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1. Introduction 

There are around 35,000 new cases of prostate carcinoma (PCa) in the UK per annum, 
making it the most common solid malignancy. Approximately 10,000 men die of PCa each 
year in the UK (http://infocancerresearchukorg/cancerstats/). Disease incidence is 
increasing partly due to earlier detection and the increasing age of the population. 
Environmental causes especially dietary factors have been postulated but this is still an area 
of research. At presentation ~60% of patients have localised, ~30% locally advanced and 
10% metastatic disease.  
Radical radiotherapy (RT) can be used as part of curative therapy for both localised and 
locally advanced disease but has no proven role in the metastatic setting. Recently, radiation 
has been shown to cause immunogenic tumour cell death and to modify 
immunosuppression in the tumour environment. Importantly, reduction of tumour burden 
by RT, in an ablative setting, has been shown to depend largely on T cell responses (Lee et 
al., 2009). Combination of ionising radiation (IR) and immunological approaches in pre-
clinical models of PCa has also proved to be synergistic. Immunotherapy offers a unique co-
treatment that enables the patients’ own immune cells to contribute to the success of RT. 
Immunological memory, developing as the result of the combination treatment, may 
provide long-term protection from tumour recurrence. There are however very few clinical 
trials addressing how immunotherapy and RT can be best combined for clinical efficiency.  

2. Radiotherapy of prostate cancer 

There are four major treatment approaches for localised prostate cancer: active surveillance, 
radical prostatectomy, external beam radiotherapy (EBRT) and low-dose rate (LDR) 
brachytherapy. RT is conventionally delivered with photons with delivery systems that 
have developed considerably over the past decade, leading to lower toxicity and allowing 
safe dose escalation. Higher doses have been demonstrated to improve tumour control 
outcomes in several large Phase III trials (Viani et al., 2009). Present trials are evaluating the 
role of intensity modulated radiotherapy (IMRT), hypofractionation (treatment in ~4 weeks) 
and improved imaging during treatment with image-guided radiotherapy (IGRT) (Khoo & 
Dearnaley, 2008). Further developments in EBRT delivery systems allow highly targeted 
treatment in 5-7 fractions, called stereotactic body radiotherapy (SBRT), although tumour 
control outcomes are not yet known (King et al., 2011; Madsen et al., 2007). 
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Proton therapy is the delivery of EBRT using protons instead of photons. Protons have a 
different pattern of dose delivery within tissue, with energy deposited in a very tightly defined 
area as the protons slow. This results in less radiation being delivered beyond the target, and 
has become the radiotherapeutic modality of choice for childhood cancers and several other 
tumors. The evidence base for proton therapy for prostate cancer is less established, but its use 
in some countries has become widespread partly due to the results of a dose escalation trial 
using protons (Coen & Zietman, 2009). Proton therapy has not been compared to dose-
equivalent photon-RT. LDR brachytherapy, which uses multiple permanently planted 
radioactive seeds, can be used to deliver a very high radiation dose to a highly targeted 
volume in a single treatment with equivalent outcomes to EBRT and surgery.  
Locally advanced disease is usually treated with a combination of EBRT and androgen 
deprivation therapy (ADT) (Shelley et al., 2009; Shelley et al., 2009; Warde et al., 2010). 
However, the outcome is still relatively poor. Recent and ongoing UK-based trials are 
currently exploring the potential advantage of dose escalation in either systemic therapies 
(James et al., 2009; Guerrero Urbano et al., 2010). High dose rate (HDR) brachytherapy, 
which uses a single high-intensity radiation source that is temporarily inserted into multiple 
positions in the prostate, may also have a role in locally advanced disease as a single agent 
or in combination with ADT and/or RT (Hoskin, 2008). EBRT has a proven role as adjuvant 
or salvage therapy after radical prostatectomy. In the adjuvant setting, it has been shown to 
reduce the rate of relapse in high risk patients by approximately 50% in three randomised 
trials (Bolla et al., 2007; Thompson et al., 2006; Wiegel et al., 2009).  
The commonest site of metastases in castrate refractory metastatic PCa is bone, with 80% of 
patients dying with prostate cancer dying with bone metastases. They can cause one of 
several skeletal-related events, but pain is the predominant problem. Palliative EBRT is 
highly efficacious for single sites of disease. An alternative approach is the use of 
therapeutic bone-targeted radioisotopes. The interim results of a trial with a novel alpha-
emitting isotope, Radium-223, have reported a 3-month overall survival advantage, 
(http://www.algeta.com) suggesting that these drugs will be used more widely in the 
future. Radioimmunotherapy (RIT) refers to the use of antibody labelled with a therapeutic 
radionuclide, with the aim of delivering a cytotoxic radiation dose specifically to the 
tumour. The concept is equivalent to bone-targeted radioisotopes, but with the targeting of 
tumour-associated antigens (TAA) rather than osteoblastic metastases. The same principle 
can be used for imaging of micrometastatic disease if radionuclides of different properties 
(radiation type and energy) are used. There is much research in this field over recent years 
(Bouchelouche et al., 2011), partly due to the increasing number of PCa-specific TAA, as 
discussed later in this chapter.   

3. Immunological aspects of PCa 

PCa is an immunogenic cancer, as evidenced by a positive correlation between the 
frequency of CD8+ tumour-infiltrating T cells and prostate-specific antigen (PSA) 
recurrence-free survival (Kärjä et al., 2005). Immune cell behaviour towards tumour cells has 
been described by three stages: (1) elimination of tumour cells, (2) equilibrium between 
tumour, and immune cells – maintained by active immunological control of the tumour - 
and (3) escape of tumour cells from immunological control.  Apart from evidence from 
animal models underpinning this theory (Teng et al., 2008), clinical observations of donor-
derived melanoma developing in immunosuppressed organ transplant recipients provide 
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indirect evidence about the immune system’s role in tumour-control (Strauss & Thomas, 
2010). Overcoming anti-tumour immune responses is described as an emerging hallmark of 
cancer (Hanahan & Weinberg, 2011). Further observations and experiments are 
accumulating in order to provide firm evidence about the role of anti-tumour immune 
responses in the control of cancer.  

3.1 Tumour-associated antigens in PCa 

The specificity of tumour-infiltrating T cells reflects engagement with TAA. The presence of 
TAA-specific T cells in the TIL pool results in longer median survival compared to those 
patients whose TIL did not contain tumour-specific T cells, as observed in melanoma (22.5 
months vs. 4.5 months) (Haanen et al., 2005). There is no such prognostic correlation for the 
frequency of TAA-specific T cells in the peripheral blood of patients. TAA-specific T cell 
infiltration is likely to be important in PCa too. 
PCa-associated antigens include prostate-specific differentiation antigens, expressed both on 
healthy and malignant prostate epithelial cells, such as kallikrein-4, PAP (prostatic acid 
phosphatase) and PSA. Tumour antigens that are overexpressed on malignant cells (not all 
specific for PCa) compared to healthy epithelial cells are: PSMA (prostate specific membrane 
antigen), PSCA (prostate stem cell antigen), Her-2, MUC-1, survivin, STEAP (six 
transmembrane epithelial antigen of the prostate) and telomerase. Cancer-germline or 
cancer-testis oncofoetal antigens observed in PCa are not expressed on normal cells, but may 
be expressed by placental trophoblasts and testicular germ cells, such as NY-ESO, MAGE-
C1, MAGE-C2 and 5T4 (Chen et al., 1997; Hudolin et al., 2006; Southall et al., 1990).  
More recent additions to the list of potential TAAs in PCa are; AMACR (Honma et al., 2009), 

WT-1 (Nakatsuka et al., 2006), ADAM-17 (Sinnathamby et al., 2011), RHAMM (CD168) 

(Gust et al., 2009), SIM2 (Arredouani et al., 2009), TARP (Epel et al., 2008), SH3GLB2 (Fassò 

et al., 2008) and the androgen receptor (Olson & McNeel, 2011). T cells specific for some of 

these antigens have been identified in PCa patients and T cell clones or lines killed PCa cells, 

confirming the suitability of most of these TAA-antigens for targeted therapies.   

3.2 Tumour-infiltrating immune cells in PCa 

Prostate cancer has a complex microenvironment which develops during the course of 
tumour development. Tumour cells are surrounded by endothelial cells of blood vessels, 
stromal fibroblasts, bone marrow-derived cells and lymphocytes. These cells produce 
growth factors and enzymes that enhance tumour growth and survival, aid stroma-
remodelling and recruit further immune cells into the tumour. The two main immune cell 
types infiltrating the tumour are lymphocytes and myeloid cells.   

3.2.1 Lymphocytes 

The presence of activated T and/or natural killer (NK) cells in the tumour tissue is a positive 

prognostic factor in several solid cancers, including PCa (Kärjä et al., 2005; Gannon et al., 

2009). CD8+ T cells are responsible for direct killing of target cells which express appropriate 

peptides on MHC Class I molecules, while NK cells play a role in killing tumour cells which 

downregulate MHC Class I molecules as an evasion mechanism from T cell recognition. 

Target cell killing occurs via delivering perforin and apoptosis-inducing granzyme 

complexes into the target cell (Thiery et al., 2011). CD4+ T cells, depending on their subtype: 

Th1, Th2, Th17 or T regulatory cells (Treg) produce cytokines which support pro- or anti-
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inflammatory responses, respectively. CD4+, CD8+  and regulatory T cells are all present in 

PCa tumour tissue, with CD8+ T cells being predominant, unlike in the peripheral blood 

where CD4+ T cell frequencies are higher (Bronte et al., 2005). The majority of tumour-

infiltrating CD8+ T cells are memory or terminally differentiated cells but their ability to 

upregulate activation markers is impaired (Bronte et al., 2005; Drake, 2010). In radical 

prostatectomy specimens of PCa, IFN-┛ and perforin expression is lower than in T cells in 

healthy prostate tissue (Ebelt et al., 2008). Lymphocytes can mainly be observed in clusters 

in peritumoural areas while only a few infiltrate the tumour areas (Fig. 1). 

 

 

Fig. 1. (A-C) PCa prostatectomy sections stained with haematoxylin and eosin shown at 
increasing magnifications; (C) a region with glandular () and stromal areas (). (D) 
peritumoural CD8+ T lymphocyte cluster, identified by fluorescence microscopy. (E) CD4+ 
cells are also present in this region. 

T cells with regulatory function (CD4+CD25+Foxp3+) are present at higher frequencies in 
PCa than in healthy tissue. They can be found mainly in T cell clusters surrounding prostate 
cancer lesions or in the stroma (Ebelt et al., 2009; Miller et al., 2006; Sfanos et al., 2008). Some 
of these Treg cells express the glucocorticoid-induced TNF-receptor (GITR) and ICOS (a 
CD28-superfamily costimulatory molecule) at higher levels than in blood, indicating recent 
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activation. They also express CCL22 which mediates Treg cell trafficking into the tumour 
(Miller et al., 2006). T cell clusters infiltrated by Treg cells often express high levels of PD-1 
and B7-H1 markers (Ebelt et al., 2008) which indicates T cell exhaustion and functional 
impairment.  

3.2.2 Myeloid cells 

CD68+ monocytes and macrophages have been observed at higher frequencies in PCa 
compared to benign prostate tissues in a Gleason-score and disease stage-associated manner 
(Lindholm et al., 2010). CD68+ monocytes and less differentiated CD11b+CD33+ myeloid 
cells have been shown by immunohistochemistry to be present in PCa stroma (Sorrentino et 
al., 2011). There is no information available as to whether these cells function as tumour-
associated macrophages (TAM) or myeloid-derived suppressor cells (MDSC). Monocytic 
MDSC have been characterised as CD11b+, CD14+, CD15+/-, CD16-, CD33+, CD66b+, CD124+, 
VEGFR1- and HLA-DRlow cells (Gabrilovich & Nagaraj, 2009; Marigo et al., 2008). More work 
is needed to establish if immunosuppressive MDSC are present in the microenvironment in 
PCa. Myeloid-derived dendritic cells (DC) have also been documented in PCa tissues 
although at relatively low frequencies and in a minimally activated state (Troy et al., 1998).  

3.3 Immune evasion in PCa  

The most common immunosuppressive factors in the tumour tissue include vascular 
endothelial growth factor (VEGF), transforming growth factor beta (TGF-┚), interleukin (IL)-
10 and adenosine which inhibit proliferation, differentiation and activation of T 
lymphocytes and DC.  
VEGF supports tumour growth and metastasis by initiating endothelial cell proliferation 
and the formation of new blood vessels, thus providing a continuous blood supply to the 
tumour (Carmeliet & Jain, 2000). Increased angiogenesis has been observed in PCa tissue 
compared to benign prostatic hyperplasia (BPH) (Jackson et al., 1997). VEGF production by 
PCa cells in vitro is enhanced by addition of IL-1 and tumour necrosis factor alpha (TNF-┙), 
both of which are found in the tumour microenvironment in PCa (Ferrer et al., 1997). VEGF 
is also important in immune suppression not only by inhibiting DC maturation and T cell 
development but also by acting as a chemoattractant for MDSC (Gabrilovich et al., 1996; 
Ohm et al., 2003; Oyama et al., 1998).  
TGF-┚ is a pleiotropic cytokine. During PCa development it first acts as a tumour 
suppressor and later switches roles to become a tumour promoter and immunosuppressor 
in the tumour environment. TGF-┚ regulates immune cells by inhibiting cytotoxic T cell 
function, supporting the development of Treg cells and interfering with DC differentiation 
(Wan & Flavell, 2007; Wrzesinski et al., 2007). PCa-derived TGF-┚ has been shown to 
convert CD4+CD25- T cells into CD4+ CD25+ Foxp3+ Treg cells (Liu et al., 2007).  
The anti-inflammatory cytokine IL-10 secreted by tumour and stromal cells can inhibit 
proliferation, differentiation and activation of T lymphocytes via impaired DC (Sato et al., 
2002). In the presence of IL-10, alternatively activated DC maintain an immature phenotype 
in the tumour microenvironment and induce tolerance rather than immune activation and 
support Treg cell development (H Huang et al., 2010). 
Extracellular adenosine is generated from ATP or ADP via the combined action of CD39 and 
CD73. These are ecto-nucleoside triphosphate diphosphohydrolases which, in the tumour 
tissue, are predominantly expressed on Treg cells while CD73 is also expressed on CD8+ T 
cells and tumour cells (CD73) (Stagg & Smyth, 2010). CD39 and CD73 are also expressed on 
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tumour-derived exosomes, thus potentially extending the immunosuppressive tumour 
microenvironment (Clayton et al., 2010). Adenosine, generated by CD39 (ATP to ADP) and 
CD73 (ADP and AMP to adenosine) engage androgen receptors on effector T cells, 
monocytes and DC. As a consequence, pro-inflammatory cytokine production (IL-2, IL-4, 
IFN┛, TNF┙, IL-12) and co-stimulatory molecule expression (e.g. CD86) decreases and cyclic 
AMP (cAMP) accumulates in these cells. cAMP further amplifies anti-inflammatory 
responses (Ernst et al., 2010).  
Cytokines, such as monocyte chemotactic protein-1 (MCP-1) and stromal-derived factor-1 
alpha (SDF-1┙) secreted by tumour cells and tumour-associated stromal cells have been 
associated with enhanced prostate epithelial cell proliferation and migration (Begley et al., 
2005; Lu et al., 2006). They also induce the recruitment of myeloid cells at the tumour site 
and suppress immune responses (Allavena et al., 2008; Loberg et al., 2007). TAM also 
produce MCP-1 resulting in an amplification loop for further monocyte recruitment 
(Allavena et al., 2008). 

4. Immunological aspects of radiation therapy 

The effects of IR on human tissue have been studied for decades. The key therapeutic effect 
is thought to be via direct killing of tumour cells by initiating irreparable double-stranded 
DNA breaks. However, the consequences of RT are much more complex than that, as 
radiation also affects tumour stroma, including tumour-resident immune cells, and results 
in the re-modelling of the tumour microenvironment. One of the consequences is the 
reduction of immunosuppression in the tumour tissue.  

4.1 IR-mediated release of cellular tumour antigens 

The details of the multiple cellular events downstream of radiation-induced DNA damage are 
beyond the scope of this chapter. The damage results in activation of damage recognition 
pathways and proliferative arrest, which can ultimately be repaired (fully or partially), or lead 
to cell death. RT-induced apoptotic and necrotic tumour cell death provide a cellular source of 
tumour antigens. The tissue damage attracts phagocytic cells to the site of radiation. 
Monocytes, macrophages and dendritic cells (DC) phagocytose and process dead tumour cells 
and carry TAA into draining lymph nodes where antigen presentation and T cell stimulation 
occur. Contrary to natural cell death which occurs without generating an inflammatory 
response, IR-treated tumour cells express heat shock proteins, translocate antigens such as 
calreticulin (CR) from the endoplasmic reticulum to the cell surface and passively release high 
mobility group protein B1 (HMGB1). DNA, RNA and ATP release are also observed at the site 
of radiation damage. Phagocytosis and simultaneous signalling in DC by HMGB1 via Toll-like 
receptors (TLR) such as TLR4 and TLR2, or via RAGE (receptor for advanced glycan end 
products) trigger DC to release IL-1┚ and present TAA in an immunogenic manner to T cells 
and B cells (Ma et al., 2011). ATP, released by damaged cells, also contributes to DC 
maturation via stimulating purinergic P2RX7 receptors and driving IL-1┚ secretion (Aymeric 
et al., 2010). Local radiation of mouse B16 tumour has generated DC efficiently cross-present 
tumour antigens in a Type I interferon (IFN)-dependent manner (Burnette et al., 2011). Single 
nucleotide polymorphisms (SNP) of TLR4 (Asp299Gly and Thr399Ilr) or P2RX7 (Glu496Ala) 
(Sluyter et al., 2004; Arbour et al., 2000), which affect the function of these molecules, may be 
associated with worse prognosis, as shown in breast cancer patients undergoing 
chemotherapy (Apetoh et al., 2007).   
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4.2 Chemokine and cytokine induction by IR 

Tumour cells, not killed by IR, respond to radiation by increasing the production of pro-
inflammatory cytokines that include TNF┙, IL-1┙/┚, IL-6 and IL-8 (Shiao & Coussens, 
2010; Formenti & Demaria, 2009; Van Der Meeren et al., 1999; Matsumura & Demaria, 
2010). The main effect of these cytokines is an inflammatory response and the recruitment 
of activated T cells and macrophages to irradiated tumours (Formenti & Demaria, 2009). 
The widely used PCa cell line, LNCaP, is extremely sensitive to TNF┙ (Chopra et al., 
2004). TNF┙-treatment results in growth-arrest and apoptosis of LNCaP cells but not of 
normal prostate epithelial cells, suggesting that IR-induced TNF┙ expression may 
selectively induce apoptosis of tumour cells without affecting normal prostate epithelial 
cells. Immune cell recruitment is further enhanced by the production of the chemokine 
CXCL16 which is induced by IL-1┚ and TNF┙, both upregulated by IR (Lu et al., 2008). 
PCa cell lines (LNCaP, DU145, C4-2B and PC3) produce CXCL16 in culture without IR 
treatment (Lu et al., 2008). 

4.3 Irradiated tumour cells become sensitive to immune cell attack 

In tumour cells, not killed by IR, surface molecules such as MHC, the death receptor Fas and 
heat-shock proteins become upregulated (Shiao & Coussens, 2010; Garnett et al., 2004; 
Lugade et al., 2008). IR-induced upregulation of MHC Class I molecules, on both tumour 
cells and APC, improves antigen presentation and may enhance tumour cell recognition by 
activated CD8+ cells that infiltrate the tumour at an enhanced rate following radiation (Reits 
et al., 2006; Lugade et al., 2005). 
Adhesion molecules, such as intracellular adhesion molecule (ICAM)-1, vascular cell 

adhesion molecule (VCAM)-1 and platelet endothelial cell adhesion molecule (PECAM)-1, 

along with integrins, selectins and cadherins are also upregulated in the tumour tissue by IR 

(Baluna et al., 2006; Lugade et al., 2008). ICAM-1 is known to be upregulated by 

inflammatory cytokines such as TNF┙, IL-1┙/┚ and IL-6 thus resulting in lymphocyte and 

macrophage accumulation in inflamed tissues. As previously discussed, these cytokines are 

upregulated in the tumour tissue as a response to IR. ICAM-1 has an important role in 

enhancing T cell killing via cell-cell adhesion to lymphocyte function-associated antigen 

(LFA)-1 and by directly co-stimulating activated T cells (Garnett et al., 2004; Baluna et al., 

2006). PCa cells express ICAM-1 and VCAM-1 and in tissue areas of high lymphocyte and 

neutrophil accumulation the expression of ICAM-1 is significantly elevated (Fujita et al., 

2008; Rokhlin & Cohen, 1995). These data suggest that ICAM-1 upregulation by IR may 

facilitate immune responses by recruiting lymphocytes and macrophages to the tumour site. 

Increased adhesion between tumour cells with upregulated ICAM-1 and activated CD8+ T 

cells expressing LFA-1+ may result in more powerful cytotoxic T cell activity.  

4.4 Direct effect of IR on immune cells 

Immune cells are highly susceptible to IR-induced damage and readily undergo apoptosis. 

Therapeutic doses of RT often result in lymphopenia. One of the potential immunologically 

positive effects of direct IR on tumour-infiltrating immune cells is the depletion of Treg cells. 

However, there is some controversy regarding this question. Cao et al. observed that the 

proportion of Foxp3+ cells within purified CD4+CD25+ T cell population decreased 

significantly (48.2% to 23.3%) following irradiation with 1.8 Gy in vitro and was abolished 

(1.2%) by 30 Gy. The suppressive function of these Treg cells was also impaired by IR 
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probably due to loss of membrane-bound TGF-┚ (Cao et al., 2009). Tregs were especially 

sensitive to low-dose radiation compared to effector T cells (Cao et al., 2011). Another study, 

in TRAMP mice, had the opposite findings: Treg cell numbers increased in immune organs 

after local or whole body irradiation without changes to their functional activity (Kachikwu 

et al., 2010), indicating relative resistance to 0-20 Gy radiation. It remains to be seen what 

happens to Tregs in situ during RT of PCa. 

We showed recently that lymphopenia following prostate and pelvic RT causes preferential 

death of naïve or unstimulated T-cells (Tabi et al., 2010). Elevated frequencies of Treg cells 

were observed in the circulation following 44 Gy radiation in 20 fractions to the pelvic nodes 

and 55 Gy to the prostate (Fig.2). T cell proliferative function was also impaired (Tabi et al., 

2010) but it was restored in vitro with exogenous IL-2 without increasing Treg frequencies 

(Fig. 2). This indicates that IL-2 maybe used to support T cell function after patients 

completed standard RT. 
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Fig. 2. IL-2 response of Treg cells from the peripheral blood of PCa patients undergoing 

standard RT. Frequencies of CD4+CD25+Foxp3+ T cells (see gate in insert) were measured 

before (RT0), immediately after radical radiation in 20 fractions (RT20) and 4 weeks after the 

last fraction (pRT4). Means and SD of triplicates are shown from a representative patient. 

Frequencies of Tregs were elevated at RT20, but returned to pre-radiation (RT0) level at 

pRT4. Unlike at RT0 or RT20, exogenous IL-2, added to the cells in vitro, did not increase 

Treg frequencies at pRT4.    

Most importantly, we identified novel TAA-specific T-cell responses post-RT (Tabi et al., 

2010), which were not present before RT. Similar findings were observed by others 

(Nesslinger et al., 2007; Schaue et al., 2008), indicating the ability of radiation to shift the 

balance between tumour-specific regulatory and effector immune mechanisms. 
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5. RT and immunotherapy combination modalities 

5.1 Pre-clinical models 

The use of IL-2 as a monotherapy in cancer has been extensively researched but due to 
issues with toxicity its clinical use has been limited. In the murine renal adenocarcinoma 
model, IR was found to augment the response of pulmonary metastases to IL-2 therapy 
(Younes et al., 1995). Following IR to one lung, plus systemic IL-2 treatment, a reduction in 
tumour size was observed in both lungs. The effect is dose-dependent and 
immunohistological studies show significant infiltration of T cells and macrophages at the 
tumour site. IL-2 is capable of rescuing T cells from IR-induced apoptosis and restores T cell 
proliferation after RT (Tabi et al., 2010). Its use in combination with RT may minimise the 
immunosuppressive effects of RT and enhance tumour cell killing via T cells (Mor & Cohen, 
1996). In PCa, the combination of IL-2 and radiation in a mouse bone metastases model 
demonstrated a ~50% inhibition of tumour growth (Hillman et al., 2003). There was a 
greater degree of tumour destruction in IL-2-treated irradiated tumours than in irradiated 
tumours alone and the histology revealed increased fibrosis and elevated numbers of 
infiltrating inflammatory immune cells.  
Antitumour effects were also observed in a model utilising IL-12 and RT. IL-12 is secreted 
by mature DC and macrophages and required for IFN┛ and TNF┙ production from T cells 
and mediates a Th1-type immune response. Adenovirus-derived IL-12 plus RT significantly 
increased local antitumour and systemic antimetastatic effects in a preclinical model of 
metastatic PCa when compared to either treatment alone (Fujita et al., 2008). This 
antimetastatic activity is due to the antitumoural activities of natural killer (NK) cells. These 
results were also observed in the 4T1 mammary carcinoma. The combination of RT and an 
adenoviral vector encoding IL-12 and the co-stimulatory molecule CD80 resulted in a 
significant reduction in tumour growth (Lohr et al., 2000). The antitumour effect observed in 
the combination therapy group was far superior if the IL-12 and CD80-expressing 
adenovirus was administered after the final fraction of radiation.  
Further cytokine studies have evaluated the combined effect of IL-3 and RT. IL-3 

differentiates haematopoietic stem cells into myeloid progenitor cells and stimulates the 

proliferation of myeloid-derived cells such as DC and monocytes. In mouse models of 

fibrosarcoma and PCa, IL-3 was found to increase the tumour response to radiation. 

Combining adenoviral-IL-3 and radiation in the TRAMP-C1 mouse prostate model caused 

significant delays in tumour growth. Further reports indicated that adenoviral-IL-3 plus 

radiation enhanced IFN┛-producing CD4+ and CD8+  T cell responses in the spleen (Oh et 

al., 2004). This shifted the immune response to a Th1–type response from a suppressive Th2-

type response (Tsai et al., 2006).  

The combination of the pro-inflammatory cytokine TNF┙ and RT in mouse mammary 
carcinoma delayed tumour growth at a greater extent than either treatment alone 
(Nishiguchi et al., 1990). Similar synergistic effects have also been observed in mouse 
melanoma, lung adenocarinoma and brain tumours. The combined effects were attributed to 
increased recruitment and enhanced activation of lymphocytes and neutrophils (Gridley et 
al., 1996; Gridley et al., 2002; Gridley et al., 2000; Jin et al., 2005; Li et al., 1998).  
Adoptive-cell-transfer (ACT) therapy is the passive transfer of tumour-specific T cells that 
have been expanded ex vivo. Local tumour irradiation can enhance the therapeutic efficacy 
of ACT therapy (Teitz-Tennenbaum et al., 2009). Combination of RT with ACT of 
carcinoembryonic antigen (CEA)-specific CD8+ T cells in a mouse colon carcinoma 
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demonstrated increased tumour rejection, that could be attributed to the upregulation of the 
death receptor Fas on the surface of irradiated tumour cells (Chakraborty et al., 2003).  
The anti-tumour effect can be further enhanced by intratumoural administration of DC. In a 
murine metastatic melanoma model reduction in the size of tumour and extent of 
spontaneous metastasis and prolonged survival were observed after irradiation and 
intratumoural DC administration. This was associated with an increase in proliferation, 
accumulation and cytokine production of CD4+ cells. Similar results were observed in DC 
plus irraditation in melanoma and sarcoma models (J. Huang et al., 2007). Kjaergaard et al. 
(2005) reported a method of fusing DC with tumour cells via an electric field resulting in a 
TAA-DC primed vaccine. These DC/tumour cell fusions induce a potent immune response 
in combination with local cranial RT in mouse glioma. Both CD4+ and CD8+ T cells infiltrate 
the tumours, leading to complete tumour regression. Tumour rejection was also observed 
after subsequent tumour challenge, indicating the presence of immunological memory. 
Vaccines containing either modified tumour cells that are more immunogenic than the 
“native” tumour cells or TAA-vaccines have been tested extensively in preclinical models. 
Combination of cytokine-producing vaccines with local RT in mouse glioma demonstrated 
that IL-4 and GM-CSF vaccines alone were capable of curing 20-40% of mice but in 
combination with local RT 80-100% of the mice were cured. The brain tumours were heavily 
infiltrated with CD4+ T cells (Lumniczky et al., 2002). The increased  anti-tumour effect of 
GM-CSF and RT was also demonstrated in mouse glioma using a vaccine which contained 
GM-CSF-secreting tumour cells (Newcomb et al., 2006).  
Strategies using RT in combination with monoclonal antibodies that are specific for TAA are 
now commonly used in clinical oncology (reviewed by Drake, 2010). In a mouse lung cancer 
model, monoclonal antibody to OX40 (a secondary co-stimulatory molecule expressed on 
activated CD4+ and CD8+ T cells) and RT resulted in a synergistic effect on survival compared 
to either treatment alone (Yokouchi et al., 2008). The effect was CD8+ T cell dependent. 
Antibody-based immunotherapy strategies aiming to neutralise molecules implied in immune 
tolerance have also been examined. Antibodies for the cytotoxic T lymphocyte antigen 
(CTLA)-4 (a CD28-superfamily molecule causing T cell functional inhibition) have been 
shown to induce effective anti-tumour responses via lowering the threshold of tumour-specific 
T cell activation (reviewed by Drake, 2010). Based on the preclinical findings, CTLA-4 
inhibition by the antibody Ipilimumab is now an FDA approved treatment of metastatic 
melanoma (Chambers et al., 2001). Its combination with RT is being tested in animal models 
(Dewan et al., 2009) and in clinical trials (see next section). 

5.2 Clinical trials  

There is huge potential for augmentation of the radiation response with the use of 
immunotherapy but as yet there are only a few clinical trials published. These were carried 
out in PCa patients at the National Cancer Institute, using a recombinant viral vaccine 
consisting of recombinant vaccinia virus (rV) encoding PSA, admixed with rV encoding the 
co-stimulatory molecule B7.1, followed by booster vaccinations with recombinant fowlpox 
(rFP) vector expressing PSA prior to RT. The product has been further developed and is 
presently marketed as Prostvac® which encodes ICAM-1 and LFA-3 in addition to B7.1 
(PSA-TRICOM). This agent has been shown to improve median overall survival from 16.6 
months to 25.1 months in a phase II multi-centre randomized controlled trial in 125 men 
with asymptomatic or minimally symptomatic metastatic castrate refractory prostate cancer 
(Kantoff et al., 2010). There was similar progression-free survival in the two arms of the trial, 
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but the hazard ratio for death was 0.56 (95% CI 0.37 to 0.85) in the PSA-TRICOM arm and 
the treatment was generally well tolerated.  
The initial results of the phase II trial in combination with radiation were highly 

encouraging. Thirty patients were randomised in a 2:1 ratio to receive vaccine plus EBRT or 

EBRT alone. In this trial the vaccine consisted of a priming vaccine with rV-PSA plus rV-

B7.1 followed by monthly booster vaccines with rFP-PSA. The immunological adjuvants 

used were GMCSF and high dose IL-2. PSA-specific T cell responses generated prior to RT 

were not adversely affected by RT, confirming our observation (Tabi et al., 2010). In total, 13 

of the 17 patients in the combination arm had increases in PSA-specific T cells and epitope 

spreading to 4 other prostate cancer TAA (PSMA, PAP, PSCA and MUC-1) was noted 

(Gulley et al., 2005), possibly due to cross-presentation of a mix of TAA from dying tumour 

cells by DC (Obeid et al., 2007). There was some IL-2 toxicity, which was reduced in a single-

arm follow-up study using lower doses but longer durations of IL-2; immunological effects 

were equivalent (Gulley et al., 2005; Lechleider et al., 2008).  

There is one other reported ongoing work of immunotherapy-radiotherapy combination 

with intraprostatic injections of autologous DC. The first report confirms the safety of this 

approach in 5 HLA-A2+ patients with high risk, localised disease, also treated with ADT, 

EBRT to 45 Gy and LDR brachytherapy. Autologous intraprostatic DC injections were given 

at four timepoints during EBRT. Measurable, induced increases in TAA-specific T cell 

frequencies in peripheral blood using ELISPOT were observed in some patients. The pattern 

of distribution of CD8+ cells in tissue was consistent with PCa TAA-targeting, rather than 

non-specific organ infiltration (Finkelstein et al., 2011 ).  

There are no other published studies in PCa patients of EBRT in combination with 

cytokines, antibodies, immune modulators or immunologically relevant gene therapy. 

However, there are a few prostate cancer clinical trials combining RT and immunotherapy 

currently recruiting according to the ClinicalTrials.gov website, such as anti-CTLA-4 

(Ipilimumab) antibody therapy in castration-resistant prostate cancer following RT (Phase 

III trial, Bristol-Myers Squibb; NCT00861614) and treatment with anti-OX40 and 

cyclophosphamide in combination with RT in metastatic prostate cancer (Providence Health 

& Services, Oregon USA, Phase I/II trial; NCT01303705).  

5.3 Designs of combination clinical trials 

Clinical trial design, investigating the benefit of immunotherapy in addition to EBRT is 
challenging in PCa, as long-term tumour control outcome is already good in both localised 
(assuming dose escalated image-guided IMRT) and locally advanced disease (assuming 
combination of long term ADT and EBRT). Phase III trials, adequately powered to show a 
clinically relevant improvement, would need to address biochemical relapse-free survival or 
overall survival, both of which require prolonged follow-up of many hundreds and perhaps 
thousands of patients. Before such trials were undertaken, it is important to optimise the 
immunotherapy-RT schedules. Reliable biomarkers of treatment-efficacy are needed and 
this is difficult, especially if neoadjuvant or adjuvant ADT is used, as changes in PSA-
kinetics become redundant in these patients. Therefore, development of reliable 
immunological biomarkers is crucial. We believe that the presence of systemic TAA-specific 
T cell responses is likely to be the most reliable and easily detectable indicator of a 
sustainable immunological effect. It may also assist patient selection for optimised treatment 
of those patients who are most likely to benefit from combination therapies. 
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The successful result of the IMPACT trial showing the survival advantage with Sipuleucel-T 
is expected to lead to a dramatic increase in the use of systemic immunotherapy for prostate 
cancer (Sonpavde et al., 2011). Presently there are only production facilities within the USA 
and the cost is likely to remain prohibitive for many healthcare systems. Radiation has great 
potential to augment the effect of systemic immunotherapy and we can expect many 
combination trials in the future. Clinical trial design in this setting will remain challenging 
as immunotherapy appears to improve overall survival but demonstrable tumour or 
biochemical responses are often delayed. Augmenting immunotherapy with radiation may 
improve overall advantage further.  

6. Conclusions 

PCa has become a huge burden on the health and wealth of Western societies. It is now the 
commonest solid malignancy and in spite of an excellent general outcome it is expected to 
become the main cause of cancer-related death in men. There is therefore an urgent need for 
improved therapies. Sipuleucel-T for PCa was the first immunotherapy to show a survival 
advantage in cancer, and it has been quickly followed by ipilimumab in melanoma. 
Radiotherapy has many applications for PCa and it is clear that there are many interactions 
between immunotherapy and radiation. In general these are positive such that 
immunotherapy may improve outcomes for those being irradiated and vice versa. The 
challenge is to move the science into the clinical setting, optimising combinations and 
sequences, identification of appropriate biomarkers and designing appropriate trials.   
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