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1. Introduction 

Coronary Heart Disease (CHD) is characterized by reduced blood flow and oxygen supply 
to the heart muscle, resulting from the occlusion of one or more major coronary arteries. 
CHD remains the most prevalent cause of mortality in developed countries and represents 
one of the major burdens on the healthcare systems today. Approximately every 25 seconds, 
an American will suffer from a coronary event, and about every minute, someone will die 
from one. According to the 2009 American Heart Association (AHS) report (Lloyd-Jones et 
al., 2009}, an estimated of 16.8 million American adults have CHD (extrapolated to US 
population in 2009 from National Health and Nutrition Examination Survey (NHANES) 
2005-2006) and about 20% of total deaths in the United States are caused by CHD. 

The advancements in noninvasive imaging techniques, such as real-time three-dimensional 
(RT3D) echocardiography, have enabled physicians to detect CHD in its earliest and most 
treatable stage. With cardiac imaging, physicians are able to evaluate essential global and 
local functional parameters, such as ejection fraction (EF), wall thickening, strain/strain rate, 
and etc. The rapid progress in cardiac imaging, however, has led to new challenges in 
handling of huge amount of image data involved in comprehensive functional patient 
studies. Manually analyzing these data sets becomes a formidable task for cardiologists, 
radiologists, and technicians in order to interpret the data and derive clinically useful 
information for diagnosis or decision support for surgical and pharmacological 
interventions. Also, manual analysis is subjective and therefore compromises the accuracy 
and reproducibility of quantitative measurements. 

The abovementioned reasons have triggered a great demand for computerized techniques to 
automate the analysis of cardiac images. Various image-processing tasks need to be 
performed in order to recover diagnostically useful information, among which myocardial 
segmentation is one of the most important tasks. Myocardial segmentation aims to delineate 
the endocardial (ENDO) and epicardial (EPI) boundaries from cardiac images. Accurate 
segmentation of myocardial boundaries is essential for deriving cardiac global functional 
parameters such as ventricular mass/volume, ejection fraction, and wall thickening. It is 
also a prerequisite step for accurate myocardial deformation analysis. 
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However, myocardial segmentation is challenging, particularly for the EPI surface.  This is 
due to the misleading, physically corrupted, and sometimes incomplete visual information 
of the EPI contours. 

 Myocardium and liver are anatomically close to each other and often share similar 
intensity values. Thus, there is usually no clear and visible edge between them; 

 The myocardium/lung air contrast is lower than the blood pool/myocardium contrast. 
This implies that myocardium and lung air have similar intensity properties, and might 
be misclassified as belonging in the same class; 

 The right ventricle (RV) myocardium, which has similar intensity values as the left 
ventricular (LV) myocardium, often merges into the LV myocardium at the LV/RV 
juncture. 

In this chapter, we present an automated coupled deformable model for the segmentation of 
LV myocardial borders from RT3D echocardiographic images. This approach was originally 
proposed in (Zhu et al., 2010). It incorporates the incompressibility property of myocardial, 
and therefore is able to handle fuzzy EPI borders. This model is formulated in a Bayesian 
framework, which maximizes the regional homogeneities of a cardiac image, while 
maintaining the myocardial volume during a cycle. By simultaneously evolving both ENDO 
and EPI surfaces, an automatic segmentation of the full myocardium is achieved from RT3D 
echocardiographic images. 

The remaining sections are organized as follows. Section 2 presents background of 
echocardiographic image segmentation. Section 3 discusses the incompressibility property 
of the myocardium. Section 4 is the general framework and details of the method. Section 5 
presents experimental results and finally section 6 is the conclusion. 

2. Background 

The heart is composed of four chambers: left atrium (LA), left ventricle, right atrium (RA), and 
right ventricle. Fig. 1(a) shows a long-axis cross-section of the heart. As shown in Fig. 1(a), the 
atria and ventricles are surrounded by muscle tissues called myocardium. Contraction and 
relaxation of the muscle fibers in the myocardium cause the pumping of the heart.  

 

Fig. 1. Heart anatomy. (a) long-axis cross-section, (b) short-axis cross-section. The grey 
region represents the myocardium. 

(a) (b) 
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Fig. 1(b) shows a short-axis cross-section of the heart. The grey region represents the 

myocardium. The inner surface of the myocardium is called endocardium, and outer surface 

is called epicardium.  As the LV is a powerful blood pump for the systemic circulation, the 

delineation of the LV endocardium and epicardium is often the object of interest for 

cardiologists, particularly because it is an important step for analyzing LV anatomical 

structure, quantifying cardiac function, and estimating LV motion. 

Automatic LV segmentation algorithms can be broadly categorized into region-based and 

boundary-based methods. Region-based methods exploit the homogeneity of spatially 

dense information, e.g. pixel-wise grey level values, to produce segmented images. 

Examples of region-based segmentation methods include thresholding, region-growing, 

Markov random field-based approaches, and etc. In contrast to the region-based methods, 

boundary-based methods rely on the pixel-wise difference to guide the process of 

segmentation. They try to locate points of abrupt changes in the grey tone images. Examples 

of boundary-based methods include edge-detection, Hough transform, boundary-based 

snakes, and etc. However, in numerous medical imaging modalities, the LV boundaries 

cannot be reliably and accurately detected using the algorithms which rely only on 

boundary or edge information. Reasons for this include significant signal loss, noise, 

complicated geometric shapes. These problems are ever present for acquired in 

echocardiography, where the boundary detection problem is further complicated by the 

presence of attenuation, speckle, shadows, confusing anatomical structures. 

In an effort to overcome these difficulties, various sources of image information have been 

used in the segmentation process. Most commonly used ones include grey level distribution, 

gradient, texture, and phase information. The choice of which information to use depends 

on imaging modality, image quality, and specific applications. 

2.1 Grey level distribution 

Incorporation of imaging physics as prior knowledge has been proven to be useful for 

cardiac segmentation (Paragios, 2002; Pluempitiwiriyawe et al., 2005, Chen et al., 2008). The 

random intensity distribution in ultrasound images, also known as speckle, is caused by the 

interference of energy from randomly distributed scatters, too small to be resolved by the 

imaging system. When an acoustic pulse travels through tissue or any medium, 

backscattering from the scatters in the range cell contributes to the returned echo. This 

contribution to the echo from the scatters in the range cell has been treated as a random 

walk because the locations of the scatters are considered to be random. The backscattered 

echo, therefore, is complex valued with a real part X and imagery part Y  . By virtue of 

central limit theorem, X  and  Y have identical Gaussian distribution  20,N  , where 2  

is its variance. 

The envelop of the backscattered echo, I , is given by 

2 2I X Y   

It has been shown that the envelop I  has a Rayleigh distribution 
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  2

2 2
; exp

2

I I
P I   

       

The Rayleigh distribution has been proven to be one of the most popular models in 
ultrasound image analysis. For example, a Rayleigh distribution was incorporated into a 
region-based level-set approach for the segmentation of ultrasound images (Sarti et al., 
2005). Also Cohen et al. proposed to use Rayleigh distribution as an image formation model 
in a maximum likelihood motion estimation scheme for noisy ultrasound images (Cohen 
and Dinstein 2002). Steen et al. proposed to use Rayleigh distribution for anisotropic 
diffusion-based edge detection (Steen and Olstad 1994). 

While Rayleigh distribution is extensively used in ultrasound image processing, it is not 
always not norm because it is valid only in the special case of a large number of randomly 
distributed scatters. In this condition, the speckle is called fully developed. It has been 
shown that the echo envelop has a Rayleigh distribution when signal noise ratio (SNR)is 
approximately 1.91. Deviations from such special scattering conditions are called pre-
Rayleigh condition when SNR <1.91, and post-Rayleigh condition when SNR>1.91 (Tuthill 
et al., 1988). The K-distribution has been proposed to model the pre-Rayleigh condition by 
accounting for low effective scatter density (Shankar et al., 1993; Shankar, 1995), and Rice 
distribution has been proposed to model the post-Rayleigh condition by accounting for a 
coherence component due to the presence of a regular structure of scatters within the tissue 
(Insana et al., 1986; Tuthill et al., 1988). However, the Rician family fails to model the pre-
Rayleigh condition, and K-distribution model does not take into account the post-Rayleigh 
condition. Generalized K-distribution (Jakeman, 1999), homodyned K-distribution (Dutt and 
Greenleaf, 1994), and Rician Inverse of Gaussian distribution (Eltoft, 2003) have been proposed 
as general models to encompass pre-Rayleigh, Rayleigh, and post-Rayleigh conditions. 
Unfortunately, the complex nature of these models limited their practical applications. 

Recently, Nakagami distribution has been proposed as a simple generalized model to 
collectively represent pre-Rayleigh, Rayleigh, and post-Rayleigh distributions (Shankar, 
2000). It is a two-parameter distribution with analytical simplicity, which makes it relatively 
easy to estimate it parameters. The probability density function (pdf) of the Nakagami 
distribution is given by 

   
2 1

22
; , exp

I
P I I

 


  
          

where    is the Gamma function,  is the shape parameter, and  is the scaling 

parameter. For 1  the pdf reduces to Rayleigh condition. For 1  , the pdf can be 

described as post-Rayleigh, which is similar to Rician distribution, while for 1  , the pdf 

can be described as pre-Rayleigh. 

As shown in (Shankar, 2000), the shape parameter and scaling parameters can be obtained 
from the moments of the envelop as follows 

 
 

2
2

2
2 2

E I

E I E I

        
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and 

 2E I   

where  E  is the expectation. 

Davignon et al. used a Nakagmi distribution to segment ultrasound images (Davignon et al., 
2005). 

Apart from the theoretical models mentioned above, empirical models have also been used 
in ultrasound image segmentation. For example, Tao et al. modeled the ultrasound speckle 
with a Gamma distribution and incorporated it into a tunneling descent optimization 
framework to overcome local minima (Tao and Tagare, 2007). Xiao et al. used a log-normal 
distribution for modeling speckle in breast images (Xiao et al., 2002). Qian et al. incorporated 
a log-normal distribution into a level-set framework to segment rat echocardiographic 
images with large dropout (Qian et al., 2006). 

2.2 Gradient  

Intensity gradient looks for intensity discontinuities between subregions corresponding to 

different tissue types. Intensity gradient can be computed from an image with standard 

differential operators (e.g. Sobel operator). A voxel is considered to be a boundary voxel if 

its intensity gradient is above a threshold. Gradient-based segmentation, such as such as 

gradient-based snake (Kass et al., 1987), Active Shape Model (ASM) (Cootes et al., 1995), and 

level-set approaches (Malladi et al., 1995), has been extensively used in cardiac applications 

(Lynch et al., 2006; Lynch et al., 2008; Assen et al., 2008; Chen et al., 2002; Corsi et al., 2002). 

One limitation of intensity gradient is that it may suffer from spurious, missing, and 

discontinuous edges. This is especially evident in EPI segmentation because there are 

usually no clear and visible edges between the myocardium and background. In addition, 

intensity gradient is suboptimal for ultrasound images because a boundary response in 

ultrasound images is anisotropic and depends on the relative orientation of the transducer 

to the boundary. Therefore, intensity gradient information is often used in conjunction with 

other image features (Pluempitiwiriyawej et al., 2005; Chen et al, 2003). 

2.3 Texture 

Although no formal definition of texture exists, it can be loosely defined as one or more local 

patterns that are repeated in a periodic manner. Texture analysis has been attempted in 

numerous ways in medical image analysis, particularly for ultrasound images. The three 

principal approaches to describe texture are image pyramids, random fields, and statistical 

models. 

The idea behind image pyramids is to generate a number of homogeneous parameters that 
represent the response of a bank of filters at different scales and possibly different 
orientations. Different filters have been proposed including Gabor filters (Xie et al., 2005; 
Zhan and Shen, 2006), Gaussian derivatives (Chen et al., 1998) and wavelet transforms 
(Mojsilovic et al., 1998; Yoshida et al., 2003). The idea behind random fields is that the value 
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at each pixel/voxel is chosen by two-dimensional (2-D)/ three dimensional (3-D) stochastic 
process. Given a type of pdf of this stochastic process, one can estimate the value at a 
particular pixel/voxel given the values of other pixels/voxles in its neighborhood. The most 
commonly used random field is Markov Random Field (MRF) (Bouhlel et al., 2004). 
Statistical models analyze the spatial distribution of grey level values, by computing local 
features at each point in the image, and deriving a set of statistics from the distributions of 
the local features. Statistical approaches yield characterizations of textures as smooth, 
coarse, grainy, etc. Major statistical texture descriptors include co-occurrence matrix 
(Nicholas et al., 1986, Sahiner et al., 2004, Kuo et al., 2001), auto-correlation (Chen et al., 
2000), edge frequency, run length, Law's texture energy, and fractal texture description. 
Several researchers have proposed to extract fractal texture features (Wu et al., 1992; Lee et 
al., 2003; Chen et al., 2005). In addition, several attempts have been made to combine 
multiple texture measures to improve discrimination abilities (Hao et al, 2001; 
Christodoulou et al., 2003; Stoitsis et al., 2006). 

2.4 Phase 

The local phase provides an alternative to intensity gradient to characterize structures in an 

image (Kovesi, 1996; Boukerroui et al., 2001; Mulet-Parada and Noble, 2000; Hacihaliloglu et 

al., 2008). Phase-based methods postulate that feature information is encoded at points 

where phase congruency is maximized, i.e. all the Fourier components are in phase. 

Generally, phase is estimated by quadrature filter bank. Thus, there is a link between phase-

based methods and other wavelet methods. Phase-based methods are suggested to be more 

robust than intensity gradient for ultrasound images because intensity gradients in 

ultrasound images depend on the relative orientation of the transducer to the boundary. In 

addition, the presence of speckles and imaging artifacts might cause the variation of 

intensity gradient of equally significant features in the data. One limitation of phase-based 

methods, however, is that speckle also has its own phase signatures, and therefore an 

appropriate spatial scale has to be selected. 

3. Incompressibility of myocardium 

The heart is a remarkably efficient and during mechanical pump composed of complex 

biological materials. The main structural elements of the myocardium are inter-connected 

networks of muscle fibers and collagen fibers, as well as matrix that embeds them. The 

fibers are generally tangential to the ENDO and EPI surfaces, following a path of a right-

handed helical geometry. The interstitial fluid carries only hydrostatic pressure, which in 

turn, is affected by the length and configuration changes of the fibers. These cause pressure 

gradients, which may result in the flow of the matrix. However, the fluid within the tissue is 

negligible for the duration of a cardiac cycle because the myocardium as low permeability. 

Consequently, the myocardium can be assumed to be nearly incompressible (Glass et al., 

1990). 

A few independent studies have been performed to quantitatively analyze the change of 
myocardial volume (MV) over an entire cardiac cycle. For example, Hamilton et al. 
performed experiments on frogs, turtles, and dogs, and discovered a relatively 
consistency of the MV during a cardiac cycle (Hamilton et al., 1932). Hoffman et al. used 
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canine Dynamic Spatial Reconstructor data to study the changes in MV, obtaining a 
relatively constant volume that was consistent with Hamilton's findings (Hoffman and 
Ritman, 1987; Hoffman and Ritman, 1985). More recent work done by King et al., who 
used freehand three dimensional (3-D) echocardiography to measure MV and mass, 
showed a 1.1% difference of volume between end-diastole(ED) and end-systole (ES) (King 
et al., 2002). Bowaman et al. found a variation of around 5% from ED to ES by using high-
resolution magnetic resonance (MR) imaging (Bowman and Kovacs, 2003). O'Donnell also 
analyzed the myocardial volume using MR imaging, and found the difference of ED and 
ES to be around 2.5% (O'Donnell and Funka-Lea, 1998). The common conclusion of these 
studies is that the myocardial is nearly incompressible and the variation is less than 5% 
during a cardiac cycle. This incompressibility property of the myocardium is used an as 
important cardiac structure constraint which is taken into consideration in our approach, 
as will be detailed in Section 4.3. 

4. Method 

4.1 General framework 

In this section, we formulate our segmentation problem in a maximum a posterior (MAP) 

framework combining image-derived information and the incompressibility property of the 

myocardium. Let I be a 3-D cardiac image, inS be the ENDO surface, and outS be the EPI 

surface. A MAP framework that combines image information and incompressibility 

constraint can be expressed as follows 

        
in out in out

in out in out in out in out
, ,

data adherence incompressibility constraint

ˆ ˆ, arg max , | arg max | , ,
S S S S

S S P S S I P I S S P S S     (1) 

Equation (1) is a probability function which adheres to image data, modulated by the 

prior knowledge of incompressibility property of the myocardium. In particular,  in out| ,P I S S is the probability of producing an image I given inS and outS by assuming 

the piecewise homogeneities of each region enclosed by inS and outS .  in out,P S S is the 

incompressibility constraint which keeps the MV enclosed by inS and outS nearly constant 

during a cardiac cycle. Since the myocardium is only nearly incompressible, it is more 

reasonable to define it within a probabilistic framework rather than imposing a 

deterministic constraint. 

4.2 Data adherence 

Region-based deformable models have been successfully applied in the segmentation of 
images with weak boundaries, due to their robustness (Chan and Vese, 2001). In this work, 
we evolve a three-phase region-based deformable model based on the statistical intensity 
distribution from RT3D echocardiographic images. 

To evolve a region-based model, we first need to determine the intensity distribution of each 

region within a cardiac image. It is obvious that the entire cardiac image is partitioned by 

inS and outS into three regions, namely, LV blood pool, LV myocardium, and background, 

as shown in Fig. 2. 
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Fig. 2. The short-axis view of a heart. Two dotted circles are ENDO- and EPI contours, 

which partitioned the entire image into three regions: LV blood pool, LV myocardium, and 

background. The background is inhomogeneous because it contains more than one tissues, 

such as RV blood pool, RV myocardium, lung air, and liver. 

The LV blood pool and myocardium are homogeneous, and therefore can modeled with a 

single pdf. In this work, we use Nakagami distribution (Shankar, 1995) (see Section 2.1) to 

model the intensity distributions of LV blood pool and myocardium as follows 

     2 1 22
; , exp

l

l

l

l l
l l

ll l

P I I I
 

    
        (2) 

where l is the shape parameter of the Nakagami distribution, and l is the scaling 

parameter. Equation (2) describes the intensity distribution for LV blood pool when l=1, and 

intensity distribution for LV myocardium when l=2. 

Unlike LV blood pool and myocardium, the background (see Fig. 2) because it contains 

more than one tissues (RV blood pool, RV myocardium, and liver), and therefore modeling 

it with a single distribution function would be insufficient because it contains a wide range 

of intensities. To handle this problem, we use a mixture model (McLachlan and Peel, 2000) 

to describe the intensity distribution of the background. 

   3 3 3, 3, 3,
1

; , ; ,
M

k k k k
k

P I P I    


  

where 3 and 3 are the shape and scaling parameters of the component distributions. For 

ultrasound images, we choose 2M  because the background histogram has two peaks, as 

shown in Fig. 3 (c). The first peak corresponds to RV blood pool and lung air, while the 

second peak corresponds to RV myocardium and liver. 
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Fig. 3. The histograms of echocardiographic images with their fitted distributions.  
(a) LV blood pool, (b) LV myocardium, (c) background. 

Fig. 3 shows the histogram of each region for echocardiographic images. 

Let  be a bounded open set of 3R , and be partitioned by inS and outS into three regions, 

namely, LV blood pool, LV myocardium, and background, which are denoted as 1 , 2 , 

and 3 respectively. Thus, the data adherence term can be defined by a three-phase 

deformable model 

    3

in out
1

log | , log ; ,
l

l l
l

P I S S P I d 
 x  (3) 

4.3 Incompressibility constraint 

It is mentioned in Section 3 that the MV is nearly constant during cardiac cycle. Therefore, 

we assume that the MV has a Gaussian distribution  2
0 , VN V   

    20
in out 2

1
, exp

2 2V V

V V
P S S  

     
 (4) 

where 
2

V d  x is the MV enclosed by the deforming ENDO and EPI surfaces. Parameter 

0V is the average volume, which can be calculated from the manual segmentation of the first 

frame. As mentioned in Section 3, the MV changes by less than 5% during a cardiac cycle. 
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Assuming that 00.025V  is the maximum deviation and using the three  rule, we have the 

following relationship: 

03 0.025V V   

0

1

120
V V   

Therefore, the incompressibility constraint is encoded into a probability function which 
favors small variance of the MV while penalizing large deviations. 

Combining Equations (1), (3), and (4), we arrive at the following optimization problem 

        
in out in out

23
0

in out in out 2
, , 1

ˆ ˆ, arg max , | arg max log ; ,
2l

l l
S S S S l V

V V
S S P S S I P I d  

        x  (5) 

The maximization of Equation (5) can be identified by the coupled surface evolution 
equations 

 
  2 2 0in

in2
1 1

; ,
log

; , V

P I V VS

P I

 
   

            n  (6) 

 
  3 3out 0

out2
2 2

; ,
log

; , V

P IS V V

P I

 
   

           n  (7) 

where inn and outn are the normals of inS and outS respectively, and  is the propagation 

time step. 

To implement the evolution of Equations (6) and (7), we embed the surface inS and outS in 

two higher dimensional functions  in x and  out x , which implicitly represents inS and 

outS as zero level sets, i.e.   in in: 0S  x x  and   out out: 0S  x x . 

To establish the relationship between surface evolution and level set function, we use the 

relation



 n . Given the curve/surface evolution form 

S
F

  n  

the correspondent level set evolution equation reads (Osher and Paragios, 2003) 

F
 
    

where   is the gradient operator. Hence, the level set evolution equation for Equations (8) 

and (9) are 
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  2 2 0in

in2
1 1

; ,
log

; , V

P I V V

P I

     
               (8) 

 
  3 3out 0

out2
2 2

; ,
log

; , V

P I V V

P I

     
              (9) 

5. Experiments 

5.1 Experimental setup 

The ultrasound data were acquired using Philips echocardiographic system with a 4 MHz 
X4 xMatrix transducer. The transducer consists of 3000 miniaturized piezoelectric elements 
and offers steering in both azimuth and elevation of the beam, permitting real-time 
volumetric image acquisition and rendering (Philips, 2005). In this work, we acquired 11 
sequences of canine images, and each sequence consists of 20-30 frames per cardiac cycle 
depending on the cardiac rate. Hence, we ran our program with a total of 286 sets of 
volumetric data. 

5.2 Quantitative measures 

To quantify the segmentation results, we used two distance error metrics and two area error 
metrics, namely, mean absolute distance (MAD), Hausdorff distance (HD), percentage of 
true positives (PTP), and percentage of false positives (PFP). 

Let A  and Bbe two surfaces from automatic and manual segmentation, respectively. 

Suppose they are represented by point sets, i.e.  1 2, ,..., NA  a a a  and  1 2, ,..., MB  b b b , 

we define 

     
1 1

1 1 1
MAD , , ,

2

N M

i j
i j

A B d B d A
N M 

       a b  

     HD , max max , ,max ,i j
i j

A B d B d A
    a b  

where  , mini i j
j

d B  a a b  is the distance from point ia to the closest point on surface B . 

While MAD represents the global agreement between two contours, HD compares their 

local similarities. 

Let A and B be the region enclosed by surface A and B , we define 

  Volume
PTP

Volume
A B

A

  


 

    Volume Volume
PFP

Volume
A A B

B

    

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5.3 Experimental results 

In Fig. 4, we show the long axis view of the automatically segmented ENDO- and EPI 
surfaces at frames 2, 4, 6, and 8 during ventricular systole.  

 

Fig. 4. Long axis view of segmented ENDO- and EPI contours at frames 2, 4, 6, and 8 during 
cardiac systole. 

In Fig. 5, we compare the segmentation results of the EPI surface with and without 
incompressibility constraint. For a fair comparison, we used the same data adherence term 
for both cases. We observed that while the ENDO border was correctly detected even 
without the incompressibility constraint, the EPI contour leaked into other tissues, such as 
liver, that look like myocardium. This is because the LV myocardium/background contrast 
is lower than the LV blood pool/myocardium contrast, especially for the lateral and inferior 
sectors of myocardium. This low contrast obscures the exact location of the EPI boundary, 
making EPI segmentation more challenging than ENDO segmentation. When the 
incompressibility constraint was applied, however, the coupling of ENDO and EPI contours 
forced the evolution of the EPI contour to be consistent with that of the ENDO contour, thus 
preventing the leakage of the EPI contour. 

 

Fig. 5. Comparison of EPI segmentation with and without incompressibility constraint.  
(a) with incompressibility constraint; (b) without incompressibility constraint. Arrow:  
myocardium juncture. 
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As explained in Section 1, another challenge in the segmentation of the EPI boundary is the 
presence of the LV/RV myocardium junctures. The intensity similarity between the LV and 
RV myocardium makes the EPI boundary ambiguous at the juncture. When the 
incompressibility constraint was not applied, the EPI contour leaked out to segment RV 
myocardium. When the incompressibility constraint was applied, however, the LV 
myocardium was successfully separated from the RV myocardium at the juncture. 

Fig. 6 compares the MV for an entire sequence from manual segmentation, automatic 
segmentation with incompressibility constraint, and automatic segmentation without 
incompressibility constraint. We took the mean value from three experts as the MV from 
manual segmentation. We observed that the variation of MV for manual segmentation is 

92.1 88.2
4.42%

88.2

  , the variation of MV for automatic segmentation with incompressibility 

constraint is 
92.2 88.1

4.65%
88.1

  . The variation of MV obtained without incompressibility 

constraint, however, is 
143.2 106.1

34.97%
106.1

  . Also, we noticed that the MV obtained without 

incompressibility constraint is much larger than that from manual segmentation. This is 
because the EPI contour leaked into the background, leading to the over-estimation of the MV. 

 

Fig. 6. Comparison of MV for an example sequence from manual segmentation, automatic 
segmentation with incompressibility constraint, and automatic segmentation without 
incompressibility constraint. 

In addition, we performed Bland-Altman analysis (Bland and Altman, 1986) to assess the 
agreement of the MV measurements from manual segmentation and automatic 
segmentation. The Bland-Altman analysis revealed small bias and good coherence between 
the MV measurements from manual segmentation and automatic segmentation with 
incompressibility constraint. As shown in Fig. 7, the bias is -0.2%, and 95% of the computer 
measurements of MV can be expected to differ from expert measurements by less than 6.4% 
below and 5.9% above the mean. In comparison, when the incompressibility constraint was 
not applied, the MV largely deviated from the MV from manual segmentation (bias = 18.8%, 
95% confidence interval = [2.4%,35.2%]). 
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Fig. 7. Bland-Altman analysis showing the agreement between the MV measurements from 

manual segmentation and automatic segmentation. 

Table 1 shows that the ENDO boundaries were detected with sufficient accuracy even if the 

incompressibility constraint was not applied. This is because that the ENDO boundaries are 

relatively clear compared to the EPI boundaries. However, we observed from Table 2 that 

for EPI boundaries, when the incompressibility constraint was not applied, the automatic-

manual MAD was 2.78mm larger than the manual-manual MAD, the automatic-manual HD 

was 3.82mm larger than the manual-manual HD, and the automatic-manual PTP&PFP were 

18%-20% worse than the manual-manual PTP&PFP. This is because of the leakage problem 

of EPI boundaries without incompressibility constraint. When the incompressibility 

constraint was applied, however, the automatic-manual MAD decreased by 3.38mm, the 

automatic-manual HD decreased by 4.11mm, and the automatic-manual PTP&PFP 

decreased by 16%-19%. We can see from Tables 1 and 2 that the automatic algorithm 

produced results with comparable accuracy to a manual segmentation. Furthermore, we 

observed from Tables 1 and 2 that the variability of manual-manual segmentation was 

smaller for the ENDO surface than for the EPI surface. This is probably because the EPI 

boundaries are more ambiguous for observers to detect, which was also the reason why we 

have multiple observers instead of a single one. 

 
 

 
 

Table 1. Comparison of automatic outline to three observers’ outline of ENDO boundaries. 
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Table 2. Comparison of automatic outline to three observers’ outline of EPI boundaries. 

6. Conclusion 

In this chapter, we have presented a novel approach to segmenting the full myocardial 
volume from cardiac MR and ultrasound images. Motivated by the incompressibility 
property of myocardium during a cardiac cycle, we coupled the propagation of the ENDO 
and EPI surfaces according to image-derived information that maximized the piecewise 
homogeneities of a cardiac image, as well as the incompressibility constraint which 
constrains the variation of myocardial volume within 5%. 

To validate our approach, we computed the MAD, HD, PTP, and PFP between the contours 
from automatic algorithm and manual segmentation. We observed that when the 
incompressibility constraint was not applied, the EPI boundaries leaked into other tissues. 
When incompressibility constraint was applied, however, the MAD, HD, PTP, and PFP were 
significantly improved. 
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