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1. Introduction 

It has been well established that in several chronic diseases such as in chronic obstructive 
pulmonary disease (COPD), diabetes, cancer or congestive heart failure patients, next to 
central dysfunctions, the patients develop some systemic consequences that can lead to 
peripheral muscle dysfunction. Some important clinical implications such as reduced 
exercise capacity, reduced quality of life and lower survival in these patients are related to 
changes in muscle structure (mass) and function (power and endurance) (Maltais et al., 
1996; 1999; Mettauer et al., 2006). In chronic disease, peripheral perturbations generally 
include neurohormonal and inflammatory changes, microvascular dysfunction, endothelial 
abnormalities, tissue wasting, apoptosis and energetic imbalance in skeletal muscle cells, 
causing reduced exercise capacity. These multisystem abnormalities contribute to the 
progressive worsening of the disease, and ultimately, lead to premature death. Among the 
numerous skeletal muscle cell changes that occur in chronic disease, energetic dysfunction 
has received renewed attention in the last decade and is increasingly considered to be a 
possible unifying mechanism in the development of muscle failure (Mettauer et al., 2006).  

The mitochondrial impairments seem to be central in the development of energy dysfunction. 
Indeed, morphometric analysis of vastus lateralis from chronic heart failure patients revealed a 
decreased volume density of the mitochondria and decreased surface of the cristae in 
proportion with the decrease in VO2peak (Drexler, 1992). The percentage of the mitochondria 
stained for cytochrome oxidase (COX) is also reduced but improves with training (Hambrecht 
et al., 1995). Muscle enzymatic analysis as citrate synthase activity was decreased (De Sousa et 
al., 2000; Mettauer et al., 2001; Williams et al., 2004). Mitochondrial dysfunction has also been 
implicated in the pathology of chronic metabolic disease characterized by insulin resistance 
such as obesity, type 2 diabetes mellitus, and aging (Johannsen & Ravussin, 2009). In some 
chronic diseases as heart failure, skeletal muscle abnormalities resemble those induced by 
physical deconditioning, but some features argue for a generalized metabolic myopathy. 

These observations shown in several studies were obtained using various experimental 
techniques such as nuclear magnetic resonance (NMR) spectroscopy, measurement of 
mitochondrial function in situ or in vitro by oxygraphy, proteomics and genomics in human 
or animal models, which have all revealed muscular energetic perturbations. Indeed, 
mitochondria play a central role in hereditary mitochondrial diseases, ischemia reperfusion 
injury, heart failure, metabolic syndrome, neurodegenerative diseases and cancer. Thus, 
comprehension of mitochondrial function regulation is fundamental in order to enlarge the 
knowledge in the field of mitochondrial physiology, and above all in order to better 
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diagnose the implication of mitochondria in many diseases. Direct assessment of 
mitochondrial function by measuring coupled respiration and ATP synthesis provides more 
full information, and the study of oxidative phosphorylation in skeletal muscles is an 
important initial screening procedure for the potential presence of mitochondrial diseases. 
At the fundamental level, comprehension of the mechanisms governing mitochondrial 
function as well as mitochondrial biogenesis remain to be explored in details with more and 
more molecular and cellular approaches. 

2. Different types of skeletal muscle are available 

2.1 Different muscle types 

In function of pathologies, clinical symptoms, experimental conditions or physical exercise 
type, the choice of skeletal muscle could be different. Deltoid and Vastus Lateralis muscles 
are the skeletal muscles classically explored. But muscular biopsy could also be carried out 
in Tibialis anterior and Gastrocnemius muscles. During chirurgical intervention, some other 
striated muscles such as pectoral, respiratory or backbone muscles could also be explored. 
For that, researchers need to obtain the informed consent from all patients and the study has 
to be approved by the institutional ethical review board. 

2.2 Different muscle fibres 

In function of muscle types, the composition and the properties of muscle fibres will be 

different. Indeed, an abundance of literature shows that human skeletal muscles are made of 

a mixed nature, depending on its function. Muscles are composed of various proportions of 

the three fibre types I, IIa and IIx (or IIb depending on the species), each having specific 

contractile and metabolic characteristics. Fibre type composition exhibits great plasticity that 

depends on activity, mechanical load, hormonal status and age (Baldwin et al., 1975; 

Schiaffino & Reggiani, 1996; Fluck & Hoppeler, 2003). Moreover, quantitative differences 

between muscles in terms of mitochondrial and capillary density, enzymatic profile and 

content of high-energy phosphates have been widely reported (Table 1, figure1).  

 

Table 1. The different characteristics of muscle fibres. For the sake of simplicity fibre types 
have been separated in slow oxidative type I, fast oxidative type IIa and fast glycolytic type 
IIb. miCK: mitochondrial isoenzyme of creatine kinase. (Mettauer et al., 2006) 
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Fig. 1. Representative photographies to compare oxidative fibres to glycolytic fibres. On the 
left, there is a representative electron photomicrographs. On the right, muscles are stained 
with Haematoxylin-eosin (source: Pearson education, Inc., publishing as Benjamin Cummings).  

Oxidative capacity of a given muscle can be linked to quantitative characteristics, especially 

mitochondrial and enzymatic contents. According to the relative importance of glycolysis 

and mitochondria, preferred substrate utilization can also vary from mainly carbohydrate to 

high-lipid utilization in highly oxidative muscles (Jackman & Willis, 1996; Ponsot et al., 

2005). 

Two families of muscles have been described in function of their metabolic activities. In 

oxidative muscles, composed essentially with slow oxidative fibres, the energy supplied 

continuously by mitochondria can sustain contractile activity for long periods of time 

without fatigue. By contrast, the glycolytic muscle composed with fast glycolytic fibres, has 

high levels of phosphocreatine and a high sensitivity to cytosolic ADP, which is, thus, the 

likely metabolic signal driving mitochondrial respiration (Mettauer et al., 2006).  

Among these systems, there is the family of creatine kinase (CK) that catalyzes the reversible 

transfer of a phosphate moiety between creatine and adenosine diphosphate (ADP) 

(Mettauer et al., 2006). Four different isoforms of CK are expressed in a tissue specific and 

developmentally regulated manner. Among these isoforms, there is the mitochondrial 

isoenzyme (mi-CK), which is functionally coupled to oxidative phosphorylation and 

controls respiration in oxidative muscles (Wyss et al., 1992; Saks et al., 1994). 

Mechanisms of high-energy phosphate transfer from mitochondria to local ATPases in the 

oxidative muscle fibres (type I skeletal muscle fibres, cardiac myocyte) can be described as 

“pay as you go” energy production, whereby, production is finely tuned to the needs of 

local ATPases within subcellular energetic units (figure 2).  
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Fig. 2. The mechanisms of energy production in oxidative muscles, from. (Mettauer et al., 
2006) 

In glycolytic muscle fibres (type IIX/B), the mitochondria, together with glycolytic 

complexes, are concerned with replenishing intracellular phosphocreatine (PCr) stores 

which are immediately available for the ATPases-bound creatine kinases. This can be 

described as a “twitch now pay later” mode of operation (Kaasik et al., 2003; Ventura-

Clapier et al., 2004; Mettauer et al., 2006)(figure 3).  

 

Fig. 3. The mechanisms of energy production in glycolytic muscles described before. 
(Mettauer et al., 2006) 
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Fig. 4. Representative electron photomicrographs of mitochondrial ultrastructure in muscle 
fibres control (Mariappan et al., 2007). The second photo represents a muscle fibre with 
myofibrils and mitochondria (source: David R. Caprette,  Rice University)  
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3. Mitochondrial analysis of muscle biopsy 

3.1 Methods 

Techniques and protocols of assessment of mitochondrial properties are of important 

physiological and physiopathological significance. 31P NMR spectroscopy has given the 

opportunity to study in vivo the intracellular metabolism under various conditions, 

including exercise in normal subjects and patients. However this approach did not reveal 

the intrinsic mitochondrial properties but rather the mitochondrial function under an 

uncontrolled intracellular medium. In the past, muscle mitochondrial properties were more 

closely explored either: 

- By morphometric methods that give access to the mitochondria volume density and 
surface of cristae. The technique used the transmission electronic microscopy (figure 4) 
(Veksler et al., 1987),  

- By biochemical methods determining the activity of intramitochondrial enzymes like 
citrate synthase (CS) and cytochrome oxidase (Cox). Actually, we can measure, directly 
the enzymatic activity of citrate synthase, which can be a good marker for quantifying 
mitochondria. Moreover, there are more and more different enzyme immunoassays to 
detect the consequence of the activities of metabolic enzymes. In addition, the different 
complexes implicated in the mitochondrial respiration can be explored (Birch-Machin & 
Turnbull, 2001). 

- By polarographic methods, measuring O2 uptake of isolated mitochondria. These 
studies, on isolated mitochondria, required large amounts of tissue (approximately 500 
mg), above the yield of routine human biopsy technique (10–50 mg), although efforts 
have been made to improve their sensitivity. More than two decades ago, Veksler et al. 
(Veksler et al., 1987) reported a method to assess the mitochondrial function of animal 
as well as human muscles. This new technique was based on the selective 
permeabilization of the sarcolemma by a low concentration of saponin (Kuznetsov et 
al., 2008). This approach allows the analysis of mitochondria within an integrated 
cellular system, preserving essential interactions with the cytoskeleton (Saks et al., 1998; 
Milner et al., 2000), nucleus (Dzeja et al., 2002) and endoplasmic reticulum (Rizzuto et 
al., 1998; Csordas et al., 2006). 

3.2 Mitochondrial respiration 

Oxidative phosphorylation has to be studied in intact mitochondria, which can be achieved 

by measuring the oxygen consumption of isolated mitochondria or muscle fibres from a 

tissue. 

The skinned muscle fibre technique is adapted by Veksler and Saks for cardiac muscle fibres 

and also for skeletal muscle fibres (Veksler et al., 1987; Kuznetsov et al., 2008). This 

approach applies the ability of several chemical agents to specifically interact with the 

cholesterol in plasma membranes of cells or muscle fibres. These agents, for example 

saponin, have a high affinity to cholesterol and thus preferentially interact with cholesterol 

from membranes. Since, plasma membranes contain more cholesterol than the membrane of 

endoplasmic reticulum (ER) as well as the mitochondrial outer and inner membranes 

(Comte et al., 1976; Kuznetsov et al., 2008), there are no lesions on the intracellular 
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membrane structures (mitochondria and ER) (Saks et al., 1998). Importantly, functionally 

intact mitochondria, myofilaments or sarcoplasmic reticulum (SR) of permeabilized muscle 

fibres respond quickly to changes in concentrations of ions, adenine nucleotides, substrates, 

inhibitors (Kuznetsov et al., 2008). So the intracellular space of permeabilized muscle fibres 

is equilibrated with the external medium (figure 5) (Veksler et al., 1987; Kunz et al., 1993; 

Kuznetsov et al., 1997; Kuznetsov et al., 1998; Kuznetsov et al., 2004), and mitochondria are 

able to use substrates added in the extracellular medium. 

 

Fig. 5. Scheme explaining the effect of saponin on muscle fibres. Panel A represents the 
intracellular compartiment, with mitochondria, sarcoplasmic reticulum, nucleus (N). Panel 
B, when saponin acted; It appears a loss of plasmic membrane integrity. The mitochondrial 
sarcoplasmic membranes stayed intact.  (Kuznetsov et al., 2008) 

The addition of substrates allows us to analyze separately the different complexes I, II, III 

and IV of the mitochondrial respiratory chain. The measure consists in measuring the 

oxygen consumption polarographically with a Clark-type electrode. The substrates used are 

in function of the complex activity observed. The experiment started, all the time, by a 

measure of the basal respiration in non-phosphorylated condition but in the presence of 

glutamate-malate substrate, and is named V0. Then, for observing the maximal 

mitochondrial respiration by activating complexes I, III and IV, the addition of ADP (in 
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saturating concentration) is sufficient, and the respiration rate is named Vmax. The next step 

is to activate the complex II in adding amytal or rotenone, (specific inhibitors of complex I), 

followed by the addition of succinate, this respiration rate is named Vsucc. The complex III 

can be inhibited by the addition of antimycin A. Finally, to measure the specific activity of 

complex IV, N, N, N′, N′-tetramethyl-p-phenylenediamine dihydrochloride (TMPD) and 

ascorbate were added as an artificial electron donor to complex IV, the mitochondrial rate is 

named VTMPD/asc ( Charles et al., 2011.; Kuznetsov et al., 2008)(figure 6).  

 

Fig. 6. Mitochondrial respiratory chain complexes activities using saponin skinned fibres. 
GM : glutamate/ malate. CI: complex I; CII: complex II; CIII: complex III ; CIV: complex IV ; 
ATP Synt : ATP synthase ; cytC : cytochrome c; CoQ : coenzyme Q.  

It is important to indicate that substrate utilization differ among muscle types (Baldwin et 

al., 1972; Holloszy & Booth, 1976; Jackman & Willis, 1996; Dyck et al., 1997). This means that 

muscle tissue has developed specific adaptations in terms of respiration control and 

intracellular energy distribution depending on its specific needs (Saks et al., 2001). 

The Glycerol-3-Phosphate (G3-P) has a key role in the transfer of reducing equivalents from 

the cytosol to the mitochondrial matrix. This substrate is more used by the glycolytic 

muscles (Jackman & Willis, 1996). 

Pyruvate is the substrate preferentially oxidized by all the different muscles (Ponsot et al., 

2005). While the fatty acids like palmitoyl-carnitin are predominantly used by the cardiac 

and more generally by the oxidative skeletal muscles (Ponsot et al., 2005). The mechanisms 

of these different substrates are summarized in the figure 7. 
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Fig. 7. The intervention of different substrates depending on their transport mechanism 
(Ponsot et al., 2005).  
(1) pyruvate (Pyr), which activates the pyruvate dehydrogenase complex (PDH) localized in 
the mitochondrial matrix; (2) palmitoyl-carnitine (Palm-C), which is transferred into the 
matrix by the inner membrane-localized carnitine translocase (CT) and carnitine palmitoyl 
transferase II (CPTII), and activates the b-oxidation (b-ox); (3) G3-P, which diffuses to the 
intermembrane space and activates the mitochondrial G3-P dehydrogenase; (4) lactate 
(Lact), which could be converted into Pyr by mitochondrial LDH if it is present and 
functional. dicarboxylate translocase (DcT); dihydroxiacetone- phosphate (DHP); glutamate 
aspartate translocase (GAT); glycerol-3-phosphate (G3P); mitochondrial aspartate 
transaminase (m-AT); mitochondrial glycerol-3-phosphate dehydrogenase (m-G3PDH); 
mitochondrial malate dehydrogenase (m-MDH); pyruvate dehydrogenase complex (PDH). 

3.3 Adenosine-5'-triphosphate (ATP) production 

3.3.1 Definition 

Adenosine-5'-triphosphate (ATP) is a multifunctional nucleotide used in cells as a 
coenzyme. ATP transports chemical energy within cells for metabolism. It is produced from 
Adenosine-5'-triphosphate (ADP) during glycolysis and the oxidative phosphorylation via 
the mitochondrial electron transport chain, which is the principal source of ATP in aerobic 
condition in mammals. ATP is used by enzymes and structural proteins in many cellular 
processes. It is used as a substrate in signal transduction pathways by kinases that 
phosphorylate proteins and lipids, as well as by Adenylate cyclase, which uses ATP to 
produce the second messenger molecule cyclic AMP. Apart from its roles in energy 
metabolism and signaling, ATP is also incorporated into nucleic acids by polymerases in the 
processes of DNA replication and transcription.  
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In muscle, it plays a crucial role for the contraction. Indeed, ATP is the direct energy source 
for muscle contraction (Rayment et al., 1993).  

3.3.2 The interest of ATP measurement 

In living cells, the distribution of ATP is ubiquitous, and is lost rapidly in dead cells. It is an 
appropriate marker for cell viability (Petty et al., 1995). Moreover ATP is extracted and 
measured easily.  

3.3.3 Methods 

Several methods exist allowing to quantify ATP concentration in myocytes: 

- High-performance liquid chromatography (HPLC) with phosphate buffer as the mobile 
phase and UV detection (Lazzarino et al., 2003),  

- Ion exchange chromatography, also with UV detection (Ally & Park, 1992; Maguire et 
al., 1992). 

- However, the firefly luciferin-luciferase bioluminescence method is the most rapid, 
sensitive, and reproducible assay. 

The bioluminescence assay is based on the reaction of ATP with recombinant firefly 
luciferase and its substrate luciferin. The stabilities of the reaction mixture as well as 
relevant ATP standards were quantified (Wibom & Hultman, 1990; Wibom et al., 1990).  

It is a reagent based upon firefly luciferase, which emits light proportional to the ATP 
concentration. 

The production of light is caused by the reaction of ATP with added luciferase and D-
luciferin. This is illustrated in the following reaction scheme: 

 

So, the ATP measurement permits to explain the importance of understanding the energy 
capacity of mitochondria in biology, physiology, cellular dysfunction, and ultimately, 
disease pathologies and aging (Drew & Leeuwenburgh, 2003; Aas et al., 2010). 

3.4 Uncoupling of mitochondria 

To phosphorylate ADP into ATP, the mitochondrion uses a coupling of oxidative 
phosphorylation across the mitochondrial inner membrane. But there is a phenomenon 
called mild uncoupling which allows the return of protons into the matrix without ATP 
production. This proton leak lowers the membrane potential across the inner membrane and 
increases the mitochondrial respiration rate (Brand, 1990). This leak goes by the uncoupling 
proteins (UCP). Discovered in 1978 (Nicholls et al., 1978), the first one, UCP1, localized in 
brown adipose tissue, is involved in cold-induced thermogenesis. The role of the other UCP, 
principally UCP2 (expressed ubiquitously) and UCP3 (expressed almost exclusively in 
skeletal muscle), is more controversial. As they are activated in extreme conditions (fasting, 
intensive exercise, high fat diet…) they could be a protective mechanism against oxidative 
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stress. Indeed, when uncoupling is activated, mitochondrial respiration has to increase in 
order to maintain the membrane potential and ATP production. It seems that this 
mechanism reduces mitochondrial ROS production (Starkov, 1997). 

Visualization of this phenomenon is indirect in vivo (calorimetric approaches), and only 
observed in vitro in specific conditions. The proton leak is shown from the measurement of 
the membrane potential together with the respiration rate (in non-phosphorylating state) 
(Brand, 1995; Cadenas et al., 2002). 

3.5 ROS production 

Reactive oxygen species (ROS) are involved in the regulation of many physiological processes. 
However, overproduction of ROS under various cellular stresses results in cell death and 
organ injury and thus contributes to a broad spectrum of diseases and pathological conditions. 
ROS are formed preferentially in mitochondria also under normal conditions and may 
participate in many signaling and regulation pathways. However, under various cell stresses, 
such as ischemia–reperfusion, hypoxia–reoxygenation, and treatment with toxic agents, 
mitochondrial ROS are produced in excess and are rapidly released into cytoplasm, where 
they may have damaging effects, leading to oxidative stress and cell injury. Different methods 
exist allowing to characterise ROS formation at the level of muscle tissue (see the chapter from 
Lejay et al. for much more explanations and the description of the methods). 

3.6 Mitochondrial biogenesis and genes expression 

Gene expression profiling is considered as a key technology for understanding the biology of 
tissue plasticity as well as pathological disorders. A growing body of evidence is accumulating 
that implies muscular gene expressional alterations to be involved to a significant extent in the 
unique response of cells and tissues to external stressors. Transcriptional profiling evolves as a 
powerful tool to explore the molecular mechanisms underlying such adaptation. Real time RT-
PCR (reverse transcription-polymerase chain reation) is the basic but efficient technique 
allowing to explore mitochondrial gene expression in muscle. 

Advances in molecular biology have started to elucidate the transcriptional events 
governing mitochondrial biogenesis. Peroxisome proliferator-activated receptor gamma co-
activator (PGC-1) is considered to be the major regulator of mitochondrial biogenesis 
(Ventura-Clapier et al., 2008). Mitochondrial biogenesis can be defined as the growth and 
division of pre-existing mitochondria. According to the accepted endosymbiotic theory, 
mitochondria are the direct descendants of a-proteobacteria endosymbiont that became 
established in a host cell. Due to their ancient bacterial origin, mitochondria have their own 
genome and a capacity for auto-replication. Mitochondrial proteins are encoded by the 
nuclear and the mitochondrial genomes. The double-strand circular mitochondrial DNA 
(mtDNA) is 16.5 kb in vertebrates and contains 37 genes encoding 13 subunits of the 
electron transport chain (ETC) complexes I, III, IV, and V, 22 transfer RNAs, and 2 ribosomal 
RNAs necessary for the translation. Correct mitochondrial biogenesis relies on the 
spatiotemporally coordinated synthesis and import of 1000 proteins encoded by the 
nuclear genome, of which some are assembled with proteins encoded by mitochondrial 
DNA within newly synthesized phospholipid membranes of the inner and outer 
mitochondrial membranes. All of these processes have to be tightly regulated in order to 
meet the tissue requirements. Mitochondrial biogenesis is triggered by environmental 
stresses such as exercise, cold exposure, caloric restriction, oxidative stress, cell division and 
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renewal, and differentiation. The biogenesis of mitochondria is accompanied by variations 
in mitochondrial size, number, and mass. The discovery that alterations in mitochondrial 
biogenesis contribute to some chronic pathologies have increased the interest of the 
scientific community in this process and its regulation (Ventura-Clapier et al., 2008). 
Mitochondrial biogenesis is induced as followed: Peroxisome proliferator-activated receptor 
gamma co-activator (PGC-1a) activates nuclear transcription factors (NTFs) leading to 
transcription of nuclear-encoded proteins and of the mitochondrial transcription factor 
Tfam. Tfam activates transcription and replication of the mitochondrial genome. Nuclear-
encoded proteins are imported into mitochondria through the outer- (TOM) or inner (TIM) 
membrane transport machinery. Nuclear- and mitochondria-encoded subunits of the 
respiratory chain are then assembled. Mitochondria in the cells of most tissues are tubular, 
and dynamic changes in morphology are driven by fission, fusion, and translocation 
(Bereiter-Hahn, 1990). The ability to undergo fission/fusion enables mitochondria to divide 
and helps ensure proper organization of the mitochondrial network during biogenesis. 
Mitochondrial fission is driven by dynamin-related proteins (DRP1 and OPA1), while 
mitochondrial fusion is controlled by mitofusins (Mfn1 and 2) (figure 8). 

 

Fig. 8. Schematic representation of mitochondrial biogenesis. Peroxisome proliferator-
activated receptor gamma co-activator (PGC-1α) activates nuclear transcription factors 
(NTFs) leading to transcription of nuclear- encoded proteins and of the mitochondrial 
transcription factor Tfam. Tfam activates transcription and replication of the mitochondrial 
genome. Nuclear-encoded proteins are imported into mitochondria through the outer- 
(TOM) or inner (TIM) membrane transport machinery. Nuclear- and mitochondria-encoded 
subunits of the respiratory chain are then assembled. Mitochondrial fission through the 
dynamin-related protein 1 (DRP1) for the outer membrane and OPA1 for the inner 
membrane of mitochondria allow mitochondrial division while mitofusins (Mfn) control 
mitochondrial fusion. Processes of fusion/fission lead to proper organization of the 
mitochondrial network. OXPHOS: oxidative phosphorylation (Ventura-Clapier et al., 2008). 
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Measurement of mRNA expression of all theses proteins by RT-PCR technique could be a 
good means in order to show activation or deactivation of the mechanisms of mitochondrial 
biogenesis as well as mitochondrial fission/fusion. For details see the review of Ventura-
Clapier et al (Ventura-Clapier et al., 2008). 

In skeletal muscles, the consequences of a dysregulation of the mitochondrial biogenesis 
mechanisms could induce some important energetic changes including: 

- a reduction of oxidative capacity and energy production; 
- a decrease of energy transfer by the phosphotransfer kinases, 
- a reduction of antioxidant buffering capacity; 
- a global decrease of energy consumption efficiency. On the other hand, the signalling 

and molecular origins of these defects are unknown. 

4. Analysis of muscle biopsy for detection of mitochondrial defects 

Metabolic myopathies are inborn errors of metabolism that result in impaired energy 

production due to defects in glycogen, lipid, mitochondria, and possibly adenine nucleotide 

metabolism. Mitochondrial myopathies, fatty acid oxidation defects, and glycogen storage 

disease represent the three main groups of disorders (Burr et al., 2008; van Adel & 

Tarnopolsky, 2009). The mitochondrial myopathies manifest predominantly during 

endurance-type activity, under fasted or other metabolically stressful conditions. The 

clinical examination is often normal, and testing requires various combinations of exercise 

stress testing, serum creatine kinase activity and lactate concentration determination, urine 

organic acids, muscle biopsy, neuroimaging, and specific genetic testing for the diagnosis of 

a specific metabolic myopathy. Mitochondrial diseases are often disorders caused by an 

impairment of the mitochondrial respiratory chain function. They are usually progressive, 

isolated or multi-system diseases and have variable times of onset. Because mitochondria 

have their own DNA (mtDNA), mitochondrial diseases can be caused by mutations in both 

mtDNA and nuclear DNA (nDNA). The complexity of genetic control of mitochondrial 

function is in part responsible for the intra- and inter-familiar clinical heterogeneity of this 

class of diseases (Scarpelli et al., 2010).  

Many forms of mitochondrial defects require a muscle biopsy to determine if any 

impairment exists. Unfortunately, not all mitochondrial defects are fully known, and so 

cannot be tested. Therefore, the detection of ragged red fibres by histological technique is 

looked for indications of a mitochondrial defect. A high lactic acid level is also often an 

indication. Moreover if a patient has three or more body systems affected, (for example 

circulatory, respiratory, and digestive systems), there is a suspicion of mitochondrial defect. 

5. Skeletal muscle responses to metabolic and mechanical stimulations (i.e. 
physical exercise) 

The introduction of the skeletal muscle biopsy procedure in the 1860's (Duchennes, 1864) 

has led to a tremendous step forward in our understanding of skeletal muscle physiology in 

humans. One of the fields that has most benefited from this new technique is the area of 

exercise physiology. There are major advances in the cellular and molecular mechanisms 

underlying the skeletal muscle responses to acute and chronic exercise, either with or 
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without the combined effect of additional environmental stressors such as altitude or 

hypo/hyperthermia. Then, the skeletal muscle biopsy is considered as a masterpiece in the 

ongoing development of the integrative approach of exercise physiology. This links the 

molecular and cellular events occurring in individual skeletal muscle fibres to cellular, tissue 

and whole body structures and functions. Thanks to the insights provided by skeletal 

muscle biopsies, skeletal muscle plasticity to exercise training is currently believed to be 

driven by metabolic (i.e increased energy demand) or mechanical (i.e increased muscle 

tension) stimuli generated during the training sessions (Coyle, 2000; Dufour et al., 2007). The 

paragraphs below present some examples of scientific advances obtained through the use of 

skeletal muscle biopsies in the area of exercise physiology. 

5.1 Skeletal muscle responses to metabolic stimulation 

One way to selectively increase the metabolic stimulation on skeletal muscle is to compare 
normoxic vs hypoxic exercise training (Dufour, 2005). The lowered partial pressure for 
oxygen (PO2) in the inspired air translates into lowered muscle intracellular PO2 
(Richardson et al., 1995), thereby triggering skeletal muscle adaptations to cope with the 
enhanced metabolic load. After 6 weeks of intermittent hypoxic vs normoxic treadmill 
training, our laboratory has shown specific and significant improvement in whole body 
aerobic performance capacity in endurance athletes (VO2max, time to exhaustion,...) 
(Dufour et al., 2006). Using biopsies of the vastus lateralis, we observed that the enhanced 
performance capacity was concomitant to an improved skeletal muscle mitochondrial 
function (Ponsot et al., 2006) and an up-regulated transcription of selected genes involved in 
oxygen sensing, mitochondrial biogenesis, mitochondrial metabolism, carbohydrate 
metabolism, pH regulation and oxidative stress (Zoll et al., 2006a). In this series of studies, 
muscle biopsies proved useful in highlighting the role of metabolic stimulations in the 
regulation of the metabolic component of skeletal muscle plasticity to exercise training. 

5.2 Skeletal muscle responses to mechanical stimulation 

Similarly to the metabolic stimuli, it is also possible to selectively increase the mechanical 
stimuli generated during the training sessions using concentric vs eccentric cycle ergometry 
(Dufour, 2005). Eccentric muscle actions are characterized by high forces and low energy 
expenditure emphasizing muscle mechanical tension with very little energy demand 
(Lastayo et al., 1999; Lastayo et al., 2000; Lindstedt et al., 2001; LaStayo et al., 2003b). 
Currently taken as a promising tool to develop skeletal muscle force in order to improve 
performance in athletes (Gross et al., 2010), eccentric cycle ergometry is also increasingly 
considered as a valuable method to counteract the impairment of skeletal muscle function 
observed in various populations including elderly (Lastayo et al., 2002; LaStayo et al., 2003a; 
LaStayo et al., 2007), chronic obstructive pulmonary disease (Rooyackers et al., 2003), 
coronary artery disease (Steiner et al., 2004), type 2 diabetes mellitus (Marcus et al., 2008; 
Marcus et al., 2009), Parkinson disease (Dibble et al., 2006a; Dibble et al., 2006b; Dibble et al., 
2009), multiple sclerosis patients (Hayes et al., 2011) and cancer survivors (Hansen et al., 
2009; Lastayo et al., 2010; LaStayo et al., 2011). After 8 weeks of eccentric vs concentric cycle 
ergometry with coronary patients, significant improvement in knee extensor muscle force 
has been observed (Steiner et al., 2004). Biopsies of vastus lateralis demonstrated an 
increased volume of myofibrils, an increased proportion of type IIa muscle fibres and an 
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enhanced transcription of IGF-1 in the eccentric group (Zoll et al., 2006b). For the elderly 
patients (mean age = 80 yr old), eccentric cycle ergometry induced a greater gain in 
isometric strength of the knee extensors (Mueller et al., 2009), as compared with a 
conventional resistance training program. In this study, biopsies of vastus lateralis showed 
an enhanced expression of transcripts encoding factors involved in muscle growth, repair 
and remodeling (i.e. IGF-1, HGF, MYOG, MYH3) (Mueller et al., 2011). Of note, eccentric 
cycle ergometry was observed to depress genes encoding mitochondrial and metabolic 
transcripts. Taken together, the above experiments using muscle biopsies in human subjects 
show that mechanical stimulation of skeletal muscle trigger beneficial responses of the 
mechanical but not the metabolic component of skeletal muscle plasticity to exercise 
training. 

5.3 Future developments in the muscle biopsy procedure 

In human subjects, the withdrawal of muscle samples to perform biochemical, histochemical 
and histomorphometric muscle analyses has evolved from open air to semi open procedures 
(Henriksson, 1979), including "forceps" and the nowadays "gold standard" percutaneous 
Bergstrom needle procedure (Bergstrom, 1962). A suction system through the cutting 
trocard was introduced in 1982 in order to augment the size of the muscle tissue withdrawn 
at each insertion of the needle. These techniques do all need skin, subcutaneous and deep 
fascia anesthesia as well as a 5-10mm incision to access the muscle tissue with a 4 to 6 mm 
diameter Bergstrom needle (Hennessey et al., 1997). With these techniques, muscle samples 
of 77-170 mg can be obtained for each sample and doubling the sampling by rotating the 
needle 90° clockwise increased the size of the muscle sample to 172-271 mg in one pass 
(Hennessey et al., 1997). However, limitations exist for these procedures as their invasive 
character makes difficult the realization of serial sampling for studies examining the time 
course of intracellular physiological events (Hayot et al., 2005). Moreover, the procedure is 
sometimes difficult to get accepted by local ethics committee when applied to healthy 
normal subjects or athletes. Finally, some reservations should be made about the 
sterilization process and particularly the risk associated to Prion-contaminated medical 
instruments (sterilization of a hollow needle) (Weber & Rutala, 2002). As a less invasive 
alternative, microbiopsy procedures have been developed using fine disposable needles to 
obtain muscle samples in human subjects (Cote et al., 1992; Hayot et al., 2005). Although 
local anaesthesia is still required, skin incision is not always necessary. The skin is directly 
punctured with an insertion cannula perpendicular to the muscle until the fascia is pierced. 
The biopsy needle is subsequently inserted through the cannula and the muscle sample is 
obtained by the activation of a trigger button, which unloads the spring of the microbiopsy 
system and activates the needle to collect the muscle sample. Given the smaller size of the 
cannula and biopsy needles ranging from 11 to 18 gauges (i.e. 3.2 to 1.2 mm), the muscle 
samples obtained with microbiopsy procedures are much smaller. Despite the reduced 
muscle volumes, these developing microbiopsy procedures greatly facilitate serial muscle 
sampling either to increase the total size of the biopsy sample and/or to investigate the time 
course of intracellular physiological process of interest. An additional strength of the 
microbiopsy is that the procedure has been reported to be much more comfortable for the 
subjects and easier to perform compared to open air or percutaneous Bergstrom needle 
procedure (Cote et al., 1992; Hayot et al., 2005), allowing its wider use in the future of many 
areas of skeletal muscle physiology, including exercise physiology. 
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6. Conclusion 

Exploration of energetic metabolism with skeletal muscle biopsy is central in order to 
characterise and to better understand the mitochondrial function and the mechanisms of cell 
death and pathophysiology of a variety of human diseases, including myopathies, 
neurodegenerative diseases, heart failure, diabetes and cancer. Indeed, clinical implications 
such as reduced exercise capacity, reduced quality of life are related to changes in muscle 
mitochondrial function. In the last decade, new experimental approaches with new 
biological techniques were applied to human biopsies allowing to help to diagnose several 
metabolic impairments in skeletal muscle. A lot of mitochondrial dysfunctions developed in 
chronic disease may be reversible, and then, improvement of the comprehension of 
mitochondrial physiology and pathophysiology could help to find new therapeutic avenues 
in the future. 
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