are categorized as cutaneous types or mucosal types. Cutaneous types are epidermotropic and infect the keratinized surface of the skin, targeting the skin of the hands and feet. Mucosal types infect the lining of the mouth, throat, respiratory, or anogenital tract epithelium (Burd, 2003). Some HPVs are associated with warts while others have been well established as the main risk factor of invasive cervical cancers and their associated pre-cancerous lesions (Clifford et al., 2005; Zekri et al., 2006; Muñoz et al., 2006). However, only few HPV-infected individuals progress to invasive cervical cancer (Burd, 2003). Most infected individuals eliminate the virus without developing recognized clinical manifestation. (Bosch et al., 2008).

Today, more than 150 different HPV types have been cataloged and about 40 can infect the epithelial lining of the anogenital tract and other mucosal areas of the human body. Based on their association with cervical cancer and precursor lesions, HPVs can also be classified as high-risk (HR-HPV) and low-risk (LR-HPV) oncogenic types. LR-HPV types, such as HPV 6 and 11, can cause common genital warts or benign hyperproliferative lesions with very limited tendency to malignant progression, while infection with HR-HPV types, highlighting HPV 16 and 18, is associated with the occurrence of pre-malignant and malignant cervical lesions (Muñoz et al., 2003; Bosch et al., 2002; Bosch et al., 2008). HR-HPV types are also associated with many penile, vulvar, anal, and head and neck carcinomas, and contribute to over 40% of oral cancers (Stanley, 2010).
Persistent infection with HR-HPV is unequivocally established as a necessary cause of cervical cancer (Trottier & Franco, 2006). The critical molecules for initiation and progression of this cancer are the oncoproteins E5, E6, and E7, that act largely by overcoming negative growth regulation by host cell proteins and by inducing genomic instability, a hallmark of HPV-associated cancers (Munger et al., 2004; Moody & Laimins, 2010).

Once HPV transmission to the genital tract occurs through sexual contact, the risk factors for the infection and cervical lesions, including cervical cancer, are the same classic risk factors for other sexually transmitted diseases. The number of sexual partners is the risk factor more consistently associated with genital HPV infection and therefore with cervical cancer. In addition, other indicators of sexual behavior and reproductive activities, heredity, immune and nutritional status, and smoking can contribute in some way to the development of cervical cancer (Tarkowski et al., 2004; Muñoz, 2006; Fernandes et al., 2010).

In this chapter we will discuss the biology and pathogenesis of human papillomavirus, analyzing some specific aspects of their interactions with the infected host and specific host cell components.

2. Biologic properties of HPV

2.1 Structure of viral particle and regulation of gene expression

The human papillomavirus (HPV) is a relatively small non-enveloped virus that contains a double-stranded closed circular DNA genome, associated with histone-like proteins and protected by a capsid formed by two late proteins, L1 and L2. Each capsid is composed of 72 capsomeres, each of which is composed of five monomeric of 55kDa units that join to form a pentamer corresponding to the major protein capsid, L1. The L1 pentamers are distributed forming a network of intra- and interpentameric disulfide interactions which serve to stabilize the capsid (Sapp et al., 1995). In addition to L1, minor capsid proteins with approximately 75kDa exist within the virion and are called the L2 protein. To assemble the viral capsid, the pentamers join to copies of L2 that occludes the center of each pentavalent capsomere. (Jo & Kim 2005; Buck et al., 2008; Conway & Meyers, 2009). Thus, each virion contains 72 copies of the L1, the major component of the capsid, and a variable number of copies of L2, a secondary component of the viral capsid, forming a particle with icosahedra symmetry and approximately 50 to 60 nm in diameter (Burd, 2003; Longworth & Laimins, 2004; zur Hausen, 2009).

![Fig. 1. The structure of HPV. (Adapted from Swiss Institute of Bioinformatics, Viral Zone. Available in http://viralzone.expasy.org/all_by_species/5.html)](http://viralzone.expasy.org/all_by_species/5.html)
The viral genome of the HPV consists of a single molecule of double-stranded and circular DNA, containing approximately 8000 base pairs and harboring an average of 8 open reading frames (ORFs) (Jo & Kim 2005; Zheng & Baker, 2006). In a functional point of view, the HPV genome is divided into three regions. The first is a noncoding upstream regulatory region (URR) or long control region (LCR) that has regulatory function of the transcription of the E6 and E7 viral genes; The second is an early region (E), consisting of six ORFs: E1, E2, E4, E5, E6, and E7, which encodes no structural proteins involved in viral replication and oncogenesis. The third is a late (L) region that encodes the L1 and L2 structural proteins. The LCR region of the anogenital HPVs ranges in size between 800-900 pb, representing about 10% of the genome, and varies substantially in nucleotide composition between individual HPV types (Fehrmann & Laimins, 2003; Jo & Kim, 2005).

Only one strand of the double-stranded DNA serves as the template for viral gene expression, coding for a number of polycistronic mRNA transcripts. (Stanley et al., 2007). The regulation of viral gene expression is complex and controlled by cellular and viral transcription factors. Most of these regulations occur within the LCR region, which contains cis-active element transcription regulators. These sequences are bound by a number of cellular factors as well as the viral E2 product (zur Hausen, 1996). A large number of cellular transcription factors have been identified and the dysfunction of some of them appears to play a significant role in papillomavirus-linked carcinogenesis (Thierry et al., 1992; Hamid & Gaston, 2009).

The transcription start sites of viral promoters differ depending on the virus type, but, in all types, promoter usage is keratinocyte differentiation-dependent (Smith et al., 2007). The replication origin and many transcriptional regulatory elements are found in the upstream LCR region. The virus early promoter, differentiation-dependent late promoter, and two polyadenylation signals define three general groups of viral genes that are coordinately regulated during host cell differentiation. The E6 and E7 genes maintain replication competence. E1 E2, E4, E5, and E8 are involved in virus DNA replication, transcriptional control, beyond other late functions and L1 and L2, responsible for the assembly of viral particles (Bodily & Laimins, 2011).

The regulation of expression of the late genes in genital HPVs is not well understood. However, it has been shown that the second, or later, promoter is initiated in a differentiation-dependent manner, and thus is activated only when cells are grown in the host’s stratifying/differentiating tissue. Once activated, the later promoter directs transcription from a heterogeneous set of start sites and will serve to produce a set of transcripts that facilitate the translation of L1 and L2 proteins (Smith et al., 2007; Conway & Meyers, 2009). Activation of the later promoter is accompanied by acceleration of viral DNA replication and by high levels of viral protein expression. As a result, virus copy-number amplifies from 50 copies to several thousands of copies per cell. So when a late promoter is activated, the expression of genes will occur, encoding the structural proteins L1 and L2, which join to assemble the capsids and to form virions (Stanley et al., 2007).

2.2 Functions of viral proteins

E1 Protein

The E1 protein represents one of the the most conserved proteins among different HPV types. It has DNA-binding functions and a binding site in the origin of replication localized
in the LCR region. It assembles into a hexameric complex, supported by the E2 protein, and the resultant complex has helicase activity and initiates DNA bidirectional unwinding, constituting a prerequisite for viral DNA replication (Wilson et al., 2002; Frattini & Laimins, 1994). The carboxyl terminal domain of E1 has an ATPase/helicase activity and is necessary and sufficient for oligomerization. This domain also interacts with the E2 protein and subunit p70 of DNA polymerase α, but is not sufficient to support replication (Amin et al., 2000). A segment of approximately 160 amino acid residues upstream of the ATPase/helicase domain is the DNA-binding domain (Titolo et al., 2003). A stretch of about 50 amino acids within the amino terminus of E1 acts as a localization regulatory region (LCR) and contains a dominant nuclear export sequence (NES) and a nuclear localization signal (NSL), which are regulated by phosphorylation (Deng et al., 2004).

E2 protein

The E2 open reading frame of HPV gives rise to multiple gene products by alternative RNA splicing. The proteins derived from the E2 gene are involved in the control of viral transcription, DNA replication, and segregation of viral genomes (McPhillips et al., 2006; Kadaja et al., 2009). These different E2 types represent the major intragenomic regulators (Bouvard et al., 1994).

The E2 protein can bind to factors on mitotic chromatin and join the virus genome to host cell chromosomes during mitosis; it contributes to coordinating the HPV DNA replication with host cell chromosome duplication, allowing the viral genomes to be distributed to the daughter cell. This constitutes an important requirement for the persistence of virus DNA in undifferentiated basal cells (McPhillips et al., 2006). Furthermore, the E2 protein interacts with E1 and stimulates viral DNA replication, favoring the binding of E1 to the origin of replication (Seo et al., 1993; Chow et al., 1994).

In lesions containing HPV episomes, the E2 protein directly represses the expression of early genes as a mechanism to regulate the copy number. In addition, it has been reported that HPV E2 proteins are able to repress telomerase promoter activity mediated by the HPV E6 protein (Hamid et al., 2009). Integration of the HPV genome in the host cell chromosome usually disrupts E2 expression, causing a deregulated expression of early viral genes, including E6 and E7, and this event can favor the transformation of human cells and the transition into a malignant state (Romanczuk & Howley, 1992).

In addition to the full-length E2 protein, the infected cells can express an E8^E2C transcript, in which the small E8 domain is fused to the C-terminal domain of E2 (E2C). The full-length E2 protein forms heterodimers with repressor forms of E2, and these E2 heterodimers serve as activators of transcription and replication during the viral cycle. The single-chain E2 heterodimer in the HPV 18 genome initiates genome replication, but is not sufficient for long-term replication of the HPV 18 genome. This is due to the capacity of HPV18 in encoding the repressor E8/E2, which acts as a negative regulator of HPV18 genome replication (Kurg et al., 2010). Moreover, it has been shown that inactivation of E2 in the HPV16 genome increases E6/E7 transcription (Soeda et al., 2006), and that mutation of E8^E2C in the HPV31 or HPV16 genome increases the genome copy number and the E6/E7 transcription, suggesting that the transcriptional repressing by E8^E2C has an important role in viral replication (Lace et al., 2008). It was also noted that the E2C domain not only mediates specific DNA binding but has also an additional role in transcriptional repression.
by recruitment of co-repressors, such as the CHD6 protein. This suggests that repression of the E6/E7 promoter by E2 and E8^E2C involves multiple interactions with host cell proteins through different protein domains (Fertey et al., 2010).

E4 protein

Despite being considered an early protein, E4 is exclusively located in the differentiated layers of the infected epithelium (zur Hausen, 1996). Although its expression occurs in highly differentiated cells that express the capsid genes and synthesize new progeny virions, and coincides with the onset of vegetative viral DNA replication, E4 is not found in virion particles. The role of this protein in the virus life cycle has not yet been determined, but E4 is not required for transformation or episomal persistence of viral DNA, but interacts with the keratin networks and causes their collapse (Doorbar et al., 1991).

It has been suggested that E4 may have an important role in favoring and supporting the HPV genome amplification, besides regulating the expression of late genes, controlling the virus maturation, and facilitating the release of virions (Londgworth & Laimins 2004). E4 also interacts with and disrupts the organization of intermediate filaments. The role of E4 in providing the release of virus is supported by the association of E4 with the cornified cell envelope (CCE), a highly resistant structure under the plasmatic membrane of differentiated keratinocytes in the stratum corneum. Furthermore, E4 may play role in regulating gene expression and has been shown to induce G2 arrest in a variety of cell types (Londgworth & Laimins 2004).

E5 protein

The E5 protein is a small hydrophobic peptide, approximately 83 amino acids in size that localizes primarily to the endoplasmic reticulum. When expressed alone, HPV E5 has weak oncogenic properties. But in tissue culture assays, HPV E5 can enhance the transforming activity of E6 and E7, suggesting that it may have a supportive role in tumor progression. The localization of E5 to the endoplasmic reticulum suggests its activity may be related to the trafficking of cytoplasmic membrane proteins through this cellular compartment. E5 has also been reported to alter the activity of the epidermal growth factor receptor (EGFR), in addition to reducing the surface levels of major histocompatibility complex (MHC) class I proteins, modulating the MAPK pathway and altering the levels of caveolin 1 (Moody & Laimins, 2010).

The E5 protein varies in length and primary amino acid sequence among the different papillomaviruses, but maintains its hydrophobic nature that promotes fusion between cells (Hu et al., 2009). HPV16 E5 has all the characteristics of fusogenic proteins, including localization in plasma membrane, high level of hydrophobicity, and the ability for dimmers. Moreover, HPV16 E5 has been identified to be necessary and sufficient to induce cell-cell fusion with formation of tetraploid cell and cytokinesis failure (Hu et al., 2009).

The fusogenic activity of the HR-HPV E5 protein contributes to fusion among cells generating aneuploidy with tetraploid cells and chromosomal instability. These events seem to precede and favor integration of HPV genomes, which in turn, leads to expression of viral-cellular fusion transcripts and further enhances expression of the E6-E7 genes, rendering transformed cells strong growth advantages (Ziegert et al., 2003). Thus, the cell fusion HR-HPV E5-induced and cell cycle deregulation seems to have an important role in
the early stages of the transformation process. This suggests that HR-HPV E5-induced cell fusion can be a critical event in the early stage of the development of HPV-associated cervical cancer (Gao and Zheng et al., 2010).

As the E5 gene is frequently deleted in cervical cancers, it is believed that the E5 protein may play a role in the early stages of the process of cellular transformation, but is dispensable for the maintenance of malignant transformation (zur Hausen, 1996).

E6 protein

The HPV E6 protein is formed by approximately 150 amino acids and contains two zinc-like fingers joined by an interdomain linker of 36 amino acids, flanked by short amino (N) and carboxy (C) terminal domains of variable lengths (Howie et al., 2009). The best known property of the E6 proteins of HR-HPVs is the ability to bind and degrade the tumor-suppressor protein p53, through the recruitment of the E6-associated protein (E6-AP), a cellular E3 ligase that does not bind to p53 in the absence of E6. Both E6 proteins from HR-HPV and LR-HPV bind to p53, but the interaction is stronger in HR-HPV (Lechner et al., 1994).

The E6 protein can overcome the cell arrest and proapoptotic activities of p53 by targeting p53 for degradation, inactivating the Mdm2 pathway. E6 can also inhibit the transcriptional activities of p53 independently of E6-AP (Thomas et al., 2005). Three different mechanisms have been proposed to explain this p53 inactivation: The first is inhibiting the binding of p53 to its target sequence in the genome; second, E6 may be able to inhibit p53 signaling by maintaining it in cytoplasm; and third, the mechanism employed by E6 to inhibit p53 activity is the abrogation of the transactivation of p53 responsive genes via interaction with either the CBP/p300 or hADA3 histone acetyltransferases. The E6 proteins have been shown to bind to p300, and this interaction inhibits p35 acetylation at p53 dependent sites, leading to decreased expression from p53. However, unlike p300, E6 interaction with hADA3 results in hADA3 degradation (Kumar et al., 2002). E6 may also inhibit p53 activation by blocking the p14/ARF pathway. Thus, E6 is able to modulate transcription of p53-dependent genes by both degradation of p53 and by interaction with the p300 and hADA3 transactivators (Shamanin et al., 2008).

The degradation or blocking of the p53 function inhibit apoptotic signaling that would eliminate the HPV infection cell. There are two major apoptotic pathways that can be triggered by different stresses: the extrinsic and intrinsic pathways. The E6 protein is able to disrupt both pathways to facilitate a cytoprotective environment and prevent cell death (Howie et al., 2009).

In addition, E6 is able to modulate transcription from other cellular signaling pathways as well as potentiating its ability to act as a diverse modulator of host cell signaling. It has been shown that E6 interact with three different proteins, such as a novel protein termed E6-targeted protein 1 (E6TP1) in an E6-AP dependent manner (Wooldridge et al., 2007), beyond another protein with GAP activity, tuberin, that can also be bound and degraded by E6 (Zeng et al. 2008). Furthermore, HR-HPV E6 has been shown to interact with two proteins that are part of the innate immune response to viral infection: interferon regulatory factor-3 (IFR-3) and toll-like receptor 9 (TLR9) (Hasan et al., 2007). Exogenous expression of HPV16 E6/E7 has been shown to inhibit TLR9 transcription, leading to a functional loss of TLR9 signaling pathways within the cell (Hasan et al., 2007).
HR-HPV E6 is also able to interact with members of the PDZ family of proteins, promoting its proteasome-mediated degradation, an activity that seems to be required for induction of cervical cancer (Shai et al., 2007). HR-HPV E6 PDZ binding can mediate suprabasal cell proliferation and this is thought to occur by uncoupling the cell proliferation and polarity control that exist in a differentiated epithelium (Sterlinko et al., 2004). LR-HPV E6 does not contain the PDZ-binding motif and therefore cannot target these proteins. Degradation of PDZ proteins results in cellular transformation due to loss of cell-cell contact and loss of cell polarity (Storrs and Silverstein, 2007). In addition, it has been demonstrated that the degradation of phosphatase PTPN13 by E6 results in anchorage-independent growth and a Ras-dependent invasive phenotype (Spanos et al., 2008).

Another function of the HR-HPV E6 protein that is important for immortalization is its ability to activate the expression of the catalytic subunit of telomerase (hTERT). Thus, the E6 protein is able to promote the maintenance of the telomere, through the action of telomerase. Interestingly, over-expression of hTERT in conjunction with E7 is sufficient to immortalize human primary keratinocytes. The HPV E2 proteins are reported to repress hTERT promoter activity, but the interplay of E6 and E2 during the regulation of this promoter has not been investigated (Hamid et al., 2009).

E7 protein

The E7 protein has around 100 amino acids in length and contains three conserved regions: CR1, CR2, and CR3 (Münger and Howley, 2002). It will induce cellular proliferation by binding to several cellular factors. The best characterized of these interactions is with the RB tumor suppressor and the related family members p107 and p130. The binding of high-risk E7 to pRB disrupts the interaction between pRB and E2F, a family of transcription factors, resulting in the constitutive expression of E2F-responsive genes, such as cyclin A and cyclin E, and promotes premature S phase entry, DNA synthesis, and the progression of cell cycle (Zerfass et al., 1995). Thus, in cells overexpressing the HPV E7 protein, this checkpoint control at G1/S transition is lost and the cells will continue their cell cycle, causing an uncontrolled cellular proliferation. Moreover, E7 induces the degradation of pRb via the proteasome-dependent pathway, using a mechanism that involves association with and reprogramming of the cullin 2 ubiquitin ligase complex (Jo & Kim, 2005; Huh et al., 2007).

HPV E7 can also associate directly with cdk2/cyclin A and cyclin E complexes, resulting in an increased cdk2 activity (Nguyen & Münger, 2008). Another action of E7 that contributes to cellular immortalization is its interaction with the CDK inhibitors (CKI) p21 and p27, efficiently neutralizing their inhibitory effects on CDK2 activities, an important factor for G1 to S phase entry and progression (Moody & Laimins, 2010). The ability of E7 to inactivate these CKIs may contribute to its capacity to abrogate TGF-β mediated growth inhibition. Moreover, TGF-β also induces a cdk4/cdk6 specific CKI, P15Inkb, and p15Inkb-induced growth suppression, and these actions may require functional pRB, which is targeted for degradation by E7 (McLaughlin-Drubin & Münger, 2009). High-risk E7 has further been shown to increase the levels of the CDC25A phosphatase, which can induce tyrosine dephosphorylation of CDK2, promoting its activation (Moody & Laimins, 2010).

E7 also affects the expression of S phase genes by directly interacting with E2F factors and with histone deacetylases (HDAC): E7-E2F6 interaction prevents repression of gene expression by E2F6, maintaining a S phase environment conductive for viral replication.
(McLaughlin-Drubin et al., 2008), and E7-HDAC binding facilitates HDAC removal at promoters to activate transcription (Longworth & Laimins, 2004).

Another major apoptotic pathway targeted by HPV proteins is anoikis, a form of apoptosis that is triggered when normal cells attempt to divide in the absence of a matrix (Tasaki et al., 2005). E6 and E7 interact with some factors involved with anoikis, such as paxillin, fibulin 1, and p600 (Huh et al., 2005), promoting the prevention of anoikis.

Furthermore, E6 and E7 interfere with the effects of various growth inhibitory cytokines that are induced following infection. High-risk HPV proteins repress the transcription of many IFN-inducible genes (Chang & Laimins, 2000; Kanodia et al., 2007; Tindle, 2002) and block apoptosis binding to TNF receptor 1, inhibiting the formation of the death-inducing signaling complex and consequent transduction of apoptotic signals (Filippova et al., 2002). The exposure to E7 in a non-inflammatory epithelial environment can also be sufficient to induce a peripheral tolerance to E7 in the cytotoxic T lymphocytes population (Tindle, 2002).

E6 also interacts with the adaptor protein FAS-associated protein with death domain (FADD) and caspase 8 to block cell death in response to FAS and TRAIL. Also, E6 can interfere with induction of the extrinsic and intrinsic (mitochondrial) apoptotic pathways through interactions with the pro-apoptotic Bcl2 members BAK and BAX, as well as by upregulation of the inhibitors of apoptosis such as the inhibitor of apoptosis protein 2 (IAP2, also known as BIRC2) and survivin (also known as BIRC5) (Garnett & Duerksen-Huges, 2006).

L1 protein

The L1 gene corresponds to a sequence of about 1200 base pairs, which encodes a structural protein highly conserved among different HPV types, the (Xu et al., 2006). The L1 protein is formed by five monomeric units of 55kDa that join to form a pentameric structure, totaling 72 per each capsid (Buck et al., 2008). The L1 protein is highly immunogenic and has conformational epitopes that induce the production of neutralizing type-specific antibodies against the virus, which prevent the infection (Carter et al., 2003), making it the target of prophylactic vaccines (Villa et al., 2007; D’Andrilli et al., 2010).

Comparison among L1 sequences of different papillomaviruses suggests a conserved heparin-binding domain at the C-terminus, and the cleavage of this domain from L1 prevents binding to both heparin and human keratinocytes (Culp et al., 2006; Selinka et al., 2007). Thus, it is believed that the L1 major capsid protein contains the major determinant required for initial attachment of the viral particles to cell surface receptors, HSPGs, and therefore has an important role in infection (Schiller et al., 2010).

L2 protein

L2 is a secondary component of viral capsid and it is present in a variable number of copies per each capsid, being located on the inner surface in the central cavity below the pentamers of L1, where they are arranged to form the capsid (Buck et al., 2008). Despite the paucity of L2 in the virion, this protein has recently been shown to have many more functions than a simple structural role. L2 contributes to the binding of virion in the cell receptor, favoring its uptake, transport to the nucleus, and delivery of viral DNA to replication centers. Besides, E2 helps the packaging of viral DNA into capsids and, due to the presence of a usual
neutralization epitope in L2 proteins of many papillomaviruses, it may be instrumental in conferring immunity across different types of HPV. L2 also contributes to the interaction of virion in the cell surface. Two distinct regions in the N-terminal protein of L2 interact with the cell surface, and this interaction occurs after an initial low-specificity interaction between L1 and the cell surface. After this, a conformational switch occurs in the capsid, exposing the L2 epitopes and promoting interactions with a more specific secondary receptor. The cleavage of the N-terminus of L2 is necessary for the binding of L1 to the secondary receptor, an indication that L2 has an important role in HPV infection (Schiller et al., 2010).

<table>
<thead>
<tr>
<th>Protein</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>Viral DNA replication</td>
</tr>
<tr>
<td>E2</td>
<td>Control of viral transcription, DNA replication, and segregation of viral genomes.</td>
</tr>
<tr>
<td>E4</td>
<td>Favor and support the HPV genome amplification, besides regulating the expression of late genes, controlling the virus maturation, and facilitating the release of virions</td>
</tr>
<tr>
<td>E5</td>
<td>Enhance the transforming activity of E6 and E7; Promotes fusion between cells, generating aneuploidy and chromosomal instability; Contribute to immune response evasion.</td>
</tr>
<tr>
<td>E6</td>
<td>Bind and degrade the tumor-suppressor protein p53, inhibiting apoptosis; Interact with proteins of the innate immune response, contributing to immune evasion and persistence of virus; Activate the expression of telomerase.</td>
</tr>
<tr>
<td>E7</td>
<td>Bind and degrade the tumor-suppressor protein pRB; Increase cdk activity; Affects the expression of S phase genes by directly interacting with E2F factors and with histone deacetylases; Induce a peripheral tolerance in cytotoxic T lymphocytes (CTL) and Downregulate the expression of TLR9, contributing to immune response evasion</td>
</tr>
<tr>
<td>L1</td>
<td>Major capsid protein; contains the major determinant required for attachment to cell surface receptors. It is highly immunogenic and has conformational epitopes that induce the production of neutralizing type-specific antibodies against the virus.</td>
</tr>
<tr>
<td>L2</td>
<td>Minor capsid protein; L2 contributes to the binding of virion in the cell receptor, favoring its uptake, transport to the nucleus, and delivery of viral DNA to replication centers. Besides, E2 helps the packaging of viral DNA into capsids.</td>
</tr>
</tbody>
</table>

Table 1. The HPV proteins and functions

3. HPV Infection

The HR-HPVs have the ability to infect several types of epithelial cells, but they can cause cancer more frequently in the uterine cervix (Timmons et al., 2010). The cervical cancer arises preferentially in the cervical transformation zone (TZ), located in the boundary
between the squamous epithelium of ectocervix and the columnar epithelium of endocervix. Basal cells in the TZ retain the ability to differentiate, a property required for virion production (Crum & McKeon, 2010). The basal cells in TZ are more susceptible to HPV infection in that there are fewer overlying layers than in other locations. In addition, the presence of hormones, such as estrogen and progesterone, that orchestrate cervical changes during menstruation and childbirth, can help both HPV infection and cancer development (Timmons et al., 2010; Roberts et al., 2007; Chung et al., 2008).

It has been reported that two types of cells are present in the basal layer of cervix. The first type comprises the transit amplifying (TA) cells, which are proliferating cells that are able to undergo terminal differentiation. TA cells divide and differentiate, representing the majority of cells in the suprabasal layers. The second class of basal cells is the stem cells, which have unlimited proliferation potential but divide only rarely in order to replenish the TA pool, serving as reserve cells to enable long-term maintenance of the tissue. Only one daughter cell of a stem cell division goes on to become a TA cell, while the other remains a stem cell. It is unclear which cells in the basal layer are the target of HPV infection, and perhaps both cell classes can be infected. If this is true, infection of stem cells could lead to one long-term persistent infection, whereas infection of TA cells could lead to short-term infections, followed by a cure (Jones et al., 2007).

Studies in vitro and in vivo revealed that the L1 major capsid protein contains the major determinant required to the initial attachment of the viral particles to the cell surface receptor, the heparan sulfate proteoglycans (HSPGs). Laminin-5 can also contribute to the binding of viral capsids to the extracellular matrix (ECM) in the epithelial cell lines (Culp et al., 2006; Selinka et al., 2007).

In vivo, the viral particles bound efficiently to regions of the basement membrane (BM) only after these regions had been exposed by mechanical or chemical trauma of the epithelium. The L1 capsid protein binds to HSPGs in segments of the BM exposed after epithelial trauma. After this, L1 undergoes a conformational change that exposes the N-terminus of the L2 minor capsid protein, which is cleaved by furin or the closely related protein convertase (PC) 5 and 6 (Richards et al., 2006). L2 proteolysis exposes a previously occluded surface of L1 that binds to an undetermined cell surface receptor on keratinocytes that have migrated over the BM to close the wound. This receptor is still unknown, but in vitro studies indicate the α6-integrin as a possible candidate (Kines et al., 2009). The cleavage of L2 may be necessary due to the fact that the surface intact of the epithelia apparently contains sulfation patterns that do not bind capsids. Binding to the BM may promote the preferential interaction with basal keratinocytes that are migrating over the exposed BM to close the wound. Thus, papillomaviruses (PV) are the only viruses that initiate the infectious process at an extracellular site (Schiller et al., 2010).

The capsids are internalized via the keratinocytes-surface receptor and subsequently surf toward the cell body. The first phase in infection is the internalization, which usually occurs 2-4 h after cell surface binding (Culp et al., 2004). The pathway involved in internalization and intracellular trafficking is still unclear, but it seems to occur slowly and asynchronously over a span of several hours (Schiller et al., 2010). Clatrin-mediated endocytosis has been pointed out to be like the endocytic pathway for the majority of HPV types. However, some studies suggest that they can enter through a caveolae-mediated pathway and not via clatrin-mediated endocytosis (Smith et al., 2007). On the other hand, it has been proposed...
that HPV-16 initially enters via clatrin-coated pits but the traffic occurs through caveosomes to eventually reach the endoplasmic reticulum (Hindmarsh et al., 2007; Laniosz et al., 2008). Moreover, it has been suggested that the capsids might be internalized via a novel pathway involving tetraspanin-enriched microdomains (Spoden et al., 2008).

The uncoating is not observed until 8-12 h after cell surface binding, and it seems that L2 has a critical role in the endosome escape (Kamper et al., 2006). The cytoplasm transport along microtubules is mediated by protein complex, and L2 has been found to interact with the microtubule network via the motor protein dynein during infectious entry (Florin et al., 2006). After the entry of the viral genome into the nucleus, the complexes predominantly localize in distinct punctate nuclear domains designated as ND10 bodies or promyelocytic leukemia (PML) oncogenic domains (PODs). There is evidence that cell division is required for establishment and expression of the viral genome in the nucleus (Pyeon et al., 2009).

4. Life cycle of HPV

The HPV life cycle begins with infection of stem cells in the basal layer of the epithelium. After the entry in the cells, the virus requires the expression of E1 and E2 genes to maintain a low number of copies of genome. These proteins bind to the viral origin of replication and recruit cellular DNA polymerases and other proteins necessary for DNA replication (Hamid et al., 2009). In the suprabasal layer, the expression of genes E1, E2, E5, E6 and E7 contributes to the maintenance of the viral genome and induces cell proliferation, increasing the number of HPV-infected cells in the epithelium, resulting in a higher number of cells that will eventually produce infectious virions (Hamid & Gston, 2009; Lazarczyk et al., 2009). In the more differentiated cells of this same layer of the epithelium occurs the activation of differentiation-dependent promoter and maintenance of gene expression E1, E2, E6 and E7. Furthermore, there will be activation of the expression of E4 gene, whose product will induce amplification of the viral genome replication, greatly increasing the number of virus copies per cell, at the same time that occurs the expression of genes L1 and L2 (Nakahara et al., 2005; Lazarczyk et al., 2009). In the granular layer, the products of late genes, the major and minor proteins of the viral capsid, L1 and L2 respectively, gather to assembly of the viral capsids and formations of virions, which reach cornified layer of the epithelium and are released (Lazarczyk et al., 2009).

For a better understanding, the life cycle of HPV was divided into two parts: a maintenance phase and differentiation-dependent phase (Bodily & Laimins, 2011).

4.1 Maintenance phase

HPV virions infect cells in the basal epithelial layer that become exposed through microlesions. The viral capsid binds initially to the basal cell layer and infection occurs when activated keratinocytes move into the wound, to the upper layers of the epithelium (Kines et al., 2009). HPV genomes replicate in the nucleus of the basal cell layer, where the viral replication is considered nonproductive and the virus establishes itself as a low-copy-number episome by using the host DNA replication machinery (Moody & Laimins, 2010). In this way, viral proteins are expressed at very low levels in undifferentiated cells, and this contributes to immune avasion and persistence (Bodily & Laimins, 2011).
The maintenance of the viral episome in basal cells is the basic function of the early or maintenance phase of the viral cycle. The expression of E6, E7, E1, and E2 are necessary for continued episomal maintenance. E1 and E2 cooperate to initiate viral DNA replication, whereas E6 and E7 modulate cell-cycle regulators to maintain long-term replication competence (Conger et al., 1999). The E2 protein is probably a major regulator of this process because it is able to make both positive and negative control of the early viral promoter that regulates expression of E6, E7, and E1 as well as E2 itself (Steger et al., 1997).

Following this establishment phase, viral DNA is replicated coordinately with host cell chromosomes, and virus genomes are distributed to the daughter cells. However, in the differentiated keratinocytes of the suprabasal layers of the epithelium, the virus switches to a rolling-circle mode of DNA replication, amplifying its DNA to a high copy number, synthesizing capsid proteins, and assembling the viral particle (Flores et al., 1999).

HPV replication begins when the host cell factors interact with the LCR region of the HPV genome and begin the transcription of the early viral genes, highlighting the E6 and E7. The viral E6 and E7 gene products deregulate the cell cycle, subverting the cell growth-regulatory pathways and modifying the cellular environment in order to facilitate viral replication in a cell that is terminally differentiated and has exited the cell cycle (Syrjänen & Syrjänen, 1999).

4.2 Differentiation-dependent phase

During the maintenance phase in undifferentiated cells, viral proteins are expressed in extremely low levels. However, when HPV-infected cells leave the basal layer, they undergo differentiation and high levels of viral proteins synthesis are induced. This restriction of viral protein synthesis to highly differentiated cells delays the expression of viral antigens to locations less susceptible to the host immune response (Frazer, 2009).

This compartmentalization of gene expression by HPVs constitutes an important strategy to sustain long-term infection, but it creates some problems for the virus. To solve this, the virus forces the cell to remain active in the cell cycle, enabling productive replication in differentiating cells. The viral protein E7 is responsible for maintaining the replication competence in differentiated cells and this is accomplished in part by inactivation of pRB family members (Münger et al., 2004). The activation of the late viral promoter in response to host-cell differentiation occurs in the vicinity of the spinous epithelial layer and is responsible for high levels of viral protein expression. As a result, the virus copy-number amplifies from 50-200 copies to several thousands of copies per cell (Bedell et al., 1991).

The viral proteins E1, E4, and E5 contribute to the activation of late viral functions upon differentiation (Wilson et al., 2005; Fehrmann et al., 2003). The E2-mediated down-regulation of E6 and E7 transcription results in the release of the p53 and pRB cellular proteins, and allows the normal differentiation process of the host cell. Then, a putative late promoter activates the capsid genes, L1 and L2. Finally, the viral particles are assembled in the nucleus, and the complete virions are released when the cornified layers of the epithelium are shed. The virions are shed in an environment with desquamated cells in the absence of lysis or necrosis, and this further contributes to virus persistence because it avoids inflammation (Stanley, 2008).

Most women infected with a specific HPV type will not show evidence of that same type after 6-12 months. It is not known whether the HR-HPV can be detected for periods similar
to those for LR-HPV. Some studies show similar duration (Richardson et al., 2003), but others reveal longer durations of infection for HR-HPV types (Franco et al., 1999; Ho et al., 1998). It appears that HR-HPV, particularly HPV16, has a longer time to clearance and is more likely to develop persistent infection (Richardson et al., 2003).

Fig. 2. HPV Cycle life (copied from Lazarczyk et al., 2009, with permission of the author).

5. Pathogenesis

5.1 Persistence x clearance

The infection with HR-HPV typically lasts from 12-18 months and is eventually cleared by the immune system (Richardson et al., 2003). However, approximately 10% of women fail to clear HPV infections, resulting in a persistent infection. The main consequence of persistent infection with HR-HPV is the development of lesions that may progress to malignancy, and this constitutes the most important risk factor for the development of cervical cancer (Stanley, 2008; Bodily & Laimins; Moody & Laimins, 2010;).

Details about the immune response that results in clearance of HPV infection are still unknown. HPV clearance seems to result in long-term humoral and/or cellular protection against re-infection by the same HPV type; whether the protection is lifelong is not known (Stanley, 2006). Although the term clearance is used when an HPV infection can no longer be detected using sensitive test methods, the HPV presence might not be completely discarded because the latent state of HPV is still poorly understood. Reappearance of HPV from latency even in the absence of definite immunosuppression is common, but most cases are probably benign (Gonzalez et al., 2010). By contrast to HPV infections that clear, the risk of cancer increases dramatically in persistent HPV infections (Schiffman et al., 2010).

It is important to remember that it is not easy to characterize a persistent HPV infection and differentiate persistent infection from healing followed by re-infection, although re-infection with the same HPV type appears to be uncommon. Many studies classify HPV infection as
persistent if the HPV was detected in two consecutive follow-up visits 4-6 months apart. However, because the interval between follow-up visits varies among studies and there are many unknown questions regarding the natural history of HPV, it is complicated to distinguish persistent and transience infections. Furthermore, an undetectable HPV infection could be a period of viral latency, in which the HPV levels are below the detectable threshold of current HPV DNA assays, instead of representing a cleared host (Baseman and Koutsky, 2005).

The persistent nature of HPV infection and DNA viral integration into the genome of the cell contributes to increasing the risk of high-grade and malignant lesions because of genomic instability generated. E6 and E7 can induce centrosomal abnormalities resulting in abnormal centrosome reduplication, leading to abnormal numbers of centrosomes. Furthermore, abrogation of cell-cycle checkpoints through the targeting of p53 and pRB family members allows retention of cells with chromosomal abnormalities (Münger et al., 2004). This can result in genetic changes that accumulate over an extended period of time until resulting in a combination of genetic abnormalities, allowing cancer development (Bodily & Laimins, 2011).

In benign and malignant HPV lesions, the cellular proliferation increases the demand for nutrients, generating a competition for nutrients and oxygen. To overcome this constraint, both HR-HPV and LR-HPV E7 proteins enhance the levels of the transcription factor Hypoxia-inducible factor-1 (HIF-1), as well as induce the increased expression of HIF-1 target genes under hypoxia conditions (Nakamura et al., 2009). The enhancement of HIF-1 activity results in an increased transcription of a subset of genes that favor angiogenesis, and this induction of angiogenesis is crucial to both persistence and growth of HPV lesions (Bodily & Laimins, 2011).

5.2 Mechanism of immune evasion

HPV infections are chronic, exclusively local and intraepithelial in which the virus remains in the host for many months, even years, during which the mechanisms of host defense apparently remains ignorant of the pathogen for long period of time (Stanley, 2009b). So, the immune response to HPV infection is often insufficient to eliminate the virus so that the infected individuals do not heal but develop persistent infection. The main reason for this is an ingenious strategy developed by this virus in which viral DNA replication and virus assembly occur in a cell that will be terminally differentiated and die by natural causes (Staney, 2008). To achieve this lifestyle, HPV must avoid the host defense system, and the key to understanding how this occurs is the virus replication cycle which itself is an immune evasion mechanism that inhibits the host’s detection of the virus. The infection and vegetative HPV growth are absolutely dependent upon a complete program of keratinocyte differentiation (Doorbar, 2005).

Papillomavirus late genes also contain codons that mammalian cells rarely use, implying that production of abundant papillomavirus capsid proteins is inhibited in mamalian basal-epithelial cells by the restricted availability of the appropriated tRNAs. The early viral proteins localize mainly to the nucleus, and they are produced in insufficient quantities and/or are not accessible for immune recognition (Tindle, 2002). Besides, there is viral-induced cytolysis or necrosis, and therefore no inflammation. For most of the duration of the
HPV infectious cycle, there is little or no release into the local milieu of pro-inflammatory cytokines, which are important for antigen presenting cell (APC) activation and migration. This way, the central signals to kickstart the immune response in squamous epithelia are absent (Stanley, 2006).

Even in the absence of cellular changes such as cytolysis, necrosis, or cell death, HPV-infected keratinocytes should activate to the production of type 1 interferons, a powerful, generic antiviral and innate immune defense system. The type 1 Interferons, IFN-α and IFN-β, have antiviral, antiproliferative, antiangiogenic, and immunostimulatory properties that act as a bridge between innate and adaptive immunity, activating immature DCs (Le Bon & Tough, 2002). High-risk HPV types actively inhibit the endogenous interferon response, down-regulate toll-like receptors and this combined with the low levels of viral protein generated during the infectious cycle and absence of inflammation leads to inefficient activation of the innate immune response, with the consequent ineffectiveness of the adaptive immune response. Thus, the milieu becomes operationally HPV antigen-tolerant and host defences become irrevocably compromised. HPV antigen-specific effector cells are both poorly recruited to the focus and their activity is down-regulated (Stanley, 2009b).

It was demonstrated that infection with HR-HPV, especially HPV 16, downregulates IFN-α inducible gene expression, through E6 and E7 proteins that directly interact with components of the interferon signaling pathways (Konodia et al., 2007). Infected cells with episomal HPV are cleared after exposure to IFN-β, but cells with integrated HPV-DNA are resistant to this antiviral effect (Pett et al., 2006). T-cell response to E2 and E6 are lost or reduced in CIN 3 and carcinoma invasive. Thus, even if HPV antigen-specific cytotoxic T-cells have been generated, regulatory T-cells increasingly dominate the lesion and abrogate the killer defense response (Kobayashi et al., 2004). High-risk HPV infected cervical keratinocytes expressing high level risk of E6 and E7 oncoproteins are not killed in this immunosuppressive tolerant mileu, nad progression to high-grade disease and cancer can result (Stanley, 2009b).

As HPV infections are exclusively intraepithelial, theoretically, an HPV attack would be detected by the professional APC cells of squamous epithelia, the Lanherhans cells (LCs), which are the intraepithelial dendritic cells (DCs). Virus capsid entry is usually an activating signal for CDs, but there is evidence that LCs are not activated by the uptake of HPV capsids. The life cycle of HPV is organized to form a limited viral antigen synthesis in undifferentiated cells, and high-expression is restricted to highly differentiated cells.

HPV replication and release does not cause cell death and inflammation since the differentiating keratinocyte is already programmed to die and this death by natural causes does not act as a danger signal in the infected site (Staley, 2009b). Besides, the absence of viremia, cell lysis, necrosis, or any other signals to trigger an inflammatory response reduces the possibility of an effective immune response in this site (Stanley, 2009a). Thus, the virus becomes practically invisible to the host who remains indifferent to infection for long periods of time, facilitating the viral persistence (Staley, 2009b).

The healing of the HPV-induced lesions is dependent on the mechanisms of the cell-mediated immune response and is accompanied by interaction of CD8+ and CD4+ limphocytic. Langerhans cells (LCs) are the major dendritic cells (DCs) found in squamous epithelia, and these are probably responsible for triggering an anti-HPV immune response.
The function of LCs is disrupted by HPV at several levels. It has been shown that the infiltration of HPV-infected tissue by LCs and DCs is inhibited by HPV-induced changes in the pattern of cytokine expression (Stanley, 2008). The HPV L2 protein is able to suppress maturation, migration, and cytokine secretion by LCs. Furthermore, the interaction between LCs and keratinocytes can be disrupted by the reduction of E-caderin levels induced by the E6 HPV protein (Ghittoni et al., 2010).

In immunosuppressed patients, HPV infection frequently leads to the appearance of abundant HPV-induced lesions, indicating that the immune system acts to limit HPV infection (Scott et al., 2001). Therefore, in order to persist, HPV must actively suppress both innate and adaptative immune response. One important mechanism of the innate pathway targeted by HPV acting in multiple ways is the interferon response (Samuel, 2001; Stanley, 2008). Keratinocytes constitutively express a low level of interferon-inducible genes in absence of interferon. The cells infected with HR-HPV express E6 and E7, which repress the transcription of many interferon target genes including Stat-1, a transcriptional activator of Interferon-inducible genes (Nees et al., 2001). E6 can bind to and block the action of IRF-3, a regulator of the interferon pathway and also blocks activation of protein kinase R (PKR) as well as the activity of kinase Tyk2, responsible for activating Stat-1, while E7 can bind to IRF-1, that is also a regulator of the interferon pathway (Hebner et al., 2006; Stanley, 2009b). Both E6 and E7 can inhibit expression of the toll-like receptor (TLR9), which is important for sensing doubled-stranded DNA (Hasan et al., 2007).

It is well known that keratinocytes constitutively express low levels of several cytokines that are upregulated following virus infection (Ghittoni et al., 2010). When these cells are infected with HPV show significantly reduced expression of the wide range of inflammatory cytokines including IL-1, IL-6, TNF-α, and TGF-β, at the same time, expression of the anti-inflammatory cytokine IL-10 is increased (Alcocer-Gonzalez et al., 2006; Ghittoni et al., 2010). Thus, HPV infection induces alteration in cytokine production, reducing the ability of immune cells to infiltrate the infected tissue. Keratinocytes constitutively express low levels of interferons α, β, and κ. The expression of interferon κ is suppressed in HPV positive cells and this could contribute to the inhibition of expression of interferon-inducible genes (Rincon-Orozco et al., 2009).

Development of HPV-specific T-cell response is repressed or delayed in HPV-infected patients, this effect being more pronounced in HR-HPV compared with LR-HPV infections (van der Burg and Palefsky, 2009). One reason for this impairment is probably the downregulation of major histocompatribiliy complex (MHC) I expression, probably due to interactions occuring between the viral proteins E6, E7, and E5 and the host cell. Furthermore E7 has been reported to downregulate the transporter associated with antigen processing (ATP), thereby interfering with presentation of antigens via the MHC I pathway (Ghittoni et al., 2010).

The expression of HPV E7 in epithelial cells does not directly impair, but rather slightly increase, MHC classe I expression. E7 expression is nevertheless associated with impairment of IFN-gama-induced enhancement of presentation of endogenous antigen to cytotoxic T lymphocytes (Zhou et al., 2011). Further mechanism of HPV-mediated immune escape involve viral proteins: HPV E7 has high and widespread similarity to several humans proteins, causing a limited immunogenicity (Natale et al., 2000); E6 can downregulate IL-18 expression (Cho et al., 2001); E5 mediate acidification of endossomes, affecting antigen
processing and presentation in antigen presentation cells (Straight et al., 1995); E5 also downregulate CD1d, a MHC I-like glycoprotein that presents self or microbial lipid antigen to natural killer – the downregulation of this molecule is utilized by a variety of microbes to evade immune detection (Miura et al., 2010). Finally, natural killer (NK) cell activity is also reduced in patients with HR-HPV infection (Stanley, 2009a; O’Brien and Campos, 2002).

5.3 The role of the physiology of the cervical epithelium

The cervical and anal transformation or transition zones (TZs) are dynamic areas of a few millimeters in size, in which a columnar glandular epithelium coexists with a squamous epithelium, and result from an adaptive process called metaplasia (Mukonoweshuro et al., 2005). These metaplastic conversions are influenced by the acidification of vaginal pH and by trauma such as that resulting from receptive anal intercourse, and can be considered as a stepwise progression of changes. Although these adaptive responses frequently occur at the cervical and anal squamocolumnar junctions, the molecular mechanism underlying the development and the maintenance of the metaplastic epithelium are still not completely understood (Herfs et al., 2011).

It is believed that this phenomenon could result from the reprogramming of adult stem cells and that the metaplastic epithelium is associated with a deregulated production of receptors, adhesion molecules, and soluble mediators of the inflammatory response, such as cytokines, chemokines, prostaglandins, and growth factors. These molecules might not only exercise influence epithelial differentiation but also alter the local antiviral immune response, favoring HPV infections. Importantly, a substantial majority of cervical and anal pre-neoplastic lesions develop within the metaplastic microenvironment of TZs (Bodily & Lamins, 2010). This implies that exogenous or endogenous factors specific to the anatomical milieu of squamocolumnar junctions could be conducive to persistent HPV infection (Herfs et al., 2011).

In contrast to normal squamous epithelium, metaplastic epithelia have an altered maturation characterized by a weak expression of several keratin intermediate filaments and cell envelope components such as involucrin and loricrin (Herfs et al., 2008). The primary function of keratins and other cytoskeletal proteins is to provide resistance to mechanical and non-mechanical stresses that can cause cell rupture and death. Thus, because of their immature state, keratinocytes of the squamocolumnar junctions could be more vulnerable to the trauma required for HPV infection (Gu & Colombe, 2007). Therefore, the increased sensitivity of anal and cervical TZs to pre-neoplastic lesions can be attributed to the fact that both the basement membrane and the target actively dividing basal cells for HPV infection could be more accessible in metaplastic areas in which monolayered glandular and pluristratified squamous coexist (Herfs et al., 2011).

Cervical TZs with squamous metaplasia have a higher density of estrogen and progesterone receptor-positive cells compared with normal squamous epithelia. Besides, the cervical TZs are more sensitive to the induction of squamous cell carcinogenesis by estrogen. Among the possible mechanisms by which sex hormones could facilitate HPV-induced carcinogenesis would be the stimulation of expression of E6 and E7 HPV genes, directly and/or indirectly through steroid response elements in the viral genome or still stimulating cellular proliferation (Bhattacharya et al., 1997; Yuan et al., 1999).
It is also possible that hormones sensitize the TZs to persistent HPV infection by altering the local immune microenvironment (Herfs et al., 2011). It has been observed that 17β estradiol can both reduce the migration and/or functional capacity of antigen-presenting cells and promotes the initiation of Th2 immune response, which is generally associated with the progression of the disease (Uemura et al., 2008). Together with these observations, the topography of the cervical TZs is affected by the hormonal status of women, suggesting that sex hormones might not only be involved in the development and maintenance of the metaplastic epithelium but might also be implicated in the high sensitivity of TZs to HPV infection and cancer progression (Herfs et al., 2011).

Also observed was a reduction of secretion of soluble factors of innate immune response involved in antiviral defense in the anal and cervical squamocolumnar junctions (Herfs et al., 2010). The β-defensin 2 is weakly expressed in cervical TZs and pre-neoplastic lesions compared with normal exocervical (Hubert et al., 2007). Furthermore, the density of Langerin-positive Langerhans cells (LCs) and their function are significantly altered in the anal and cervical TZs compared with the normal squamous epithelia (Herfs et al., 2008; Giannini et al., 2002) suggesting that keratinocyte-LC interaction could play an important role in the establishment of HPV infection in these regions (Herfs et al., 2011). It was also suggested that a Th2 immunoderivation of immune response could participate in the immunological escape of virus-infected cells (Herfs et al., 2011).

Altering the local immune response, metaplastic cells might not only promote viral infections but might also be involved in the HPV-induced development of cervical and anal carcinoma in the TZs. This could explain, at least in part, why HPV-associated lesions located elsewhere in the anogenital tract outside the TZs, such as the vagina and vulva, are less likely to progress to cancer than those that develop within the TZs. Therefore, the anatomical, histological, physiological, and immunological features of TZs might not only promote the mucosal entry of HPV but also be involved in the HPV-induced development of cervical and anal carcinoma (Herfs et al., 2010).

5.4 The oncogenics activities of HPV

5.4.1 The role of the E5 protein

The hydrophobic E5 protein is mainly found within the Golgi apparatus, as well as in the plasma membranes of HPV-infected cells. The E5 protein has weak oncogenic properties, which results in the increasing expression for the epidermal growth factor receptor (EGFR) (Tsai & Chen, 2003) and in the inhibition of the expression of the major histocompatibility complex (MHC) class I on the plasma membrane modulating the MAPK pathway and altering the levels of caveolin 1 (Moody & Laimins, 2010).

The virus-induced cell fusion mediated by oncogenic viruses is a well-known event among human oncogenic viruses, including HPV, and it seems that this phenomenon plays an important role in the carcinogenesis process (Duell et al., 2007; Hu et al., 2009). HPV16 E5 has all the characteristics of fusogenic proteins, including the localization of the plasma membrane, the high level of hydrophobicity, and the ability for dimmers. More recently, HPV16 E5 has been identified as necessary and sufficient to induce cell-cell fusion with the formation of the tetraploid cell (Hu et al., 2009).
Aneuploidy with the presence of tetraploid cells is frequently found in precancerous lesions associated with HPV infection. It is reported that expression of either HPV E6 or E7 alone is sufficient to deregulate cytokinesis and consequently produce the tetraploid cell (Heilman et al., 2009). However, it was demonstrated that the formation of these cells is primarily attributed to E5-induced cell fusion, rather than E6, E7, and cytokinesis failure (Ho et al., 2009). Tetraploid cells formed by accident cannot undergo normal mitosis which would trigger p53-dependent cell cycle arrest or apoptosis, whereas oncogenic virus-induced cell fusion is sufficient to induce chromosomal instability when fusion occurs concomitantly with expression of viral oncoproteins capable of perturbing p53 or apoptosis (Duelli et al., 2007).

In vivo and clinical studies reveal that chromosomal instability and aneuploidization seem to precede and favor integration of HPV genomes, which in turn leads to expression of viral-cellular fusion transcripts and further enhances expression of the E6-E7 genes, which renders the strong growth advantages of transformed cells (Ziegert et al., 2003). The cell fusion HR-HPVE5-induced and cell cycle deregulation are two key events for initiation of transformation. This suggests that HR-HPVE5-induced cell fusion can be a critical event in the early stage of development HPV-associated cervical cancer (Gao & Zheng, 2010). As the open reading frame coding E5 is frequently deleted in cervical cancer, it is possible that this viral protein is not required for tumor maintenance, but that it can play a critical role in the early stage of HPV-associated cervical cancer.

5.4.2 The role of the E6 protein

The E6 HPV protein binds not only to cellular p53 and E6-AP but also to a wide range of other cellular proteins, being known a more complete compendium of cellular factors that can interact with this viral oncoprotein. Among the other cellular proteins that interact with E6, the following may be cited: transcription factors such as p300, myc, interferon regulatory (IRF3), autocrine motility factor 1 (AMF-1/gPS2); factors that determine adhesion, cytoskeleton and polarity, such as paxillin, the human homologue of Drosophila disk-large tumor-suppressor gene product (DGL), and membrane-associated guanylate inverted-1 (MAGI-1); apoptosis factors such as the pro-apoptotic Bcl2 and Bak; replication factors and DNA repair factors such as mcM7 and XRCC1; and other cellular proteins such as E6 target protein 1 (E6TP1). In addition, E6 induces telomerase activity by inducing the expression of human telomerase reverse transcriptase (hTERT) (reviewed in IARC, 2007).

HR-HPV E6 proteins have a motif designated as S/TXV at their C-terminal which mediates binding to specific domains on cellular proteins known as PDZ proteins. PDZ domains are approximately 90 amino acid stretches found in a wide variety of cellular proteins. The importance of p53 in the orchestration of the cellular response to damage suffered by DNA as a result of exposure to cytotoxic agents becomes quite evident by the fact that approximately one-half of all human cancers present mutations in the p53 gene (Howie et al., 2009). Normally, p53 protein levels are regulated by the Mdm2 E3 ubiquitin ligase. However, Mdm2-mediated degradation of p53 is inhibited during viral infection and other stress conditions, allowing for stabilization of p53 protein levels and subsequent activation. In contrast, during an HR-HPV infection E6 induces p53 degradation by forming a complex with another E3 ubiquitin ligase, E6-AP. Only E6 HR-HPV is capable of binding to the core
region of p53 and this binding of the core region is required for p53 degradation mediated by E6.

Three other mechanisms have been proposed to explain the interaction of the viral E6 protein with p53. The first is by inhibiting the binding of p53 to its site-specific DNA sequence. In the second mechanism, E6 may be able to inhibit p53 signaling independent of protein degradation by means of the sequestration of p53 in the cytoplasm. The third mechanism employed by E6 to inhibit p53 activity is its abrogation of the transactivation of p53 responsive genes via interaction with either the CBP/p300 or hADA3 histone acetyltransferases. The E6 proteins have been shown to bind to p300, and this interaction inhibits p35 acetylation at p53 dependent sites, leading to decreased expression from a p53 (Zimmermann et al., 2000). However, unlike with p300, E6 interaction with hADA3 results in hADA3 degradation (Kumar et al., 2002). E6 may also inhibit p53 activation by blocking the p14/ARF pathway (Shamanin et al., 2008).

Thus, E6 is able to modulate transcription of p53-dependent genes by both degradation of p53 and by interaction with the p300 and hADA3 transactivators. In addition, E6 is able to modulate transcription from other cellular signaling pathways as well as potentiate its ability to act as a diverse modulator of host cell signaling. With respect to G-protein signaling, E6 has been shown to interact with three different proteins, such as a novel protein termed E6-targeted protein 1 (E6TP1), in an E6-AP dependent manner (Lee et al., 2007), beyond another protein with GAP activity, tuberin, which also can be bound and degraded by E6 (Zeng et al., 2008).

High-risk E6 has been shown to interact with two proteins that are part of the innate immune response to viral infection: interferon regulatory factor-3 (IRF-3) and toll-like receptor 9 (TLR9) (Hasan et al., 2007). IRF-3 becomes activated by dsRNA or viral infection, and this activation leads to the transcription of interferon-beta (IFN-β) (Hiscott, 2007). TLR9 becomes activated by viral or bacterial dsDNA derived CpG motifs, and induces cytokine production as a means to defend the cell against the invading organism (Müller et al., 2008). Exogenous expression of HPV16 E6/E7 has been shown to inhibit TLR9 transcription, leading to a functional loss of TLR9 signaling pathways within the cell (Hasan et al., 2007).

The p53 degradation or blocking of its function mediated by E6 has, as a consequence, the inhibition of apoptotic signaling that would otherwise eliminate the HPV infected cell. There are two major apoptotic pathways that can be triggered by different stresses: the extrinsic and the intrinsic pathways. The E6 protein is able to disrupt both pathways to facilitate a cytoprotective environment and prevent cell death, thus highlighting the critical signaling events that a cell undergoes following exogenous or endogenous stress (Howie et al., 2009).

E6 is able to inhibit extrinsic apoptotic signaling at each of the stages, by interacting with TNFR-1, FADD, and caspase-8. It was shown that E6 is able to bind directly to the death receptor TNFR-1 and blocked TNFR-1 DD mediated apoptosis (Filippova et al., 2002). In addition to the TNF pathway, E6 is capable of inhibiting apoptosis stimulated by both Fas and TRAIL pathways. This inhibition is mediated by E6 binding to and degradation of both the FADD adapter protein and the effector caspase-8 (Garnett et al., 2006). As the binding of FADD is not dependent on the conserved PDZ domain of high-risk E6, but rather by a new
domain (Tungteakkhun et al., 2008), it is possible that other E6 proteins may inhibit these extrinsic pathways.

HPV E6 proteins have been shown to inhibit intrinsic apoptotic pathway binding to Bak and to induce its proteasomal-dependent degradation (Underbrink et al., 2008). While E6-AP has been shown to play a role in Bak degradation, it has also been proposed that this may not be a universal mechanism for all of the HPV types (Simmonds & Story, 2008). Evidence has shown that Bak degradation is not constitutive, but rather occurs only after apoptotic signals have been initiated, indicating that a Bak conformational change and/or dissociation from its anti-apoptotic partner MCL-1 may be necessary for its interaction with E6 and E6-AP (Underbrink et al., 2008).

Another important effect of E6 in the development of genital cancer is the activation of telomerase reverse transcriptase (hTERT) (Howie et al., 2009). HPV E6 induces histone acetylation at the hTERT promoter, and this acetylation depends on E6-AP (James et al., 2006; Xu et al., 2008). To induce hTERT expression and telomerase activity in keratinocytes, HPV E6/E6-AP requires expression of NFX1-123 (Katzenellenbogen et al., 2007).

In addition to increasing the expression of hTERT, E6 also interacts with other proteins involved in maintaining chromosomal stability within the HPV-infected cell, for example, the minichromosome maintenance 7 (hMCM7) proteins. As MCM7 is involved in licensing DNA replication to ensure a single-round replication per cell cycle, it is thought that E6 interaction with and/or degradation of MCM7 may lead to chromosomal abnormalities in the HPV-infected cell. E6 can also interact with two proteins involved in single-strand DNA break repair: XRCC1 and O(6)-methylguanine-DNA methane transferase (MGMT). XRCC1 to be bound E6; this interaction reduces the ability of XRCC1 to repair methyl methane sulfonate (MMS) induced DNA damage (Iftner et al., 2002). E6 interaction with MGMT induces its proteasomal-mediated degradation via E6-AP, which has been hypothesized to sensitize HPV-infected cells to alkylating DNA damage (Srivenugopal & Ali-Osman, 2002). Finally, high-risk E6 mediated p53 loss inactivates the G1 checkpoint. Prolonged proliferation in the absence of p53 can lead to the loss of the G2 checkpoint, which can result in aneuploidy. Together, these interactions may lead to increased genomic instability and accelerate the progression to carcinogenesis (Howie et al., 2009).

Another major apoptotic pathway targeted by HPV proteins is anoikis, a form of apoptosis that is triggered when normal cells attempt to divide in the absence of a matrix (Tasaki et al., 2005). E6 has been shown to bind to paxilin and zyxin, adhesion molecules involved in tethering the cellular cytoskeleton to the extra cellular matrix (ECM) and transmitting signals along the actin network from the ECM to the nucleus. This interaction results in the disruption of actin fibers and a failure to maintain proper cell structure (Howie et al., 2009). HR-HPV E6 proteins also bind to hScrib, a protein involved in epithelial tight junctions, mediating the adhesion of basal cells to the ECM, and at least in some cell types it has been shown that E6 mediates hScrib degradation (Nakagawa & Huibregtse, 2000). Recently, it has been demonstrated that PTPN3, a membrane-bound tyrosine phosphatase that regulates growth factor receptors, is also a PDZ protein that binds and is disrupted by E6 (Jing et al., 2007; Spanos et al., 2008).
5.4.3 The role of the E7 protein

HR-HPVE7 proteins destabilize pRb through its proteosomal degradation via a mechanism that involves association with and reprogramming of the cullin 2 ubiquitin ligase complex by HPV E7 (Huh et al., 2007). The induction of the pRB degradation by HR-HPVE7 proteins and the resulting activation of E2F-mediated transcription represent an important mechanism by which these viruses achieve and maintain S-phase competence in differentiated epithelial cells. HR-HPVE7 proteins, in addition to targeting pRb proteasomal degradation, also contribute to cell cycle deregulation through several additional mechanisms involving cyclin-dependent kinases (cdks), motors that drive the cell division cycle (Zerfass et al., 1995).

HPV16 E7 has been shown to interact with and abrogate the growth-inhibitory activities of the cyclin-dependent kinase inhibitors (CKIs) p21CIP1 (Jones et al., 1997) and p27KIP1 (Zerfass et al., 1996), which are induced by anti-proliferative signals, including growth factor withdrawal and loss of cellular adhesion (Fang et al., 1996). The ability of HPV E7 to abrogate CKIs, together with its ability to disrupt the pRB/E2F complex, which results in increased cyclin E and A levels, retains differentiating keratinocytes in a DNA synthesis competent state. HPV E7 can also directly associate with cdk2/cyclin A and cyclin E complexes, resulting in increased cdk2 activity (Nguyen & Münger, 2008).

It was demonstrated that HPV16 E7 induces pRb degradation, but the mechanism of cell death depends on the integrity of the p53 tumor suppressor pathway; it does not involve transcriptional activation of canonical p53 transcriptional targets. Intriguingly, E7 expression generally interferes with the transcriptional activity of p53 (Eichten et al., 2002). Furthermore, the mechanism of cell death triggered by HPV16 E7 expression appears to be distinct from classic apoptosis; although caspases are active and DNA is degraded, cell death is mostly caspase independent (Eichten et al., 2004). Although HPV E7 signaling pathways have not yet been molecularly analyzed, HPV 16 E7 expression causes normal human epithelial cells to undergo cell death in response to growth factor deprivation (Zhou & Münger, 2009).

High- and low-risk HPV E7 proteins are associated with the 600 KD retinoblastoma protein-associated factor, p600 (DeMasi et al., 2005; Huh et al.,2005). Although its biological functions have not been fully elucidated in mammalian cells, p600 is implicated as a regulator of anoikis, a form of apoptosis that is triggered when normal cells attempt to divide in the absence of a matrix (Tasaki et al., 2005). Therefore, the interaction between E7 and p600 may deregulate anoikis and protect detached cells from apoptosis, thereby contributing to viral transformation (DeMasi et al., 2007; Huh et al., 2005). Consistent with this idea, HPV16 E7 associates with p600 through the CR1 domain, which is necessary for the transformation capability of HPV16 E7 (DeMasi et al., 2007).

It is known that HPV16 E7 can directly bind to E2F1 and enhance E2F1-mediated transcriptional. E2F1, which plays a role in mediating the transcriptional control of the E2F6 gene, which is unregulated at the G1/S-phase transition, to exert an opposing effect on the activities of E2F-responsive promoters, thereby directing appropriate cell cycle exit and differentiation (Lyons et al., 2006). Interestingly, HPV E7 associates with E2F6 and abrogates its ability to function as a transcriptional repressor (McLaughlin-Drubin et al., 2008), suggesting that the functional deregulation of E2F6 by HPV E7 is needed to counterbalance the up-regulation of E2F6 as a consequence of the activation of E2F1 by E7, thus ensuring
that the cells remain in an S-phase-competent state, which is necessary for the viral cycle (McLaughlin-Drubin & Münger, 2009).

Malignant progression mediated by HR-HPV oncogene expression of these cells occurs after prolonged passages in culture or when additional oncogenes, such as ras or fos, are expressed (Pei et al., 1993). This is comparable to the extended period of time between initial HPV infection and the development of invasive cervical carcinoma. Thus, while the expression of the HPV oncogenes is necessary and sufficient for initiation of cervical carcinogenesis, additional host genome mutations are needed for malignant progression. Indeed, cervical cancer cells have accumulated a wide range of numerical and structural chromosomal abnormalities (Mitelman et al., 2007).

The presence of DNA repair foci seen in HPV16 E7-expressing cells indicate that E7 may induce double-strand DNA breaks or interfere with break repair. This may facilitate viral genome integration. Consequently, E7 may be a driving force for integration of HR-HPV genomes into host cellular chromosomes, an event that frequently accompanies malignant progression of high-risk HPV-associated lesions. This may result in double-stranded HPV DNA fragments breaking off of the circular genome and being integrated into the host genome via the endogenous DNA double-strand break (DSB) repair machinery. If the upstream regulatory region is integrated into the host DNA, it may be the site of continued “onion skin” replication as long as the viral E1 and E2 replication proteins are expressed (Kadaja et al., 2007).

Fanconi anemia (FA) patients have an increased incidence of squamous cell carcinomas at sites that are infected by HPVs, and oral cancers arising in FA patients are HPV positive at a significantly higher rate than in the general population. The possible contribution of HPV infection to the increase in incidence of cancer in these patients was reinforced by the demonstration that the FA pathway is activated by HPV16 E7 expression and that the capacity of HPV16 E7 to induce DNA repair foci is enhanced in the FA patient-derived cell lines (Spardy et al., 2007).

Transforming growth factor β (TGF-β) is a potent inhibitor of epithelial cell growth, and acquisition of TGF-β resistance is the hallmark of epithelial tumor cervical carcinoma cell lines. Ectopic HPV16 E7 expression abrogates TGF-β-mediated growth inhibition. Acquisition of TGF-β resistance is a multi-step process, where TGF-β can repress HPV16 E6/E7 expression, which has been correlated to Ski overexpression, but the exact mechanism of this is not yet known (Baldawin et al., 2004). Both p21\(^{CIP1}\) and p27\(^{KIP1}\) have been implicated in TGF-β-mediated growth inhibition (Datto et al., 1995); and HPV16 E7 ability to inactivate these CKIs may contribute to its ability to abrogate TGF-β-mediated growth inhibition. TGF-β also induces a cdk4/cdk6-specific CKI, P15Inkb, and p15INKB-induced growth suppression may require functional pRB, which is targeted for degradation by HPV16 E7 (MaLac & Münger, 2009).

The tumor necrosis factor-α (TNF-α) is an important part of the immune response mediator that is produced by the cytotoxic T cell in response to a viral infection normal in keratinocytes undergoing G1 growth arrest and cellular differentiation in response to tumor necrosis factor (TNF). HPV E7 also compromises interferon (IFN) signaling through association with and inhibition of the IFN-α-induced nuclear translocation of p48, the DNA-
binding component of ISGF-3. Besides, HPV E7 can interfere with interferon regulatory factors (IRFs) associated with IRF-1 and impair its transcriptional activity (Park et al., 2000). Moreover, IFN-γ has been shown to inhibit HPV16 E7 expression, and the IFN-γ-induced suppressor of cytokine signaling-1 (SOCS-1)/JAB can associate with and induce the ubiquitin-mediated degradation of E7 (Kamio et al., 2004). HPV16 E7 may also interfere with insulin-like growth factor (IGF) signaling, which regulates cell survival. HPV16 E7 can associate with IGFP3 and accelerate its proteosome-mediated degradation (Santer et al., 2007).

E7 proteins are also associated with histone modifying enzymes and associated transcriptional co-factors (Bernat et al., 2003). HPV E7 interacts with class I histone deacetylases (HDACs), which act as a transcriptional co-repressor by including chromatin remodeling by reversing acetyl of lysin residues on histone. The association between E7 and HDACs results in increased levels of E2F-mediated transcription in differentiating cells possibly influencing S-phase progression. (Longworth et al., 2005). E7 is also associated, directly or indirectly, with histone acetyl transferases (HATs) including p300, pCAF, and SRC1, and has been shown to abrogate SRC1-associated HAT activity (Baldwin et al., 2006). Moreover, the histone methyl transferase, enhancer of zeste homologue 2 (EZH2), has been identified as a transcriptional target of the HPV E7 protein (Holland et al., 2008).

6. Conclusion

HPV is a non-enveloped virus with double-stranded circular DNA genome, protected by an icosahedra capsid forming a particle with about 55 nm. HPV genome is divided into three regions: a long control region (LCR), an early region (E), consisting of six ORFs: E1, E2, E4, E5, E6, and E7, which encodes no structural proteins involved in viral replication and oncogenesis and a late region (L) that encodes the L1 and L2 structural proteins of the viral capsid. The regulation of viral gene expression is controlled by cellular and viral transcription factors. Most of these regulations occur within the LCR region. The virus early promoter, differentiation-dependent late promoter, and two polyadenylation signals define three general groups of viral genes that are coordinately regulated during host cell differentiation. The E6 and E7 genes maintain replication competence, E1 E2, E4, E5, and E8 are involved in virus DNA replication, transcriptional control, beyond other functions. The products of the late genes L1 and L2 are responsible for the assembly of viral particles. The HPV life cycle begins with infection of stem cells in the basal layer of the epithelium. After entering the cells, the virus requires the expression of genes E1 and E2 to maintain a low number of genome copies. The expression of E6, E7, E1, and E2 are required for episomal maintenance continued. E1 and E2 act together to initiate replication of viral DNA, while E6 and E7 modulate cell cycle regulators to maintain replication competency in the long-term. The activation of differentiation-dependent promoter leads to an increased production of proteins E1, E2, E5, E6 and E7, resulting in increased cell proliferation and therefore in the number of cells infected with HPV, as well as the number of viral genome copies per cell. Then there is the E4 gene expression that induces genome amplification, at the same time that occurs the expression of genes L1 and L2 and assembly of viral particles. Among the mechanisms that allow the persistence of the virus include a specific differentiation during of the life cycle of the virus, the mechanisms for keeping the number of copies of the genome in undifferentiated cells, angiogenesis, and strategies to evade of
both innate and adaptive immune surveillance. In most cases, host defenses prevail and HPV infections resolve themselves. In some cases, however, infections persist for longer periods, allowing the accumulation of additional cellular changes leading to cancer.

The ingenious strategy developed by HPV, in which viral DNA replication and assembly occur only in in terminally differentiated cell and the fact that a local infection and intraepithelial, allows the virus to remain in host for many months, even years, invisible to the host defense mechanism. The HPV achieve this enviable lifestyle through a combination of abilities that contribute to avoid immune response. The viral infectious cycle is confined to the epithelial compartment, there is no viremia or blood-borne spread, and virus particles are eliminated from the mucosal surfaces far from vascular and lymphatic channels. As a result, there is little access to proteins of viruses and virus to the lymph nodes where adaptive immune responses are initiated. Besides, there is no necrosis or cell death virus-induced, and the proinflammatory cytokines that activate APCs in the epithelium are absent. In addition, HPV downregulate interferon responses and disable epithelial LCs. This allows for long uninterrupted periods of viral replication in the epithelium in the absence of host defense mechanisms. This is a high risk strategy for the host when the infection is caused by oncogenic genital HPVs, it increases the risk that the host immune system may become tolerant or unresponsive to viral proteins.

The development of cervical cancer involves a coordinated targeting of multiple pathways involving the HPV oncoproteins, where each one has a distinct role in malignant progression by interacting with many cellular proteins. The oncoproteins of high-risk HPV usurp or disrupt multiple signaling pathways to maintain the proliferative state in infected cells to facilitate viral replication and persistence. One consequence of this, however, is the accumulation of mutations in cellular genes and increased genomic instability, which results in full transformation. The major viral factors responsible for altering these pathways and mediating the progression to malignancy are the E5, E6 and E7 proteins. The efficient interruption of the functions of p53 and pRb by E6 and E7 is essential for this process. Recent studies have identified other important cellular targets, including telomerase, members of the pathway of DNA damage and important factors for centrosome duplication and signaling proteins. HPV promotes cell proliferation by multiple pathways in the absence of active cellular mechanisms of defense. The new appreciation of the role of other viral proteins, such as E5, in the progression of HPV-induced disease is also emerging. Although the recently introduced vaccines are effective in preventing initial infections caused by the high risk HPV types comprised in the vaccine, they have no effect on existing lesions and cancer, nor will it protect against diseases caused by other HPV types.

7. References

Human Papillomavirus: Biology and Pathogenesis

De Sanjose, S., Diaz, M., Castellsague, X., Clifford., G., Bruni, L., Munoz, N., & Bosch, FX. (2007). Worldwide prevalence and genotype distribution of cervical human...

contributes to transcriptional repression. *Journal of Virology*, Vol. 84, No. 18, (Sep 2010), pp. 9505-9515, ISSN 0022-538X.

Katzenellenbogen, RA., Egelkrot, EM., Vliet-Gregg, P., Gewin, LC., Gafken, PR & Galloway, DA. (2007). NFX1-123 and Poly(A) Binding Proteins Synergistically

Cervical cancer is the second most prevalent cancer among women worldwide, and infection with Human Papilloma Virus (HPV) has been identified as the causal agent for this condition. The natural history of cervical cancer is characterized by slow disease progression, rendering the condition, in essence, preventable and even treatable when diagnosed in early stages. Pap smear and the recently introduced prophylactic vaccines are the most prominent prevention options, but despite the availability of these primary and secondary screening tools, the global burden of disease is unfortunately still very high. This book will focus on the clinical aspects of HPV and related disease, highlighting the latest developments in this field.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
