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1. Introduction 

As a blueprint for genetic information, the structural and functional integrity of DNA must 
be maintained during cell division and gamete formation. However, this fundamental 
principle is threatened continuously by the vulnerability of DNA itself and/or by assaults 
from endogenously produced agents, such as reactive oxygen species and other metabolites, 
as well as various environmental agents including ultraviolet light (UV), ionizing radiation 
and chemical compounds (Friedberg et al., 2006). Among the DNA components, bases in 
particular are frequently the targets for such insults. Because DNA replication and 
transcription rely on the formation of specific base pairs, even a subtle change in the base 
structures can compromise faithful propagation and the expression of genetic information. 
For instance, replicative DNA polymerases, which exhibit very high intrinsic fidelity, are 
often blocked at sites where template bases are modified, which can lead to replication fork 
collapse and consequent chromosomal aberrations and/or cell death. This problem is 
overcome, at least partly, by translesion DNA synthesis, which is an error-prone process 
(Friedberg et al., 2005). To minimize the risk of mutagenesis, it is crucial for growing cells to 
detect and to remove damaged bases as much as possible before replication forks collide 
with them. 
Nucleotide excision repair (NER) is a major DNA repair pathway that can eliminate an 
extremely broad spectrum of base damage. The NER substrates include dipyrimidinic UV 
photolesions, such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone 
(6-4) photoproducts (6-4PPs), intrastrand crosslinks caused by bifunctional alkylating agents 
(e.g., cisplatin), and bulky base adducts induced by numerous chemical carcinogens (Gillet 
& Schärer, 2006). The common feature shared by all of these insults does not reside in their 
chemical structure, but rather in the accompanying distortions of the otherwise regular 
DNA helical structure. Two subpathways are associated with mammalian NER: global 
genome NER (GG-NER) and transcription-coupled NER (TC-NER). GG-NER is a general 
pathway that operates throughout the genome. It minimizes the collision of replication forks 
with damaged bases and, thereby, contributes to the maintenance of genome integrity 
(Gillet & Schärer, 2006).  TC-NER is specialized to remove transcription-blocking lesions 
from the template DNA strands, which ensures rapid recovery of transcriptional activity 
and thus averts apoptosis (Hanawalt & Spivak, 2008). In humans, hereditary defects in NER 
are associated with several autosomal recessive disorders, including xeroderma 
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pigmentosum (XP), Cockayne syndrome (CS) and trichothiodystrophy (TTD) (Bootsma et 
al., 2001). The clinical hallmarks exhibited by patients with XP, which include marked 
photosensitivity and a predisposition to skin cancer, explicitly indicate that the impaired 
repair of UV-induced DNA photolesions promotes mutagenesis and carcinogenesis in the 
skin. Numerous genetic complementation groups have been identified for the above 
diseases, including 8 for XP (XP-A through -G, and variant), 2 for CS (CS-A and -B) and 1 for 
TTD (TTD-A). Cloning of the responsible genes has revealed that all of them encode 
proteins involved in the NER pathway. The notable exception is the XP variant (XPV) gene 

encoding DNA polymerase η that is involved in translesion DNA synthesis, but not in NER. 
Another important milestone in elucidating the NER mechanism has been the 
establishment of the cell-free system, which faithfully recapitulates the NER reaction with 
human whole cell extracts. Together, genetic and biochemical studies have successfully 
identified more than 30 polypeptides that are involved in mammalian GG-NER (Fig. 1). A 
fundamental challenge for GG-NER is that the cells must detect a small number of injured 
bases among the vast excess of normal bases comprising the huge genome. Although the 
complete network of mechanisms has not yet been entirely uncovered, recent studies have 
revealed some of the sophisticated molecular mechanisms that accomplish this difficult 
task, which involves concerted actions of multiple protein factors. This chapter overviews 
the latest progress in our understanding of the damage-recognition mechanism for 
mammalian GG-NER. 
 

 

Fig. 1. Model of the mammalian NER mechanism.  The 2 subpathways, GG-NER and TC-
NER, differ in their strategies for initial damage recognition, but converge into a common 
process. The disease-related gene products are indicated by letters in different colors: XP, 
red; CS, green; TTD, blue. 
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2. Primary damage sensors for the initiation of GG-NER 

One of the remarkable characteristics of GG-NER resides in its extremely broad substrate 
specificity, which encompasses UV-induced photolesions and other bulky base adducts that 
can be induced by numerous chemical compounds (Gillet & Schärer, 2006). These GG-NER 
substrates are associated with considerable levels of DNA helical distortion. This situation is 
in marked contrast to substrates for base excision repair (BER), such as uracils and oxidative 
base lesions, which are supposed to induce only marginal structural distortions. Initial 
damage detection for BER is accomplished by a set of DNA glycosylases, each of which 
exhibits a certain (partially overlapping) range of substrate specificity. In contrast, a 
virtually infinite spectrum of helix-distorting insults can be handled by the unified 
molecular machinery in GG-NER. In addition, GG-NER must survey the huge genome 
continuously and discriminate a small number of injured bases from normal bases with very 
high efficiency and accuracy. Recent biochemical studies have uncovered some of the 
sophisticated molecular mechanisms that achieve this difficult task. 

2.1 Indirect sensing of DNA damage by XPC 

The XPC gene was isolated from a cDNA expression library (Legerski & Peterson, 1992) that 
corrected the UV sensitivity of fibroblasts from patients with XP-C. Cells lacking XPC are 
incompetent for GG-NER, but TC-NER functions normally (Venema et al., 1990). By using 
the cell-free NER system, a protein factor that is missing in XP-C cells was purified from 
HeLa cell extracts (Masutani et al., 1994; Shivji et al., 1994). This biochemical approach 
revealed that the XPC protein forms a stable complex in vivo with 1 of the 2 human 
homologues of Saccharomyces cerevisiae Rad23p (designated RAD23A and RAD23B).  
Depletion of RAD23 markedly destabilized the XPC protein, thereby compromising GG-
NER function (Ng et al., 2003; Okuda et al., 2004). Another component of the XPC complex, 
centrin-2 (Araki et al., 2001; Nishi et al., 2005), belongs to the calmodulin superfamily of 
small calcium-binding proteins containing 4 conserved EF-hand motifs. A subpopulation of 
centrin-2 localizes to the centrosomes and plays a vital role in cell cycle regulation (Lutz et 

al., 2001; Salisbury et al., 2002). Centrin-2 also binds to an α-helix near the C-terminus of 
XPC: this interaction potentiates the DNA-binding activity of the complex (Bunick et al., 
2006; Nishi et al., 2005; Popescu et al., 2003; Thompson et al., 2006). 
The XPC protein complex has been known to be associated with DNA-binding activity since 
it was first purified (Masutani et al., 1994; Shivji et al., 1994), although its preference for 
damaged DNA was discovered sometime later (Batty et al., 2000; Sugasawa et al., 1998). 
With conventional electrophoretic mobility shift assays (EMSAs) and DNase I footprint 
analyses with defined DNA substrates, we demonstrated that XPC prefers to associate with 
sites containing a helix-distorting lesion, such as 6-4PP or N-(guanin-8-yl) N-acetyl-2-amino- 
fluorene (dG-AAF) adduct (Sugasawa et al., 1998; Sugasawa et al., 2001). However, the 
addition of an appropriate competitor DNA was necessary to reveal the damage specificity, 
by preventing XPC from binding to the undamaged part of the DNA. Several 
physicochemical approaches subsequently were undertaken to assess the affinities of XPC 
for various DNA structures in more dynamic states (Hey et al., 2002; Roche et al., 2008; 
Trego & Turchi, 2006). 
Involvement of the XPC complex in the very early stages of NER was first proposed on the 
basis of the results obtained with the cell-free NER system (Sugasawa et al., 1998). In this 
system, 2 plasmid DNAs containing AAF adducts were preincubated separately with 
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different sets of NER factors, for which either XP cell extracts or purified recombinant 
proteins were used. After the 2 mixtures were combined and missing NER factors, if any, 
were supplemented, the initial repair rates of the 2 damaged DNA substrates were 
compared directly in one reaction. Damaged DNA preincubated in the presence of XPC was 
always repaired preferentially compared to DNA preincubated in its absence. Because a 
similar repair bias was not observed with other NER factors, these findings strongly suggest 
that XPC initiates in vitro NER, and its binding to damaged DNA is sufficient to recruit the 
whole repair machinery. 
Several subsequent studies have supported this model. Local UV irradiation through 
micropore membrane filters has been used to visualize the recruitment of NER factors in 
cultured cells to the sites of DNA damage. Use of this method revealed that XPC 
accumulates at subnuclear UV-damaged areas, even when any other XP genes were 
mutated (Volker et al., 2001). Conversely, none of the other NER-related XP proteins (except 
for DDB2; see below) was recruited to the sites of DNA damage in XPC-deficient cells, 
consistent with the role of XPC as the initiator of GG-NER. Through the use of paramagnetic 
beads immobilized with a damaged DNA substrate, more refined biochemical studies were 
undertaken to determine the order of arrival and departure of individual NER proteins at 
the lesion: these studies also concluded that XPC arrives first (Riedl et al., 2003). It should be 
noted that only GG-NER is impaired in XP-C (and also XP-E) cells, unlike other NER- 
deficient XP cells, in which both GG-NER and TC-NER are affected. Considering that TC-
NER is supposed to be triggered by RNA polymerase II stumbling at damaged bases on the 
template DNA strand, it could be assumed that the 2 NER subpathways vary only in their 
strategies for initial damage recognition and eventually merge into a common process. 
Because XPC appeared to bind specifically to various lesions that did not share any 
common chemical structure, it was of great interest to understand which feature of DNA 
determined its binding specificity. To examine this, using EMSA, we tested XPC binding 
with various DNA substrates containing a defined lesion and/or artificial structure 
(Sugasawa et al., 2001; Sugasawa et al., 2002). XPC was able to recognize and to bind DNA 
duplexes containing a partially single-stranded region, such as bubble and loop 
structures, even though these substrates contained only base mismatches, but no chemical 
modifications. Further analyses using various oligonucleotides as competitors revealed 
that XPC was targeted preferentially to a branched DNA structure containing a double-
stranded region attached to a single-stranded 3'-overhang. On the basis of these results, it 
might be better to refer to XPC as a structure-specific DNA-binding factor, rather than as a 
damage recognition factor. 
The binding of XPC to sites of DNA damage seems to depend solely on the extent of local 
unwinding of the DNA duplex caused by a given lesion: typically, XPC showed very little 
affinity for sites of CPD, because of the subtle DNA helical distortion associated with this 
lesion. In contrast, the presence of 1 or 2 mismatched bases opposite the photodimer 
significantly enhanced binding by XPC (Sugasawa et al., 2001). Accordingly, this 
biochemical feature of XPC may provide an important molecular basis for the substrate 
specificity of GG-NER, including an infinite range of helix-distorting lesions, but not a 
number of nonbulky lesions, such as oxidized and deaminated bases. 
More recently, a structural study corroborated this DNA-binding mode of XPC (Min & 
Pavletich, 2007). The S. cerevisiae NER protein Rad4p is presumed to be the counterpart of 
mammalian XPC: both proteins share several conserved structural domains in their C-
terminal regions, including the transglutaminase-homology domain (TGD) and 3 
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consecutive β-hairpin domains (designated BHD1, BHD2, and BHD3). The X-ray crystal 
structure was solved with the C-terminal region of Rad4p bound to a short DNA duplex 
containing a CPD (which was placed within 3-base mismatches to enhance recognition by 
Rad4p). Consistent with the results of our footprint analyses with XPC, the results showed 
that Rad4p binds asymmetrically to the damaged DNA: it interacts with an 11-base pair 
segment of DNA duplex on the 3' side of CPD, mainly through TGD and BHD1, leaving the 
other double-stranded part on the 5' side of the lesion completely free. In the closer vicinity 
of the lesion, BHD3 is inserted into the major groove, such that BHD2 and BHD3 appear to 
pinch the phosphate-sugar backbone of the undamaged strand. As a result, 2 "normal" bases 
on the undamaged DNA strand are flipped out and held by BHD2-BHD3, while the CPD is 
also flipped out structurally disordered, and devoid of any contact with the protein (Fig. 2). 
The Rad4p binding results in a ~42° bend of DNA, as observed by our scanning force 
microscopy with the XPC-DNA complex (Janićijević et al., 2003). In conclusion, XPC/Rad4p 
appears to function as a versatile damage-recognition factor that senses the presence of 
oscillating normal bases within the DNA duplex. 
 

 

Fig. 2. Different binding modes of UV-DDB and XPC to damaged DNA sites. The β-hairpin 

of UV-DDB on the DDB2 β-propeller is inserted between the two strands of the DNA, so 
that DDB2 interacts directly with the damaged nucleotides flipped out of the DNA duplex. 
In contrast, XPC interacts with normal bases on the undamaged DNA strand without any 
contact with the damaged bases. 

2.2 UV-DDB facilitates detection of UV-induced photolesions 

In accordance with the proposed function of XPC as the initiator of GG-NER, most of the 
DNA lesions that are subject to GG-NER in vivo are recognized by XPC in vitro. However, 
CPD serves as a noticeable exception. Like other GG-NER substrates, CPDs are not removed 
from the global genome in XPC-deficient cells, although XPC by itself cannot find this type 
of insult (as described above). From this apparent discrepancy, it can be assumed that a 
certain factor (other than XPC) is responsible for the initial detection of CPDs, whereas XPC 
must be involved in later steps. 
UV-damaged DNA-binding protein complex (UV-DDB) was first discovered as a factor that 
bound UV-damaged DNA with high affinity and specificity. The factor responsible for this 
binding activity was purified and revealed as a complex consisting of 2 subunits, designated 
DDB1 and DDB2, respectively (for a review, see Tang & Chu, 2002). It was later 
demonstrated that mutations in the DDB2 gene constitute the XP genetic complementation 
group E (Rapić-Otrin et al., 2003). Recent studies have redefined DDB1 as an adaptor protein 
that mediates interactions between the CUL4-ROC1 ubiquitin ligase complex and a member 
of the substrate-recruiting subunit family, called DDB1-CUL4 associating factor (DCAF) 
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(Angers et al., 2006; Lee & Zhou, 2007). The DNA-binding specificity of purified UV-DDB 
has been characterized extensively (Fujiwara et al., 1999; Payne & Chu, 1994; Reardon et al., 
1993; Treiber et al., 1992; Wittschieben et al., 2005). Concerning UV-induced photolesions, 
UV-DDB exhibits extraordinarily high affinity and specificity for 6-4PPs, although it also 
binds CPDs moderately. Although binding to chemical-induced base adducts seems not to 
be pronounced, abasic sites are relatively good substrates for UV-DDB. 
Despite the above biochemical characteristics that explicitly point to roles in UV-damage 
recognition, the impact of defects in UV-DDB on NER has remained enigmatic. Cells from 
patients with XP-E have defects in GG-NER, but not in TC-NER. However, in contrast to XP-
C, cells from patients with XP-E are proficient in removal of 6-4PPs from the global genome, 
while repair of CPDs seems to be affected profoundly (Hwang et al., 1999; Tang et al., 2000). 
As a result, among the NER-deficient XP groups, XP-E cells show the highest levels of 
residual UV-induced unscheduled DNA synthesis (>50% of normal cells) and resistance to 
killing by UV (Tang & Chu, 2002). 
Unlike other XP-related gene products, DDB2 reportedly accumulates to local UV-damaged 
areas within the nucleus, even in the absence of XPC (Wakasugi et al., 2002), although XPC 
can relocate to sites containing UV-induced DNA damage in a DDB2-independent manner 
(Moser et al., 2005). Although UV-DDB and XPC appear to be recruited independently, UV 
irradiation always induces a mixture of various sorts of DNA injuries, including 6-4PPs, 
CPDs, and other less frequent insults. To solve this problem, elegant experiments have been 
undertaken, in which 6-4PPs were erased soon after local UV irradiation with the aid of an 
ectopically expressed 6-4PP photolyase (Fitch et al., 2003). Under these conditions where the 
remaining photolesions were mostly CPDs, DDB2-dependent recruitment of XPC became 
evident. These results clearly indicate that differential pathways are used for the 
deployment of XPC to sites of UV damage, depending on the type of lesions. 
Considering the role for UV-DDB in CPD repair and its much stronger binding to 6-4PPs, 
one could assume that UV-DDB plays a role in the detection and repair of 6-4PPs. However, 
6-4PPs are rapidly removed from the global genome even in the absence of DDB2 (most 
likely through direct recognition by XPC), so that stimulation by UV-DDB, if any, cannot be 
clearly discerned. Additionally, DDB2 undergoes degradation by the proteasome in 
response to UV irradiation (see below) (Fitch et al., 2003; Rapić-Otrin et al., 2002). Since this 
degradation is quite fast – particularly at relatively high UV doses – this situation further 
overshadows possible effects of UV-DDB on the repair of 6-4PPs. 
Recently, the local UV irradiation technique has been applied to the quantification of 6-4PPs, 
which appear as fluorescent spots developed by an antibody specific for the photolesion 
(Moser et al., 2005).  With this method, the total number of generated photolesions per cell 
was reduced substantially, and retardation of 6-4PP repair in the absence of UV-DDB 
became discernable. Similar conclusions were drawn from our experiments using 
fluorescence recovery after photobleaching (FRAP) (Nishi et al., 2009), which is a widely 
used method to assess the in vivo mobility of fluorescence-labeled proteins. With cells 
expressing NER factors fused to green fluorescent protein (GFP), global UV irradiation 
before photobleaching resulted in the significant retardation of fluorescence recovery within 
the bleached subnuclear region. This result indicated that the proteins concerned are 
sequestered at the sites of UV photolesions and engaged in NER (Houtsmuller et al., 1999). 
The reduction in the mobility of GFP-XPC showed a unique biphasic relationship with the 
pre-UV dose. The immobilization of GFP-XPC was saturated at relatively low UV doses 
(5~10 J/m2): higher UV doses resulted in further dose-dependent retardation of fluorescence 
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recovery, which eventually became saturated again at extremely high doses (around 80~100 
J/m2). Notably, the reduction in XPC mobility seemed to depend on the remaining 6-4PPs 
rather than on CPDs. Overexpression and siRNA knockdown of DDB2 revealed that the first 
immobilization of GFP-XPC (observed with low UV doses) was due to entrapment by UV-
DDB bound to 6-4PPs (Nishi et al., 2009). These results indicate that UV-DDB likely 
contributes to the efficient detection of both of the major photolesions, particularly when the 
density of the induced lesions is low enough (in terms of physiologically relevant levels), 
and thereby recruits XPC and other NER factors. 
Although the precise molecular mechanism underlying XPC recruitment by UV-DDB 
remains unclear, we have shown the presence of a direct physical interaction between these 
2 damage-recognition factors by coimmunoprecipitation experiments (Sugasawa et al., 
2005). Among the components of each complex, XPC and DDB2 appeared to be responsible 
for the interaction. More recently, researchers have solved the crystal structure for UV-DDB 
bound to a DNA duplex containing a 6-4PP (Scrima et al., 2008). DDB1 shows a unique 

structure containing 3 β-propeller domains (designated BPA, BPB, and BPC), whereas DDB2 

has a β-propeller that is exclusively involved in its interaction with DNA. The N-terminal 
extension of DDB2 contains a helix-loop-helix motif, which mediates its interaction with 
DDB1. In this structure, UV-DDB approaches the lesion and inserts its evolutionarily 

conserved β-hairpin on the surface of the DDB2 β-propeller into the minor groove of the 

DNA, thereby causing a ~40° kink in the DNA. This β-hairpin seems to push the 2 affected 
bases out of the DNA duplex: these bases interact extensively with the amino acids that 
form a binding pocket on the surface of DDB2 (Fig. 2). The size of the binding pocket seems 
fit to accommodate 2 nucleotides, which suggests that DDB2 has evolved to recognize 
dinucleotide lesions, such as UV-induced photodimers. Considering that XPC interacts with 
the undamaged strand, XPC may gain access to the lesion from the side opposite to UV-
DDB, sandwiching the DNA in between. However, the formation of such a ternary complex 
has not been demonstrated by EMSA or other methods. 

2.3 Roles of ubiquitylation in GG-NER damage recognition 

As mentioned above, UV-DDB is thought to be part of the ubiquitin ligase complex. 

Expression of the epitope-tagged DDB2 in cells and isolation of the protein complexes under 

relatively mild conditions have revealed that DDB2 associates in vivo with not only DDB1, 

but also with CUL4A-ROC1 and the COP9 signalosome (CSN) (Groisman et al., 2003). CSN, 

which is an 8-subunit complex possessing deneddylation and deubiquitylation activities, is 

believed to function as a negative regulator of the cullin-based ubiquitin ligase family 

(Lyapina et al., 2001; Yang et al., 2002). Upon UV irradiation of cells, UV-DDB relocates onto 

chromatin, where the associating ubiquitin ligase seems to be activated, judging from 

dissociation of CSN and neddylation of CUL4A (Groisman et al., 2003). 

We have demonstrated that XPC is one of the substrates for this ubiquitin ligase (Sugasawa 

et al., 2005). After UV irradiation, slowly migrating, ubiquitylated forms of XPC became 

apparent. The appearance of these forms peaked around 1 h postirradiation, at which time 

the repair of 6-4PPs was rapidly ongoing. This transient ubiquitylation of XPC was detected 

even in NER-deficient XP and CS cells, with the only exception being XP-E cells. Notably, 

treatment of cells with a protein synthesis inhibitor, cycloheximide, revealed that 

ubiquitylated XPC had mostly reverted to its unmodified form, instead of being degraded. 

Subsequently, the recombinant DDB1-DDB2-CUL4A-ROC1 ubiquitin ligase complex was 
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purified and successfully used for in vitro reconstitution of the XPC ubiquitylation. In this 

reaction, not only XPC but also DDB2 and CUL4A were found to be polyubiquitylated. It 

was previously reported that DDB2 undergoes degradation by the proteasome in response 

to UV irradiation (Fitch et al., 2003; Rapić-Otrin et al., 2002). These results suggest that the 

fates of the modified XPC and DDB2 are different, even though they seem to be 

ubiquitylated by the same ligase. 
To elucidate the roles of ubiquitylation in the mechanism of GG-NER, we performed DNA- 
binding assays using paramagnetic beads immobilized with DNA containing the UV 
photolesions, CPD or 6-4PP (Sugasawa et al., 2005). In vitro ubiquitylation reactions in the 
presence of these DNA beads revealed that polyubiquitylation of DDB2 completely 
abolished the strong damaged DNA-binding activity of UV-DDB. In contrast, 
polyubiquitylated XPC in the same reaction continued to bind to DNA, with a slightly 
higher affinity than the unmodified form. Considering the remarkable difference in their 
affinities for UV-damaged DNA, it is conceivable that XPC cannot simply displace UV-DDB 
that is already bound to the site containing a photolesion. 
When UV-DDB was added to cell-free NER reactions involving 6-4PP as a defined DNA 
substrate, only inhibition (and not stimulation) of dual incision was observed (Sugasawa et 
al., 2005). This finding suggested that UV-DDB tightly bound to the lesion may adversely 
block access to XPC and other NER factors, at least in vitro. Since this inhibition was 
partially alleviated by the addition of all of the components required for ubiquitylation, we 
proposed that damage handover from UV-DDB (strong binder) to XPC (weak binder) may 
be promoted by polyubiquitylation (Sugasawa et al., 2005; Sugasawa, 2006). Apart from 
these insights into the damage-recognition mechanism, the precise biological meanings of 
the UV-induced proteasomal degradation of DDB2 and the reversible polyubiquitylation of 
XPC remain to be understood. 
Ddb2-deficient mice are characterized by a defect in UV-induced cellular apoptosis, in 
addition to a predisposition to skin cancer that was predicted from the phenotypes of 
human patients with XP-E (Itoh et al., 2004; Yoon et al., 2005). Although there have been 
some contradictory reports (Stubbert et al., 2007; Stubbert et al., 2009), the disappearance of 
DDB2 and/or the modification of XPC may be involved in a signal transduction pathway 
that regulates cellular responses to UV (Stoyanova et al., 2009). Among the known NER 
proteins, the expression of DDB2 and XPC is under the control of the p53 tumor suppressor 
(Adimoolam & Ford, 2002; Amundson et al., 2002; Hwang et al., 1999), whereas DDB2 
conversely regulates p53 expression, thereby forming a regulatory circuit (Itoh et al., 2003). 
Structural studies have suggested that the N-terminus of the rod-shaped CUL4 molecule 
anchors to the BPB domain of DDB1 (Angers et al., 2006; Scrima et al., 2008). In contrast to 

DDB2 and the other 2 β-propellers of DDB1 that seem to be fixed on the lesion, the BPB 
domain is supposed to exhibit considerable conformational flexibility. As a result, the 
ubiquitin ligase catalytic center assembled on the other tip of CUL4 is expected to move 
around within a certain spatial range (like a crane arm), and potentially ubiquitylate various 
targets around the lesion. Other substrates for the UV-DDB ubiquitin ligase include histones 
H2A (Kapetanaki et al., 2006), H3, and H4 (Wang et al., 2006). H3 and H4 ubiquitylation by 
the ligase reportedly leads to the dissociation of histone octamers from DNA. In this regard, 
it should be noted that the nucleosome assembly of DNA containing 6-4PPs interferes in 
vitro with lesion access to XPC, as well as the subsequent dual incision (Hara et al., 2000; 
Yasuda et al., 2005). On the other hand, owing to the substantial nonspecific DNA-binding 
activity of XPC, its specific binding to 6-4PP (observed with EMSAs) was easily competed 

www.intechopen.com



 
DNA Damage Recognition for Mammalian Global Genome Nucleotide Excision Repair 

 

461 

out by the addition of undamaged DNA: this inhibition was dramatically attenuated by the 
organization of the competitor DNA into nucleosomes. Taken together, these studies 
indicate that nucleosome assembly may contribute to the masking of the undamaged part of 
the genomic DNA from useless surveillance by XPC, so that specific remodeling of the 
chromatin structures at relevant lesion sites can enhance damage discrimination 
tremendously. 
In addition to ubiquitin ligase, the histone acetyltransferases CBP/p300 reportedly interact 
with UV-DDB (Datta et al., 2001; Rapić-Otrin et al., 2002), which suggests that multiple 
histone modifications may be involved in the reorganization of chromatin environments to 
allow the initiation of GG-NER. In the reconstituted cell-free system, UV-DDB is dispensable 
for and could even inhibit the repair of 6-4PPs, as described above. Moreover, its influence 
on CPD repair has been somewhat elusive, despite the obvious stimulatory effect observed 
in vivo. In some studies, significant stimulation of dual incision was obtained with the CPD 
substrate (Aboussekhra et al., 1995; Wakasugi et al., 2001; Wakasugi et al., 2002). However, 
other systems (including ours) showed no or only a minimal effect of UV-DDB on CPD 
repair, even in the presence of the components required for ubiquitylation (Reardon & 
Sancar, 2003; Sugasawa et al., 2005). As suggested by others, the involvement of chromatin 
structures may be important to reproduce the role for UV-DDB in the efficient recognition 
and repair of CPDs (Rapić Otrin et al., 1998). 
 

 

Fig. 3. Ubiquitylation-mediated damage handover model. Once UV-DDB binds to a UV 
photolesion, it recruits the XPC complex. The associating CUL4-ROC1 ubiquitin ligase is 
subsequently activated, thereby polyubiquitylating both XPC and DDB2. With the 
polyubiquitylation of DDB2, UV-DDB loses its affinity for damaged DNA, which results in 
the successful transfer of the lesion from UV-DDB to XPC. 
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3. The contribution of damage verification to the accuracy of GG-NER 

As discussed in the previous section, there are at least 2 branches of damage-recognition 
pathways in GG-NER: sensing by XPC of unpaired bases associated with a wide variety of 
highly distorting lesions, and UV-DDB-dependent deployment of XPC that works 
specifically for UV-induced photolesions. However, particularly in the former pathway, 
XPC may bind to sites devoid of damage (e.g., bubble-like structures). The reason for this 
binding is that XPC can detect certain secondary structure of DNA, but not any feature of 
DNA chemistry. To avoid incision by NER at damage-free sites that could adversely 
challenge genomic stability, the verification of damage after XPC binding is fundamental. 

3.1 Bipartite substrate discrimination model 

Important clues to understand the structural determinants of NER substrate specificity were 
obtained from a series of biochemical studies. Among the key substrates were artificial DNA 
backbone lesions at the C4' position of the deoxyribose moiety (Buschta-Hedayat et al., 1999; 
Hess et al., 1997). Although these lesions were associated with little helix distortion and, 
thus, were hardly excised in human cell-free extracts, they were excised efficiently when 
combined with a small bubble structure. On the other hand, bubble structures devoid of 
lesions were never incised by NER. Based on these findings, the bipartite substrate 
discrimination theory was proposed, which states that efficient NER substrates must 
simultaneously contain 2 structural elements: disruption of canonical Watson-Crick base 
pairing (i.e., the presence of unpaired bases), and some aberrant modification of DNA 
chemistry. It should be noted that XPC senses the former, but not the latter, as described 
above. We later tested other DNA substrates containing a bubble structure and a dG-AAF 
adduct in various combinations (Sugasawa et al., 2001). XPC could bind to the bubble 
regardless of the presence or absence of the lesion, whereas in vitro NER incision occurred 
only when the AAF adduct existed at the bubble site. These results clearly indicate that 
DNA binding by XPC does not lead to dual incision in a straightforward manner. Instead, 
the presence of an alteration of DNA chemistry must be verified thereafter: in the case of no 
lesion, the repair process is aborted at a certain step. 
One of difficulties with biochemical studies of the NER mechanism has been that its early 
process includes only assembly/disassembly of protein factors and unwinding of the DNA 
duplex: no chemical change in DNA occurs before dual incision, which is quite a late step in 
the repair reaction. However, mechanistic dissection of the early NER process was advanced 
recently by the finding that the 2 structural elements comprising NER substrates (i.e., 
unpaired base and chemical modification) are spatially separable (Sugasawa et al., 2009). 
With the C4' backbone lesions, it was already shown that those abnormal structures could 
be recognized and incised by NER in vitro, even if they resided a few bases apart from the 
end of a bubbled region (Buschta-Hedayat et al., 1999). Very recently, we showed that the 
distance between the 2 elements can be much longer (Sugasawa et al., 2009). Although CPDs 
are very poor substrates in our in vitro NER system because of the small helical distortion, 
enormous stimulation of dual incision was observed when a 3-base bubble was inserted 
about 60 bases on the 5' side of the lesion. Footprint analyses revealed that XPC was targeted 
to the bubble site, rather than to the CPD. This result indicated that the NER machinery was 
capable of searching around the XPC-bound site and finding the lesion at a distal position. 
More intriguingly, this stimulatory effect upon CPD recognition was abolished when the 
bubble was moved to the 3' side of the lesion. 

www.intechopen.com



 
DNA Damage Recognition for Mammalian Global Genome Nucleotide Excision Repair 

 

463 

The observed position specificity provided crucial insights into the molecular mechanism 
underlying the damage search. This mechanism was difficult to explain, if we assumed that 
the NER factors assembled at the XPC-bound site interacted in trans with the distal CPD. 
Instead, it seemed more likely that the damage search was accomplished by scanning the 
DNA strand in the 5' to 3' direction. This scanning mechanism was further supported by the 
observation that the stimulation of CPD removal was attenuated reciprocally by increasing 
the distance between the bubble and CPD. The damage search seemed to reach at least 160 
bases from the bubble, but the efficiency declined if the distance was 400 bases or more. 

3.2 Roles for TFIIH helicases in damage verification 

Given the existence of a 5' to 3' scanning mechanism in damage verification, the 

transcription factor IIH (TFIIH) is thought to be the most likely candidate for performing the 

scan. TFIIH was originally identified as a basal transcription factor that is essential for the 

initiation of transcription by RNA polymerase II. TFIIH consists of 10 subunits, including 3 

disease-related gene products, XPB, XPD, and TTDA (Giglia-Mari et al., 2004). Electron 

microscopic analyses of the purified TFIIH complex have revealed a ring-shaped structure, 

in which the spatial arrangement of individual subunits has been proposed (Chang & 

Kornberg, 2000; Schultz et al., 2000). Notably, the XPB and XPD subunits possess DNA-

dependent ATPase and helicase activities: the XPD helicase translocates on a DNA strand in 

the 5' to 3' direction (Schaeffer et al., 1994; Sung et al., 1993), whereas the contribution of XPB 

helicase activity with the opposite (3' to 5') polarity seems only marginal (Coin et al., 1998; 

Schaeffer et al., 1994). These activities have been implicated in the local unwinding of the 

DNA duplex at promoter sites (for transcriptional initiation) (Holstege et al., 1996) and at 

sites containing DNA damage (for NER) (Evans et al., 1997; Mu et al., 1997). 

The XPB ATPase activity is necessary for both transcription and NER (Hwang et al., 1996; 

Tirode et al., 1999). In contrast, ATP-hydrolysis by XPD seems dispensable for transcription, 

but not for NER (Winkler et al., 2000). TTDA (also known as p8) is a very small protein that 

recently was identified as a subunit of TFIIH (Giglia-Mari et al., 2004). TTDA stimulates the 

ATPase activity of XPB in the NER reaction, but it is not directly involved in transcription, 

which suggests that it performs NER-dedicated roles (Coin et al., 2006). However, TTDA 

appears to affect the stability of the gross TFIIH complex, because cells from patients with 

TTD-A show substantially reduced levels of TFIIH and transcriptional activity (Giglia-Mari 

et al., 2004). 
The observed polarity of the XPD helicase coincides with the 5' to 3' scanning model of 
damage verification. In this regards, there have been notable reports that the helicase 
activity of Rad3p, the S. cerevisiae XPD homolog, is inhibited in the presence of DNA 
damage (Naegeli et al., 1992). This finding evokes the notion that damage verification may 
depend on obstruction of the TFIIH helicase translocation at sites where the DNA structure 
is chemically altered (Dip et al., 2004; Gillet & Schärer, 2006; Wood, 1999). Similar results 
were obtained recently with an archaeal XPD homologue (Mathieu et al., 2010), although 
some contradictory data have been also documented (Rudolf et al., 2010), which might be 
explained by differences in the DNA substrates used. Using paramagnetic beads 
immobilized with DNA containing a CPD and a 5'-loop, we showed that a certain NER 
protein complex assembled at the loop site indeed moves to the CPD in an ATP-dependent 
manner (Sugasawa et al., 2009). In addition to XPC, both XPB and XPD ATPase activities as 
well as XPA seemed to be involved in this process. Considering that XPB, another TFIIH- 
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related helicase, exhibits the opposite (3' to 5') polarity, it has been proposed that XPB and 
XPD may be loaded onto different DNA strands and may move toward the same direction 
(Dip et al., 2004). This process would enable the simultaneous inspection of both strands, so 
that discrimination between damaged and undamaged strands can be made depending on 
which helicase is blocked. However, our results strongly suggest that only 1 strand is 
subjected to scanning, such that lesions on the other strand, if any, are ignored. Recent 
mutational analyses have revealed that the ATPase, but not the helicase, activity of XPB is 
required for NER (Coin et al., 2007): this finding implies that XPB may not mediate the 
opening of the DNA duplex or movement along a DNA strand. 
 

 

Fig. 4. Polarity of the XPC binding regulates which DNA strand is scanned by the XPD 
helicase. For successful loading of XPD onto the damaged strand, XPC must interact with 
the undamaged strand. 

Another point made by this study was the importance of the XPC binding polarity. As 
demonstrated by the aforementioned biochemical and structural studies (Min & Pavletich, 
2007; Sugasawa et al., 2002), XPC binds to a site containing unpaired bases in an asymmetric 
fashion. This binding polarity can be controlled intentionally by using a loop structure, in 
which only 1 DNA strand has unpaired bases. When a loop with either polarity was 
substituted for a bubble positioned on the 5' side of the CPD, incision at the lesion site was 
stimulated only by a looped-out sequence in the "undamaged" (CPD-free) DNA strand. In 
the case where both the loop and CPD were present in the same strand, incision was 
completely blocked (Sugasawa et al., 2009). These findings strongly suggest that, after XPC 
interacts with unpaired bases in 1 DNA strand, the XPD helicase in subsequently recruited 
TFIIH may be loaded onto the other strand and may start scanning in the 5' to 3' direction. 
According to this model, XPD would be forced to bind the undamaged strand erroneously, 
if the damage-containing strand is looped out. 
Although this model was deduced from the results of in vitro experiments using rather 
artificial DNA substrates, it might also apply to normal NER reactions, in which unpaired 
bases and chemical modifications coexist in close proximity. To induce productive NER, 
XPC must interact with unpaired bases opposite the lesion, so that the XPD helicase can be 
loaded successfully onto the damaged strand immediately on the 5' side of the lesion. 
Intriguingly, with DNA containing a bulky lesion (such as the dG-AAF adduct), XPC 
exhibits a propensity to bind in a correct orientation in the absence of other factors, most 
likely because of steric effects preventing interactions between XPC and the modified base 
(Sugasawa et al., 2009). On the other hand, footprints of XPC on a 6-4PP appear rather 
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symmetric (Sugasawa et al., 1998), which suggests that a substantial fraction of 6-4PP repair 
events that are initiated directly by XPC may be abortive. In the UV-DDB-mediated damage 
recognition pathway, however, XPC may be properly guided to interact with the 
undamaged strand, because the UV photolesions are already occupied by UV-DDB. 

3.3 Possible roles for XPA and RPA 

XPA, which was the first cloned XP gene (Tanaka et al., 1990), complemented UV sensitivity 

of fibroblasts from patients with XP-A. Cultured cells lacking expression of functional XPA 

are defective in both GG-NER and TC-NER, and show extreme sensitivity to killing by UV. 

The XPA gene product is a relatively small protein that is essential for in vitro NER. It shows 

a DNA-binding activity with a significant preference for various types of damaged DNA 

(Asahina et al., 1994; Jones & Wood, 1993). 

Replication protein A (RPA) is a heterotrimeric protein complex exhibiting remarkable 

single-stranded DNA-binding activity. RPA is supposed to promote the unwinding of the 

DNA duplex, stabilize the single-stranded conformation, and stimulate various enzymatic 

activities, such as DNA polymerases. As the eukaryotic counterpart of bacterial SSB, RPA 

has been implicated in various DNA metabolisms, including replication, repair, and 

recombination (Wold, 1997). Its involvement in NER was demonstrated by fractionation and 

reconstitution of human cell-free extracts used for in vitro NER (Coverley et al., 1991). RPA 

also binds damaged DNA with significant specificity (Burns et al., 1996; Clugston et al., 

1992; He et al., 1995), and the reported interaction between XPA and RPA seems to enhance 

their damage-specific DNA-binding activities (Buschta-Hedayat et al., 1999; He et al., 1995; 

Li et al., 1995; Wakasugi & Sancar, 1999). 
Although the above findings suggest that the XPA-RPA complex could be responsible for 
initial damage recognition, the observed specificity and affinity of this complex for 
damaged DNA seem less pronounced than those of XPC or UV-DDB. In addition, 
accumulating evidence from biochemical and cell biological studies has supported the 
conclusion that these factors are more likely to be involved in later stages of the NER 
process. Both XPA and RPA are essential for the assembly of the NER preincision 
intermediate complex that contains the fully opened DNA duplex. RPA likely stabilizes 
the single-stranded conformation of DNA and protects the undamaged strand 
specifically, while XPA binds around the end of the unwound region on the 5' side of the 
lesion (Krasikova et al., 2010). Considering the reported physical interactions with a 
number of NER factors, one of the roles for these factors may be orchestrating the 
assembly of the preincision complex and correctly arranging other factors, including the 2 
incision endonucleases, ERCC1-XPF and XPG.   
The XPA protein possesses a zinc-finger domain, which NMR studies revealed is involved 

in the interaction with RPA. In contrast, its DNA-binding functionality was assigned to a 

different domain in the protein (Buchko et al., 1998; Buchko et al., 1999; Ikegami et al., 1998). 

Intriguingly, the DNA-binding domain in XPA shows structural resemblance to DNA 

binding β-hairpins (particularly BHD2) in XPC/Rad4p (Min & Pavletich, 2007), which 

suggests their evolutionary and functional relationship. 

So far, the precise roles for the (rather weak) damage-specific DNA-binding activity of XPA 
remain unclear. XPA reportedly exhibits remarkable binding affinities for DNA containing 
highly kinked conformations, such as 3-way junctions and the Holliday junction-like 
structure (Camenisch et al., 2006; Missura et al., 2001). From mutational analyses, it has been 
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proposed that XPA may be suitable for sensing abnormal electrostatic potentials of DNA, 
which could be caused by certain distorted DNA conformations in the damage-containing 
DNA duplex that are unwound by the helicase activities of TFIIH (Camenisch et al., 2007). 
In addition to such "proofreading" functions, our recent DNA-binding assays have raised 
the possibility that XPA may be required for launching the DNA scanning complex from the 
XPC-bound sites (Sugasawa et al., 2009). We also have shown that XPA may stimulate the 
TFIIH helicase activity under certain conditions, presumably through their reported 
physical interaction (Li et al., 1998; Park et al., 1995). Based on these findings, it is 
conceivable that a ternary complex involving XPC, XPA, and TFIIH scans DNA strands to 
search for damage: this model is reminiscent of the damage-recognition mechanism in the 
bacterial NER system. As for E. coli, 2 damage recognition pathways have been proposed 
(Van Houten et al., 2005): the UvrA homodimer directly recognizes and binds to distorted 
sites and then recruits UvrB, or preassembled complexes involving 2 UvrA and 1 or 2 UvrB 
molecules bind DNA in a nonspecific manner and then search for damage by scanning the 
DNA strands. In this analogy, UvrB seems to correspond to TFIIH as the driving subunit 
with ATPase/helicase activities, whereas UvrA may have evolved into XPC and/or XPA. 
Although little amino acid sequence homology exists between these bacterial and 
mammalian counterparts, the fundamental principles underlying NER damage recognition 
may have been conserved throughout evolution. 

3.4 Implications in the damage surveillance mechanism 

Although the specific DNA binding of UV-DDB and XPC has been observed in vitro, it still 
remains to be understood how these factors survey DNA and eventually reach relevant 
sites. For many DNA-binding proteins with sequence- and/or structure-specificity, it has 
been supposed that the proteins first bind DNA in a nonspecific manner and then "slide" or 
"hop" to search for their target sites (Gorman & Greene, 2008). A recent report has suggested 
that BHD1 and BHD2 in XPC may serve as dynamic damage sensors by binding to DNA 
and rapidly scanning for the integrity of base pairing (Camenisch et al., 2009). Once it 
encounters a distorted site, BHD3 may be inserted into the duplex to form a stabilized 
damage-recognition complex. 
Apart from these models, our findings that the NER protein complex driven by the XPD 
helicase can scan DNA strands provides interesting insights into the molecular mechanism 
underlying in vivo damage surveillance: for instance, the association of XPC even with 
inappropriate (damage-free) sites could help the NER machinery to survey the local genomic 
region and find damage at rather distal positions. Possible candidates for such XPC anchoring 
sites include base mismatches (caused by errors of replication/repair and deamination of 
bases), thermodynamic "breathing" of the DNA duplex, and other sequences that are 
intrinsically prone to melting (e.g., transcriptional promoters and replication origins), 
especially in the presence of topological stresses imposed by chromatin structure. In addition, 
some endogenous DNA damage, such as abasic sites and single-strand breaks, also may target 
XPC and thereby launch the "patrolling" system. It would be of great interest to examine how 
the timing and efficiency of GG-NER are regulated at different genomic loci. 

4. Conclusion 

Multiple protein factors are involved in the detection and verification of DNA damage, 
which, in conjunction with the GG-NER system, determine whether to incise DNA or not. 
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These factors sample all different structural aspects of DNA damage. XPC senses the 
presence of oscillating unpaired bases, which allows GG-NER to target an extremely broad 
spectrum of DNA insults. UV-DDB seems more customized for the detection and repair of 
UV-induced photolesions through direct interaction with the affected bases. As for CPDs 
(which are refractory to detection by XPC), UV-DDB further extends the substrate specificity 
of GG-NER. The XPD helicase in TFIIH scans DNA strands as a fine sensor of chemical 
changes in DNA structure. By integrating these different strategies, GG-NER as a whole can 
work as a highly versatile, efficient, and accurate system. Numerous biochemical and cell 
biological studies have confirmed that checks for different structural abnormalities in DNA 
are conducted in a sequential manner. Additionally, possible stochastic mathematical 
models have been also discussed (Kesseler et al., 2007; Luijsterburg et al., 2010; Politi et al., 
2005). Considering the in vivo situations, decondensation and some remodeling of the 
chromatin structure would also be expected to precede damage recognition by UV-DDB and 
XPC, although the underlying mechanism involved in this process remains unclear. These 
key issues need to be addressed at the molecular level in the near future. 
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