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1. Introduction 

Fungi play important and diverse roles in soil ecosystems. They act as plant pathogens, 
mycorrhizal symbionts and most importantly, as the principal decomposers of organic 
materials (Christensen, 1989; Thorn, 1997). Fungi also represent a dominant component of 
the soil microflora in terms of biomass (Thorn, 1997). Compared with bacterial communities, 
however, knowledge regarding the diversity and functions of soil fungal communities 
remains limited.  
Culture-independent molecular techniques, comprising of direct DNA extraction from soil 
followed by PCR and electrophoresis or cloning, have been introduced to investigate soil 
fungal communities (Anderson & Cairney, 2004). These techniques facilitate the detection of 
fungi, including fastidious or non-culturable strains, and an understanding of the fungal 
community structures and dynamics in soil (Hoshino & Matsumoto, 2007; 
Vandenkoornhuyse et al., 2002).  
Molecular techniques have provided novel insights and significant advances in research on 
soil fungal ecology and have been applied to various soils in different ecosystems, such as 
forests (Perkiomaki et al., 2003), grasslands (Brodie et al., 2003), dunes (Kowalchuk et al., 
1997), stream sediments (Nikolcheva et al., 2003)  and agricultural fields (Gomes et al., 2003). 
For example, in agricultural soils, a fungal community is affected by plant growth (Gomes et 
al., 2003) and cultural practices, such as application of fertilizers and pesticides (Girvan et 
al., 2004). 
With the development of new technologies, accumulating molecular data has contributed to 
the establishment of database combined with other environmental data and facilitated meta-
analysis on a large scale. In agricultural soils, fungal communities are directly and indirectly 
related to crop production. Technological advances in molecular methods would help 
elucidate such a complicated relationship. Here I present molecular techniques applied to 
soil fungal community analyses, particularly in agricultural soils and discuss their 
limitations and future applications.  

2. Molecular analysis techniques 

In culture-independent molecular analysis of microbial community, DNA directly extracted 

from soil may be analyzed by PCR-based techniques targeting specific genes and by 

metagenomic approach using direct sequencing (Suenaga, 2011). For fungal community 
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analyses, PCR-based techniques have been widely and generally used (Anderson & Cairney, 

2004; Hoshino & Matsumoto, 2007). Fig. 1 showed the experimental scheme of PCR-based 

molecular analyses for soil fungal community, which consist of three steps: (i) direct 

extraction of DNA or RNA from soil, (ii) polymerase chain reaction (PCR) amplification of 

the 18S rRNA gene (rDNA) and internal transcribed spacer (ITS) region using fungal 

specific primers, and (iii) community profiling, including some electrophoresis techniques 

and sequence based techniques.  
 

 

Fig. 1. Experimental scheme: molecular analyses of soil fungal community 

2.1 DNA/RNA extraction 
Many protocols for DNA/RNA extraction from soil have been developed (Robe et al., 2003) 

and used to extract fungal genomic DNA and fungal RNA. The majority of the direct 

extraction is the combination of chemical and/or enzymatic treatments and physical 

procedures. Bead-beating is most effective in cell disruption (Miller et al., 1999) and 

commercially available kits include this step (Borneman et al., 1996). In these procedures, 

soil samples are shaken vigorously with small glass beads in buffer including detergent. 

Microbial cells are disrupted within the soil matrix, and nucleic acids are released from 

lysed cells. DNA or RNA is, then, recovered and purified.  

Because of soil diversity in terms of property and composition, extraction protocol of nucleic 

acids needs to be optimized for each soil type. For example, it was difficult to extract nucleic 

acids from Andisol, volcanic ash soils, which strongly adsorbed nucleic acids. The addition 

of adsorption competitors to the extraction buffer enabled to extract DNA and RNA, and 

increased the yield of DNA and RNA. From a variety of Andisols, we successfully extracted 

DNA and RNA for molecular analyses by using skim milk or RNA for DNA extraction 

(Fig.2A) (Hoshino & Matsumoto, 2004) and DNA for RNA extraction as adsorption 

competitors (Fig.2B) (Hoshino & Matsumoto, 2007). 

The DNA extraction protocols, especially with different conditions of cell disruption, can 

affect the result: Martin-Laurent et al. (Martin-Laurent et al., 2001) showed that microbial 

community profiles were variable, according to DNA recovery methods used, both in terms 

of phylotype abundance and the composition of indigenous bacterial community. Soil 

sample size may also influence analysis results targeting fungal community. Ranjard et al. 

(Ranjard et al., 2003) reported that analytical results of fungal community structure varied 

among replicates from a single homogenized soil sample when sample size was less than 1 

g, while sample range between 0.125 - 4 g had no effect on the assessment of bacterial 

community structure.  

We also observed significant variation in fungal community profiles among replicates of the 

conventional sample size of 0.4 g soil from a single homogenized sample for DNA 
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extraction, using commercially available kit (Fig. 3B), while such variation was not detected 

in bacterial community profiles (Fig. 3A), using denaturing gradient gel electrophoresis 

(DGGE), a community profiling method (see Section 2.3). 

 

 

Fig. 2. Improvement of DNA and RNA extraction from Andisols, using adsorption 
competitors 

 

 

Fig. 3. Variation in bacterial (A) and fungal DGGE profiles (B) among replicates (1-5) from 
0.4g of soil from a single homogenized sample. Soils A and B were taken from upland fields, 
and soil C from a paddy field. MB: Marker for bacterial DGGE, MF: Marker for fungal DGGE 

Increasing sample size and pre-treatments for homogenization of soil samples decreased 
variation in fungal DGGE profiles among replicates (Fig. 4). Sample size increased by 
mixing DNA extracts from 0.4g soil to rule out the influence of sample size on the efficacy of 
DNA extraction (Fig. 4A). With regard to pre-treatment for soil homogenization, we found 
that grinding in liquid nitrogen was suitable for upland field soils while adding buffer to 
soil to obtain homogeneous soil suspension was suitable for paddy filed soils. These pre-
treatments did not significantly affect fungal DGGE profiles under the experimental 
conditions (Fig. 4B).   
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Fig. 4. Multi-dimensional scaling (MDS) map based on the similarities of fungal DGGE 
profile among replicates when increasing soil sample size from 0.4 to 2.0g (A) and when 
grinding in liquid nitrogen or suspending after buffer addition was done as a pre-treatment 
(B). In MDS map the closer the points to each other, the more similar the DGGE banding 
patterns represented by the points 

2.2 PCR amplification of fungal genetic markers 
Ribosomal RNA genes (rDNA), especially the small subunit ribosomal RNA genes, i.e., 18S 
rRNA genes (18S rDNA) in the case of eukaryotes, have been predominant target for the 
assessment of microbial community (Kowalchuk et al., 2006). The large subunit ribosomal 
RNA genes, 28S rDNAs, have been also targeted (Möhlenhoff et al., 2001) but been used less 
frequently than 18S rDNAs. The following properties of rDNAs are suitable for taxonomic 
identification: (i) ubiquitous presence in all known organisms; (ii) presence of both 
conserved and variable regions; (iii) the exponentially expanding database of their 
sequences available for comparison. In community analysis of environmental samples, the 
conserved regions serve as annealing sites for the corresponding universal PCR primers, 
whereas the variable regions can be used for phylogenetic differentiation. In addition, the 
high copy number of rDNA in the cells facilitates detection from environmental samples.  
However, the lack of relative variation within 18S rDNA genes among closely related fungal 
species results in taxonomic identification commonly limited to genus or family level. For 
higher resolution in taxonomic identification, the internal transcribed spacer (ITS) region, 
which located between the 18S rDNA and 28S rDNA has been targeted (White et al. 1990; 
Gardes & Bruns, 1993). The ITSs, non-coding regions, have greater sequence variation 
among closely related species than the coding regions of rRNA genes because of their fast 
late of evolution. Protein-coding functional genes have been also employed as genetic 
markers to target a specific functional group (Ascomycetous laccase; Lyons et al., 2003) or to 
get higher resolution in specific fungal taxa (Fusarium elongation factors; Yergeau et al., 
2005). 
These genetic markers were amplified from soil DNA or RNA by PCR using fungal specific 
primers. Various PCR primer sets targeting fungal sequences are now available (Anderson 
& Cairney, 2004). Selection of PCR primer is one of the most important factors affecting 
outcome in fungal community analysis (Jumpponen, 2007; Hoshino & Morimoto, 2010). The 
properties of PCR primers will be described in Section 3. 

2.3 Community profiling methods  
PCR products are the mixtures of target genes, such as the rDNA and ITS region, derived 
from various kinds of fungi and are often of very similar size, differentiation must be 
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achieved on the basis of the nucleotide composition. The compositions of these PCR 
products were analyzed by community profiling methods, including some electrophoresis 
techniques, such as denaturing gradient gel electrophoresis (DGGE), temperature gradient 
gel electrophoresis (TGGE), terminal restriction fragment length polymorphism analysis (T-
RFLP), and automated ribosomal intergenic spacer analysis (ARISA), and sequence based 
techniques, such as cloning and sequencing and second-generation sequencing technologies 
(Nocker et al., 2007). Here we introduce the principles and the properties of the commonly 
used community profiling methods. 

2.3.1 Electrophoresis techniques  
Electrophoresis techniques are suitable for obtaining an overview of the total genetic 

diversity of a soil microbial community. PCR products are separated by electrophoresis 

based on the nucleotide composition. The data of electrophoretic profiles, i.e., the position 

and the relative intensity of different bands or peaks, could be transferred to numerical data 

which is applicable for calculation of diversity indices and several statistical analyses and 

enable comparison of numerous samples. 

Currently, three electrophoresis methods have been mainly used: denaturing gradient gel 

electrophoresis (DGGE) (Muyzer et al., 1993), terminal restriction fragment length 

polymorphism analysis (T-RFLP) (Dunbar et al., 2000), and automated ribosomal intergenic 

spacer analysis (ARISA) (Ranjard et al., 2001). These fingerprinting approaches are based on 

different principles (Fig. 5). 

DGGE separates DNA fragments of the same size but of different sequence based on the 

melting behaviour of DNA: double strands of the AT base pair more easily disassociate than 

those of the GC base pair. During electrophoresis in a denaturing gradient acrylamide gel, 

an increasing denaturing environment, partially dissociates DNA double strands, creating 

diverse, branched molecules. The partial melting of DNA strands reduces mobility. Because 

the melting concentration of the denaturant is sequence-specific, different sequences of DNA 

fragments have different mobility in denaturing gels, and each DNA fragment can be seen as a 

distinct band in the gel. T-RFLP is modified from the conventional RFLP approach using 

fluorescently labelled PCR primers before restriction digestion and size detection of 

fluorescently labelled terminal restriction fragments using a DNA sequencer. ARISA is simple 

and discriminates the length of whole PCR amplicons, generally targeting highly variable ITS 

regions. Automated DNA sequencer technology is applied for T-RFLP and ARISA. 

The three fingerprinting techniques have both advantages and disadvantages. One of the 

main advantages of gel-based community profiling techniques like DGGE enables sequence 

analysis of each band in a gel, and therefore, facilitates more detailed phylogenetic analysis. 

In T-RFLP, each T-RFLP peak can be identified by using database of T-RF length in various 

microbial groups. However, the inability to get sequence data from T-RFLP peaks makes it 

difficult to identify unknown species.  
The use of an automated DNA sequencer significantly increases throughput of T-RFLP and 
ARISA compared with gel-based techniques. It also improves the accuracy in sizing general 
fragments through the inclusion of an internal standard in each sample. On the other hand, 
reproducibility between gels has been highlighted as one of main pitfalls of DGGE (Fromin 
et al., 2002). As comparison between several different gels is required when dealing with 
large sample numbers, it is critical to standardize the resolution and quality of gels and to 
use suitable internal standards for the accuracy of analyses.  
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Fig. 5. Principles of three molecular fingerprinting methods 

Okubo & Sugiyama (Okubo & Sugiyama, 2009) compared these fingerprinting methods, i.e., 

DGGE, T-RFLP and ARISA, by analyzing soil fungal communities. They reported that 

DGGE showed higher discrimination ability for soil fungal community rather than T-RFLP 

and ARISA, while ARISA exhibited the highest resolution ability.  

From these properties, DGGE is suitable for analyses of highly heterogeneous communities 

including unknown members such as soil microbial community. T-RFLP is suitable for 

analyses of communities including known members and for specific taxonomic groups. 

ARISA appeared to be suitable for diversity analysis.   

2.3.2 Cloning and high-throughput sequencing technology 
Sequence-based community analyses can reveal fungal community structures with higher 

resolutions; fungal sequence data obtained can be identified or determined similarity to 

already known species through the use of extensive and rapidly growing sequence 

database (Nocker et al., 2007). Sequencing is the basis for construction of phylogenetic 

trees and for other comparative studies. Conversely, the sequence-based techniques are 

relatively time-consuming and costly. It depends on samples or target genes how many 

PCR amplicons were required to have fully analyzed the diversity contained within a 

single sample. Fierer et al. (2007) estimated that fungal 18S rDNA richness at the 97% 

sequence similarity level is likely to exceed 106 in 1.0 g of prairie soil, approximately 2 x 

103 in rainforest soil and 2 x 104 in desert soil. Buée et al. (2009) reported that predicted 

richness of fungal ITS regions at the 97% sequence similarity level was approximately 2 x 

103 in 4 g of forest soil.  

Until recently, cloning and sequencing were primarily used to generate sequence data of 

environmental microbial community. PCR amplicons of rDNA and ITS region were cloned 

into an appropriate vector and clone libraries were sequenced by Sanger methods, also 
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referred to as dideoxy chain termination sequencing (Sanger & Coulson, 1975). During the 

current decade, high-throughput second-generation sequencing technologies, such as 

pyrosequencing, have been developed and introduced to the research of microbial ecology 

(Petrosino et al., 2009; Roesch et al., 2007), including fungal community analyses (Buée et al., 

2009; Lim et al., 2010; Lumini et al., 2010). Buée et al. assessed the fungal diversity in six 

different forest soils using 454 pyrosequencing (Buée et al., 2009). No less than 166350 reads 

were obtained from all samples. It enables reading of hundreds, thousands of PCR 

amplicons per 1 run. 

DNA pyrosequencing, sequencing by synthesis, was developed in the mid 1990s as a 

fundamentally different approach to DNA sequencing (Ronaghi et al., 1996). Sequencing by 

synthesis occurs by a DNA polymerase-driven generation of inorganic pyrophosphate, with 

the formation of ATP and ATP-depending conversion of luciferin to oxyluciferin. The 

generation of oxyluciferin causes the emission of light pulses, and the amplitude of each 

signal is directly related to the presence of one or more nucleotides. Pyrosequencing can 

eliminate time and labours for cloning and has the 10-fold cost advantage per base pair over 

Sanger sequencing. The use of primer barcoding techniques enables to characterize many 

environmental samples in parallel on a single sequencing run. One important limitation of 

pyrosequencing is its relative inability to sequence longer stretches of DNA. With first- and 

second-generation pyrosequenceing chemistries, sequences rarely exceed 100-200 bases. 

Because of this limitation, cloning and Sanger sequencing are applied for the accurate 

recovery of longer sequence data at this stage.  

3. Properties of PCR primers for fungal sequences  

For fungal community analyses, PCR-based techniques are most powerful and generally 

used. The 18S rRNA gene (rDNA) and internal transcribed spacer (ITS) region are used 

widely as molecular markers for fungi, through the exploitation of both conserved and 

variable regions, and a large number of sequences are available in the data bank (Anderson 

& Cairney, 2004). Various PCR primer sets targeting 18S rDNA and ITS region are available 

for assessing fungal diversity in soil DNA samples (Table 1). Selection of PCR primer is one 

of the most important factors affecting outcome. Here, I will summerize their properties 

from our results and previous data.  

3.1 PCR amplification and chimera formation 
Although PCR-based strategies are the most powerful tools for the investigation of 
microbial diversity, they have a number of recognized limitations, perhaps the most 
insidious of which is the formation of recombinant or chimeric sequences during PCR 
amplification. Recombination can occur during PCR to jump from one template to another. 
Thus, whenever a heterogeneous pool of similar sequences, like rDNA and ITS regions, is 
amplified, chimera formation should be taken into account. The problem of chimeras in 
mixed DNAs from environmental samples has been highlighted several times in the 
literature (Kopczynski et al., 1994; Liesack et al., 1991; Wang & Wang, 1997). The existence of 
chimeras in PCR products may result in the overestimation of community diversity 
(Wintzingerode et al., 1997) and the occurrence of artificial novel taxa (Jumpponen, 2007). 
Chimeras seem to comprise a large proportion of the environmental sequence data in public 
databases (Ashelford et al., 2005; Hugenholtz & Huber, 2003). Jumppone (Jumpponen, 2007) 
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reported that a large proportion (40 or 31%) was chimeric in clone libraries obtained from 
soil fungal analyses.  
 

Genomic 
target 

PCR primer Primer sequence (5'-3') reference 

18S rDNA NS1 GTAGTCATATGCTTGTCTC (White et al., 1990) 

NS2 GGCTGCTGGCACCAGACTTGC 

NS3 GCAAGTCTGGTGCCAGCAGCC 

NS8 TCCGCAGGTTCACCTACGGA 

EF3 TCCTCTAAATGACCAAGTTTG (Smit et al., 1999) 

EF4 GGAAGGGRTGTATTTATTAG 

Fung5 GTAAAAGTCCTGGTTCCCC 

nu-SSU-0817 TTAGCATGGAATAATRRAATAGGA (Borneman & Hartin, 2000) 

nu-SSU-1196 TCTGGACCTGGTGAGTTTCC 

nu-SSU-1536 ATTGCAATGCYCTATCCCCA 

FR1 AICCATTCAATCGGTAIT (Vainio & Hantula, 2000) 

FF390 CGATAACGAACGAGACCT 

Fun18S1 CCATGCATGTCTAAGTWTAA (Lord et al., 2002) 

Fun18S2 GCTGGCACCAGACTTGCCCTCC 

Fung ATTCCCCGTTACCCGTTG (May et al., 2001) 

ITS ITS1 TCCGTAGGTGAACCTGCGG (White et al., 1990) 

ITS2 GCTGCGTTCTTCATCGATGC 

ITS4 TCCTCCGCTTATTGATATGC 

ITS1F CTTGGTCATTTAGAGGAAGTAA (Gardes & Bruns, 1993) 

ITS4B CAGGAGACTTGTACACGGTCCAG 

ITS4A CGCCGTTACTGGGGCAATCCCTG (Larena et al., 1999) 

2234C GTTTCCGTAGGTGAACCTGC (Sequerra et al., 1997) 

3126T ATATGCTTAAGTTCAGCGGGT 

PN3 CCGTTGGTGAACCAGCGGAGGGATC (Viaud et al., 2000) 

  PN34 TTGCCGCTTCACTCGCCGTT   

Table 1. Sequences of PCR primers used for assessing soil fungal diversity  

PCR protocol was reported to affect the frequency of chimera formation (Qiu et al., 2001; 
Wang & Wang, 1997; Wintzingerode et al., 1997). To evaluate the significance of primer 
selection, we compared the compositions of 18S rDNA libraries amplified from upland and 
paddy field soils using four primer sets: for single PCR, NS1/GCFung, FF390/FR1(N)-GC, 
and NS1/FR1(N)-GC; and for nested PCR, NS1/EF3 for the first PCR and NS1/FR1(N)-GC 
for the second PCR (Fig. 6) (Hoshino & Morimoto, 2010). 
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Fig. 6. Positions of PCR primers for fungal 18S rDNA. The variable regions (V) are 
highlighted in blue 

The frequency of chimera sequences was related to the length of target regions of each 
primer set (Table 2). Long amplicons (targeted by primer sets NS1/FR1(N)-GC and 
NS1/EF3 & NS1/FR1(N)-GC) were more liable to produce chimeras than short amplicons 
(targeted by primer sets NS1/GCFung and FF390/FR1(N)-GC). Incomplete, prematurely 
terminated 18S rDNA sequences were also more frequent in the libraries obtained with 
primer sets NS1/FR1(N)-GC and NS1/EF3 & NS1/FR1(N)-GC. The concentration of 
amplified DNA initially increases exponentially and then gradually approaches a plateau 
when the depletion of reagents results in the generation of prematurely terminated strands. 
Such fragments seldom anneals with DNA strands of the same species among many 
homologous sequences of soil DNA (Torsvik et al., 1990), and the recombination events 
could be maximally expressed as chimeric molecules (Wang & Wang, 1996).  
 

 

Table 2. Composition of clone libraries obtained from upland and paddy field soils using 
primer sets 1. NS1/GCFung, 2. FF390/FR1(N)-GC, and 3. NS1/FR1(N)-GC; and for nested 
PCR, 4. NS1/EF3 for the first PCR and NS1/FR1(N)-GC for the second PCR. Figures 
indicated the percentage of the clones within each library (Hoshino & Morimoto, 2010) 

Our results indicated that the numbers of PCR cycle was also related to chimera formation 
(Table 2). Because the efficacy of PCR amplification differed among primer sets, we used 30, 
40, and 40 cycles for primer sets NS1/GCFung, FF390/FR1(N)-GC, and NS1/FR1(N)-GC, 
respectively, to produce a sufficient amount of PCR products for DGGE. In the case of 
nested PCR, 25 cycles were made for first PCR using NS1/EF3, and 20 cycles for second 
PCR using NS1/FR1(N)-GC. The higher the number of PCR cycle, the higher the frequency 
of chimeras. These results suggested that a smaller number of PCR cycles worked better. 
When using primer sets FF390/FR1(N)-GC and NS1/FR1(N)-GC; however, high PCR cycle 
numbers are needed to obtain enough product, because the efficacy of the amplification is 
low (Hoshino & Matsumoto, 2008).  
Reducing chimera formation is required to provide a more accurate estimation of 
community diversity. Although the sequences with the potentiality of chimera could be 
identified and eliminated from data set, this procedure is often difficult and largely depends 
on personal judgement (Anderson & Cairney, 2004). The existence of chimera sequences also 
reduced available data in clone libraries (Table 2). Our results showed that properties of 
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primer sets affected the frequency of chimera formation and that PCR protocol may be 
modified to decrease PCR cycles and to extend elongation time so that chimera 
contamination may minimized. Thus, PCR efficacy is an important factor, as well as the 
length of target fragment. 

3.2 PCR primers specificity and bias in detection of fungal sequence from 
environmental samples  
For accurate fungal community analyses, desirable PCR primer sets could exhaustively 
amplify fungal sequences without bias and strictly avoid the amplification non-fungal 
sequences from DNA pools extracted from environmental samples. However, primer sets 
targeting fungal 18S rDNA or ITS regions were designed for a broad range of fungi and 
consequently amplify genes of non-fungal organisms because of the high level of sequence 
similarity between 18S rDNAs of fungi and some closely related eukaryotes (Anderson & 
Cairney, 2004). Conversely, when increasing the specificity of primers for fungal genes, they 
may preferentially amplify a certain group of fungi, resulting in bias (Anderson & Cairney, 
2004).  
We evaluated single and nested PCR systems in terms of the frequency of non-fungal 

sequences and the diversity of fungal sequences in clone libraries (Hoshino & Morimoto, 

2010). Four primer sets, i.e., for single PCR: NS1/GCFung, FF390/FR1(N)-GC, and 

NS1/FR1(N)-GC; and for nested PCR: NS1/EF3 for the first PCR and NS1/FR1(N)-GC for 

the second PCR, were compared using soil samples from upland and paddy fields. The rate 

of non-fungal eukaryotic 18S rDNAs amplified by single PCR ranged between 7 to 16 % for 

upland soil and between 20 to 31% for paddy field soil, whereas nested PCR produced a 

single eukaryotic clone in each library. The difference indicates that nested PCR increased 

the specificity to fungal sequences. Although the detection range of fungal taxa by 18S 

rDNA was generally similar among primer sets for single PCR, the fungal community 

detected by nested PCR was biased to specific sequences: diversity indices were 

significantly lower than those from single PCR in both libraries. These differences indicate 

that nested PCR system using primer set NS1/EF3 & NS1/FR1(N)-GC is not appropriate for 

diversity analysis on a wide range of taxonomic groups (i.e., total fungi). 

The specificity of PCR primers varies depending on the composition of eukaryotic DNA 

contained in the extracted DNA pool. For example, although primer sets of EF4/EF3 and 

EF4/fung5 exclusively amplified fungal sequences from DNA extracted from wheat 

rhizosphere soil (Smit et al., 1999), they also amplified some non-fungal sequences from 

cultured organisms and avocado grove soil (Borneman & Hartin, 2000). Single PCR primer 

sets, NS1/GCFung, FF390/FR1(N)-GC and NS1/FR1(N)-GC, amplified more clones of non-

fungal eukaryotic from the paddy soil than from the upland soil (Table 3)(Hoshino & 

Morimoto, 2010). These results may reflect the actual ratio of non-fungal related eukaryotic 

DNA to fungal DNA. In addition, phylogenetic groups of non-fungal eukaryotes detected 

were variable according to primer sets used (Table 3). The specificity of set NS1/FR1(N)-GC 

for fungi was higher than that of the other sets in the upland soil library but lower in the 

paddy soil library. The ratio of non-fungal gene preferentially detected by NS1/FR1(N)-GC 

was assumed to be higher in the DNA pool of paddy field soil than in that of upland field 

soil. Primer specificity is also affected by compositions of non-fungal eukaryotic sequences 

in samples. It showed that it is critical to check the specificity of primer sets for 

environmental samples to be studied. 
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Anderson et al. (Anderson et al., 2003) reported that the relative proportion of sequences 

representing the four main fungal phyla was similar in clone libraries from grassland soil 

with primer sets nu-SSU-817/nu-SSU-1196, nu-SSU-817/nu-SSU-1536, EF4/EF3 and 

ITS1F/ITS4. On the other hand, Jumpponen (Jumpponen, 2007) reported that EF4/EF3 

biased toward Basidiomycota as predicted (Smit et al., 1999) and that nu-SSU-817/nu-SSU-

1536 mainly amplified Ascomycota from soil samples of underneath willow canopies. We 

found that fungal 18S rDNA fragments showed a similar distribution at the phylum level in 

the upland and paddy soil libraries amplified with primer sets NS1/GCFung, 

FF390/FR1(N)-GC and NS1/FR1(N)-GC (Hoshino & Morimoto, 2010). The detection 

frequency of the Chytridiomycota, however, differed among these primer sets. 

NS1/GCFung failed to detect the Chytridiomycota, while FF390/FR1(N)-GC amplified it 

more efficiently (Table 3). At the class level, especially in the paddy soil libraries, the 

difference was evident in the distribution of fungal taxa inferred from 18S rDNA with these 

primer sets (Table 3). Primer selection has a pivotal importance on the community structure 

to be investigated although primer bias may not be as significant as previously thought, as 

Anderson et al. (Anderson et al., 2003) concluded. 

 

 

Table 3. Distribution of 18S r RNA gene sequenses in clone libraries from upland and paddy 
field soils using different primer sets for single PCR (1-3) and nested PCR (4), i.e., 1, 
NS1/GCFung; 2, FF390/FR1-GC; 3, NS1/FR1-GC; and 4, NS1/EF3 for first PCR and 
NS1/FR1-GC for second PCR. Figures indicated the percentage of the clones within each 
library 

kingdom subkingdom phylum subphylum class 1 2 3 4 1 2 3 4

fungi Dikarya Ascomycota Pezizomycotina Dothideomycetes 19 11 9.1 11 9.5 10 4.2 5.1
Eurotiomycetes 3.4 3.7 5.5 8.3
Leotiomycetes 25 14 4.2 2.6
Orbiliomycetes 3.7 2.5
Pezizomycetes 4.5 3.7 1.8
Sordariomycetes 27 35 42 29 2.4 8.8 8.3 5.1
unindentified 1.3

Basidiomycota Basidiomycota Agricomycets 6.8 9.9 7.3 3.6 21 16 26 67
Tremellomycetes 1.8 2.4 2.5 1.4

Pucciniomycotina Atractiellomycetes 1.2
Microbotryomycetes 2.5 1.4

incertae sedis Chytridiomycota Chytridiomycetes 8.6 7.3 1.2 6.3 1.4
Monoblepharidomycetes 1.4

Blastocladiomycota Blastocladiomycetes 1.4 2.6

incertae sedis Mucoromycotina Mucoromycetes 22 15 18 57 6 16 11 15
Zoopagomycotina 1.2 1.4
Kickxellomycotina 1.1

Amoebabiota Amoebazoa 1.2
Animalia Amoebidiobiotina Amoebidiozoa 1.2
(=Metazoa) Bilateralia Annelida 25 13

Arthropoda 1.1

Rｈizaria Cercozoa 6.8 2.5 3.6 1.2 19 9.7 2.6
Alveolata Apicomplexa 3.6
stramenopiles Oomycota 8 1.2 1.8 1.4

Ochrophyta 1.2 4.2
incertae sedis 1.8 1.4

Plantae Viridiplantae 1.3
incertae sedis Apusozoa 1.2

Heliozoa 1.2

upland field soil paddy field soil
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These results indicate that appropriate primers should be selected according to the aims and 

the origin of samples and/or that more than two primer sets with different properties 

should be used to obtain a more comprehensive view of the fungal communities. 

3.3 Applicability for DGGE  
Community analysis by DGGE is sensitive to choice of primer sets because the separation of 

each DNA fragment in denetuaring gradient gels largely depends on the sequences of target 

regions. Okubo & Sugiyama (Okubo & Sugiyama, 2009) compared five fungal primer sets in 

terms of band separation of four fungal species in DGGE gels; when using EF4/GCFung, 

bands of the four species showed the same mobility in DGGE gels and were not separable, 

while they separated but smeared with EF4/Fung5 or ITS1F/ITS2-GC. On the other hands, 

NS1/GCFung and FF390/FR1-GC produced separate and single bands.  

We evaluated primer sets for fungal 18S rDNA DGGE using agricultural soils in terms of the 

following features: detection and reproducibility of DGGE banding profiles, obtained 

diversity indices, and ability to discriminate fungal communities by DGGE (Hoshino & 

Matsumoto, 2008). Four primer sets, i.e., for single PCR, NS1/GCFung, FF390/FR1(N)-GC, 

and NS1/FR1(N)-GC; and for nested PCR, NS1/EF3 for the first PCR and NS1/FR1(N)-GC 

for the second PCR, were compared using six soil samples from upland (F1, F2, F3 and F4) 

and paddy fields (P1 and P2) in Japan (Fig. 6).  

PCR products with different primer sets under the appropriate experimental regimes 

showed clear band separation in DGGE analysis, as reported previously (May et al., 2001; 

Oros-Sichler et al., 2006; Vainio & Hantula, 2000). In addition, repeated trials with the same 

samples produced virtually identical profiles in the same DGGE gels with primer sets 

NS1/GCFung and FF390/FR1(N)-GC. However, when primer set NS1/FR1(N)-GC was 

used, aggregates present in the middle of DGGE gel that sometimes interfered with the 

detection of target bands. We also detected smiling and distortion of banding patterns in 

DGGE with these primer sets. The presence of nonspecific aggregates and the distortion of 

banding pattern reduced reproducibility especially between different gels.  
Although there was no significant difference in the number of bands that appeared in each 
sample among primer sets (Fig. 7A), the Shannon diversity indices, used to measure 
diversity in categorical data (Krebs, 1989), were lowest for primer set FF390/FR1(N)-GC, 
and tended to be higher for primer sets NS1/FR1(N)-GC and NS1/EF3 & NS1/FR1(N)-GC 
(Fig. 7B). Two main bands were highly dominant in DGGE profiles of these six samples with 
primer set FF390/FR1(N)-GC. However, sequence diversity in clone library with primer set 
FF390/FR1(N)-GC was the higher than libraries with other primer sets (Hoshino & 
Morimoto, 2010). The main reason for the difference may be ascribed to the low band 
separability in DGGE.  
To evaluate the ability to discriminate fungal communities, multidimensional scaling (MDS) 
maps were generated from DGGE profiles for each primer set. Each MDS map showed a 
similar tendency (Fig. 8). Samples from upland and paddy field soils were positioned 
separately, with the exception of sample F4, which was always distant from other samples 
in the MDS maps. The MDS map with primer set NS1/GCFung showed the highest 
differentiation, with samples distantly located from one another, whereas with primer set 
FF390/FR1(N)-GC, except F4 differentiation among samples was lower in the MDS map. 
With primer set NS1/FR1(N)-GC, samples F1 and F3 and samples P1 and P2 were plotted 
close together. 
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Fig. 7. Number of bands in DGGE gel (A), Shannon diversity index (B) of 18S rDNA DGGE 
profiles of upland field soils (F1, F2, F3, F4) and paddy field soils (P1, P2) using primer sets: 
1. NS1/GCFung, 2. FF390/FR1(N)-GC, 3. NS1/FR1(N)-GC, and 4. NS1/EF3 for the first PCR 
and NS1/FR1(N)-GC for the second PCR (Modified from Fig. 4 in (Hoshino & Matsumoto, 
2008)) 

 

 

Fig. 8. Multidimensional scaling (MDS) map based on the squared distance of similarity of 
the 18S rDNA DGGE profiles of upland field soils (F1, F2, F3, F4) and paddy field soils (P1, 
P2) using primer sets: 1. NS1/GCFung, 2. FF390/FR1(N)-GC, 3. NS1/FR1(N)-GC, and 4. 
NS1/EF3 for the first PCR and NS1/FR1(N)-GC for the second PCR (Modified from Fig. 5 in 
(Hoshino & Matsumoto, 2008)) 
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These data suggested that primer sets NS1/GCFung and FF390/FR1-GC were applicable for 

soil fungal community DGGE analysis and that primer set NS1/GCFung was the most 

suitable, considering all the various factors together. Comparison of DGGE profiles among 

each study is required to standardize experimental conditions, especially PCR primers. We 

selected primer set NS1/GCFung for this purpose and established DGGE experimental 

conditions using this primer set to prepare experimental protocols and technical reports of 

bacterial and fungal DGGE analyses (Morimoto & Hoshino, 2010).  

4. Application examples of molecular techniques to fungal community 
analyses in agricultural field soils 

Molecular analyses of fungal community have been reported for various soils in different 

ecosystems, such as forests (Perkiömäki et al., 2003), grasslands (Brodie et al., 2003), dunes 

(Kowalchuk et al., 1997), and stream sediments (Nikolcheva et al., 2003), as well as 

agricultural fields (Gomes et al., 2003). In agricultural soils, many field trials have shown the 

effect of plant cultivation (Gomes et al., 2003), fertilizer and pesticide application on fungal 

community (Girvan et al., 2004). Here, I will show two examples of the application of 

molecular techniques to fungal community analyses in Japanese agricultural soils. We 

analyzed the impact of chemical fumigation on fungal community structure of bulk soil and 

spinach rhizosphere in a field and monitored their recovery from the drastic change 

(Hoshino & Matsumoto, 2007). The results suggested that the effects were different among 

the chemicals and between bulk soil and rhizosphere. In addition, it was reported that 

fungal communities were most obviously affected by fertilizer treatment, i.e., changes in soil 

nutrient status, rather than edaphic factors such as soil type (Suzuki et al., 2009).  

4.1 Effect of chemical fumigants 
Pre-planting soil fumigation is used widely around the world in high-value crops and has 

been shown to be effective to control soil-borne pathogens, weeds, and plant-parasitic 

nematodes. In Japan, especially in areas that produce vegetables such as spinach, lettuce, 

and tomato, continuous monoculture is widely adopted to increase profit, often resulting in 

outbreak of pests. Many areas utilize soil chemical fumigation for consistent production. 

Most of chemical fumigants have a broad range of biocidal activity and can potentially harm 

beneficial organisms, in addition to target pests. Although methyl bromide (MeBr) had been 

widely used in the past, the use of MeBr in soil fumigation was banned since 2005 because 

of its environmental risk. Therefore, the use of alternatives, such as chloropicrin (CP) and 

1,3-dichloropropene (1,3-D), has been increasing (Dungan et al., 2003). Their effect on non-

target organisms was also of concern and should be evaluated.  

However, there are relatively few studies on the effect of chemical fumigants on non-target 

soil fungal community as compared with a number of studies reporting the effect on specific 

plant pathogens (Browning et al., 2006; Hamm, 2003; Takehara et al., 2003) and on bacterial 

community (Dungan et al., 2003; Ibekwe et al., 2001). Itoh et al. (Itoh et al., 2000) and Tanaka 

et al. (Tanaka et al., 2003) reported that the count of viable fungi decreased after CP 

fumigation. De Cal et al. (De Cal et al., 2005) used a culture-dependent method with 

selective media to show that chemical fumigants reduced certain members of soil fungi, 

such as Fusarium spp., Pythium spp., and Verticillium spp. We aimed to analyze the effect of 
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two chemical fumigants (CP and 1,3-D) and spinach growth on fungal community structure 

in a field using molecular techniques (Hoshino & Matsumoto, 2007). 

Experiments were performed in an experimental field in Tsukuba, Japan. Annual cropping 

system consisted of soil fumigation in September followed by two consecutive spinach 

cultivations. Soil was treated with fumigants (CP at 20 ml m-2 or 1,3-D at 32 ml m-2) and 

covered with polyethylene film for about two weeks. Bulk soil and rhizosphere samples 

were taken periodically during the three fumigation trials. DNA was extracted directly 

from soil samples and fungal 18S rRNA genes were amplified by nested PCR with primer 

pairs AU2/AU4 and GC-FR1/FF390 for DGGE analyses. Dezitized data of DGGE profiles 

were analyzed by (i) diversity indices and (ii) multivariate statistical technique. Dominant 

bands in DGGE gels were excised for sequencing. Sequences of DGGE bands were 

identified with the FASTA search from the database of the DNA Data Bank of Japan 

(DDBJ).  

 

 

Fig. 9. Quantitative analysis of the 18S rDNA DGGE profiles 2 months after fumigation in 
the second trial (year 2). (A) Shannon's diversity index and (B) multi-dimensional scaling 
(MDS) map based on the squared distance of similarity. (Modified from Fig. 3 in (Hoshino & 
Matsumoto, 2007)) 

We compared the fungal 18S rDNA DGGE profiles among each treatment two month after 

fumigation both in bulk soil and rhizosphere. The Shannon diversity index H’ (Fig. 9A) was 

calculated from these profiles. The index for bulk soil in the CP plots was significantly lower 

than that in the control plots (P<0.05). The index for the rhizosphere soil in the CP plots also 

tended to be lower than that of control plots, but the difference was not significant. These 

values of the 1,3-D plots were almost equivalent to those of the control plots.  

These DGGE profiles were also analyzed by multi-dimensional scaling (MDS) (Fig. 9B). The 

MDS map shows every band pattern on one plot, where relative changes in community 

structure can be visualized and interpreted as the distances between the points (Araya et al., 

2003). The closer the points with each other, the more similar the DGGE banding patterns 

represented by the points are. In the MDS map, samples from the bulk soil and the 
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rhizosphere soil were positioned separately, indicating that spinach cultivation affected soil 

fungal community structure, too (Fig. 9B). The MDS map also showed that the difference in 

DGGE profiles was greater between CP and control plots than between 1,3-D and control 

plots, both in bulk soil and rhizosphere soil (Fig. 9B). When the magnitude of the impact 

was compared between samples of bulk soil and rhizosphere soil, the differences in DGGE 

profiles between control and chloropicrin plots were smaller in rhizosphere soil than in bulk 

soil.  

We monitored changes in fungal DGGE profiles in bulk soil after chemical fumigation of 

this field over three years. Fig. 10 shows the change in DGGE profiles of plots fumigated 

with chloropicrin or 1,3-D before fumigation, two months after fumigation, and six months 

after fumigation for each year. DGGE profiles drastically changed after CP treatment and 

did not recover completely 1 year after, e.g., before treatments in years 2 and 3 (Fig.10). In 

contrast, DGGE profiles of 1,3-D plots revealed a smaller change 2 months after fumigation 

but became indistinguishable from those of control plots after 6 months. These results 

indicated that the impact of fumigation on the soil fungal community was greater in the CP 

treatment than in the 1,3-D treatment both in terms of the magnitude of the effect after 2 

months and the extent of recovery 1 year after. 

 

 

Fig. 10. Temporal change after fumigation in fungal 18S rDNA DGGE profiles from bulk soil 
samples in (A) untreated control plot, (B) CP plot, and (C) 1,3-D plot. Samples were taken 
before (B) and 2 and 6 months (2M and 6M, respectively) after fumigation for each year (1Y, 
2Y and 3Y) in three-year trials 

Between treatments of CP and 1,3-D, there are differences in fungal species affected. In CP-

treated plots, bands with high sequence similarity to Myrothecium cinctum (100%, 

Ascomycota), Bionectria ochroleuca (99.7%, Ascomycota), Metarhizium anisopliae (100%, 

Ascomycota), Dentipellisseparans (96.7%, Basidiomycota), Verticillium dahliae (98.4%, 

Ascomycota) and Exophiala dermatitidis (100%, Ascomycota) decreased in band intensity. On 
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the other hand, band intensity decreased in Basidiobolus microsporus (83.7%, Basidiomycota) 

and Bensingtonia ciliate (88.9%, Basidiomycota) in 1,3-D treated plots. 

After CP treatment, bands inferred to represent chytridiomycota became dominant (Fig.10). 

Chytrids can rapidly reproduce and increase their populations in response to disturbance 

(Lozupone & Klein, 2002). These characteristics could allow them to quickly exploit 

nutrients released after soil disturbance, such as fumigation, increasing their overall 

population. Chytridiomycota cannot be detected by conventional dilution-plate counting, 

and are usually studied using culture and microscopic protocols based on baiting 

techniques, using a "bait" substrate to attract chytrids under flooded conditions (Lozupone 

& Klein, 2002). Our results indicated the advantages of molecular techniques to detect whole 

fungal community including such fungal groups.  

4.2 Effect of soil types and fertilizers 
Soil microbial communities are influenced by various factors such as cropping system 

(Kuske et al., 2002), tillage (Peixoto et al., 2006), fertilization (Marschner et al., 2003) and 

application of pesticide and herbicide (Yang et al., 2000). On the other hand, environmental 

factors, including soil characteristics, also affect microbial communities, e.g., soil type 

(Girvan et al., 2003), soil particle size (Sessitsch et al., 2001), soil air composition (Øvreås et 

al., 1998) and season (Girvan et al., 2004). Bacteria have been well documented for 

agricultural soils; many field trials have shown that the composition of the entire bacterial 

community is determined primarily by soil type (Girvan et al., 2003; Xu et al., 2009), 

emphasizing the effect of soil chemistry and structure, especially pH and soil texture (Fierer 

& Jackson, 2006; Lauber et al., 2008), rather than cultural practices. However, little has so far 

been known about factors affecting fungal community structure.  

Suzuki et al. (Suzuki et al., 2009) studied the effect of soil type and fertilizer type on bacterial 

and fungal communities in a long-term experimental field in Tsukuba, Japan. Upland field 

plots containing four different soil types, i.e., Gleyic Mollic-Umbric Andosols (Cumulic 

Andosol), Gleyic Haplic Andosols (Low-humic Andosol), Gleyic Haplic Alisols (Yellow 

Soil), and Entric Fluvisols (Gray Lowland Soil) were maintained under three different 

fertilizer management systems (chemical fertilizer rice husks plus cow manure, and pig 

manure) for 5 years. Carrot and maize were annually cropped in the fields once every 

summer. Bulk soil samples were taken in May prior to fertilization and cultivation. From 

directly-extracted soil DNA, bacterial 16S rDNA and fungal 18S rDNA were amplified using 

primer pairs 968g-GC/1378r and NS1/GCFung, respectively and subjected to DGGE 

analyses.  

Fungal DGGE profiles based on the 18S rRNA gene were analyzed by principal component 

analysis (PCA) to separate plots based on fertilization practices. This result showed that 

fungal community composition was more directly related to fertilization than soil type. On 

the other hand, PCA of bacterial DGGE profiles indicated that the plots were separated by 

soil type. Lauber et al. (Lauber et al., 2008) reported that fungal community composition was 

most closely associated with changes in soil nutrient status, i.e., concentration of total 

nitrogen and extractable phosphate, and the ratio of total carbon and nitrogen concentration. 

Suzuki et al. (Suzuki et al., 2009) described that fungi may be more suitable as microbial 

indicators of soil quality because the dynamics of fungal community were more reflected 

soil nutrient status than that of bacterial community. 
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5. Future perspectives 

PCR-based techniques targeting 18S rDNA are powerful tools for fungal community 

analysis and have revealed phylogenetic compositions and dynamics of fungal communities 

in the environment. The accumulating molecular data has facilitated fungal community 

analyses on a large scale. Several previous reports, including examples shown in Section 4, 

have indicated that the fungal community could be substantially altered by cultural 

practices. However, most results were obtained from a few experimental fields. Large-scale 

and comprehensive analyses using enormous amounts of data on soils from various regions 

are required to determine whether the results presented in those reports are universally 

applicable or represent specific examples.  

In Japan, the Environmental DNA database for agriculture soils (eDDASs) was established, 

which included not only DGGE profiles of bacteria, fungi and nematodes but also relevant 

information on soil, cultural practices, crop yield, etc. eDDASs facilitates large-scale analyses 

of the relationships between soil microbial communities and various environmental factors 

and may facilitate resolution of problems, such as disease forecasting, soil fertility 

evaluation, etc, in agricultural fields (Tsushima et al., 2011). The introduction of the next 

generation of sequencers combined with the development of bioinformatics tools will 

accelerate such large-scale analyses.  
The abovementioned molecular techniques have limitations for the analyses of 
environmental fungal communities. The sequences of 18S rDNA or ITS regions only reflect 
the phylogenetic positions of target microbes but not necessarily their metabolic functions. 
The existence of DNA in soil, even functional genes, only demonstrates the potential of 
fungal activity not a confirmation of its actual presence. Analyses based on the utilisation of 
soil RNA and/or other genetic markers associated with metabolic function should fortify 
fungal community analyses. The next step should focus on the functional aspects of fungal 
communities. 
PCR can cause biased detections that prevent the complete recognition of microbial 
diversity through primer specificity and simultaneous amplification of different targets. 
New approaches that do not depend on PCR, such as metagenomic or metatranscriptomic 
analysis, can provide less biased data on fungal community structures and functional 
aspects, although some problems remain, particularly in data analyses (Suenaga, 2001). 
Currently, it is difficult to directly assign individual sequences that were directly recovered 
from soils or to construct contigs from them because a single soil sample may contain 
several thousand microbial genotypes, whereas most of their genomic sequences are still 
unrevealed.  
The development of new molecular technologies should alleviate the problems associated 
with rDNA-based methods and PCR amplification and promote the investigation of current 
topics, such as the effect of pollution and global warming on fungal communities and their 
functions and roles in soil ecosystems.  

6. Conclusion 

Culture-independent molecular techniques, such as direct DNA extraction from soil 
followed by PCR-based community analysis techniques, provide novel insights and 
significant research advances in soil microbial ecology. Compared with bacterial 
communities, however, the results of soil fungal community analyses using molecular 
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techniques are limited. One reason for these limitations is the lack of sufficient information, 
in the case of fungi, about the influence of various experimental parameters, particularly 
PCR primer selection, on the results of diversity studies.  
We evaluated various PCR primer sets targeting the 18S rRNA gene (rDNA), a widely used 
molecular marker for fungi, as well as other experimental parameters and established a 
standard DGGE protocol for soil fungal community analysis. Molecular methods revealed 
that soil fungal communities were affected by cultural practices, such as chemical 
fumigation and fertilization, in agricultural fields. These techniques undergo constant 
improvement and should continue to promote research based on fungal ecology in soil 
ecosystems.   
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