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1. Introduction 

Glioblastoma multiforme (GBM; WHO grade IV) is the most malignant type of glioma and 

in addition the most abundant malignant cancer of the adult human brain. Despite progress 

in diagnosis, surgery and chemotherapy, the median survival time of patients suffering 

from GBM is approximately 15 months (Stupp et al., 2005). The five years survival time is 

less than 5% (CBTRUS, 2010). Because glioblastoma cells show a highly infiltrating growth 

into the brain tissue, a total resection is not possible. In addition, glioblastoma cells are 

remarkably resistant to chemotherapy and ionizing radiation. In addition, the association of 

a portion of these cells with hypoxic and necrotic areas within the tumor increases their 

resistance.  

Gliobastoma multiforme tumors can be classified: 
1. by histopathology (WHO) in conventional glioblastomas (93%), giant cell glioblastoma 

(5%) and gliosarcoma (2%);  

2. by pathogenesis in primary GBM (90%) and secondary GBM (10%); 

3. by gene expression analysis in (I) classical, (II) mesenchymal, (III) proneural or (IV) 

neural type of GBM; 

4. by genomic analysis in subgroups harboring specific mutations and/or altered gene 

dosage/chromosome number. 

Conventional glioblastomas constitute approximately 93% of all glioblastomas and can be 

divided into primary or secondary tumors: primary glioblastomas represent approximately 

90% and develop de novo, whereas the incidence of secondary glioblastomas that arise from 

astroyctomas WHO grade II and III is in the range of 5 to 10%. Primary and secondary 

glioblastomas differ in their genetic defects: for example 39% of primary glioblastomas 

harbor an amplification of the EGF receptor (EGFR) locus, whereas in secondary 

glioblastomas no amplification was detected. Mutations within the p53 gene are more 

abundant in secondary glioblastomas. Unconventional glioblastomas include giant cell 

glioblastomas, gliosarcomas and other rare types (for details see section 4). 
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 Conventional Glioblastoma 
Giant cell 

glioblastoma 
Gliosarcoma 

Primary 
glioblastoma 

Secondary 
glioblastoma 

Frequency 93% 
5% 2% 

90% 10% 

Clinical onset 
 

de novo secondary de novo de novo 

Preoperative history 
(mo) 

1,7 >25 1,6 2 

Age at diagnosis (yr) 
 

55 39 42 56 

Table 1. Clinical profile of the common histopathological glioblastoma subtypes according 
to WHO. Modified from Kleihues et al., 2007; Peraud et al., 1997; Peraud et al., 1999 and Reis 
et al., 2000. 

2. Genetics of glioblastoma multiforme 
2.1 Genetic defects in human cancer 
For an introduction into the history of this field the reader is referred to the review of 
Bignold et al. (2006). Abnormalities of mitoses and chromosomes in cancer cells were 
described in late 1880s and Hansemann (1890) suggested that cancer cells develop from 
normal cells due to a tendency to maldistribute chromosomes during mitosis. The term 
somatic mutation was introduced into tumor biology by Tyzzer (1916). To explain the 
complexity of cancer phenomena “multi-hit” models (Knudson, 1971) increased in 
popularity over “single-hit” models of somatic mutation. In the multistep progression 
model of sporadic colorectal carcinoma five to ten genetic alterations seemed to be necessary 
for generation of the malignant phenotype  (for review see: Fearon and Vogelstein, 1990). 
The onset and extent of genetic alterations in progression of sporadic colorectal tumors was 
studied in detail by Stoler et al. (1999). Their observation of about 10,000 genomic alterations 
occurring per cancer cell has brought into attention the issue of genetic instability in human 
cancer. Genetic and phenotypic instability are hallmarks of cancer cells and appear early in 
tumor progression; most cancers are of clonal origin, but individual cancer cells are highly 
heterogenous. There are three major forms of genetic instability in cancer: (1) aneuploidy, in 
which entire chromosomes are lost or gained; (2) intrachromosomal instability, 
distinguished by insertions, deletions, translocations or amplifications and (3) point 
mutations, which accumulate in certain forms of hereditary cancer as well as in a small 
portion of sporadic cancers. Stanbridge et al. (1981) reported that specific chromosome loss 
is associated with the expression of tumorigenicity in human cell hybrids. It was published 
by Duesberg et al. (1998) that genetic instability of cancer cells is proportional to their degree 
of aneuploidy. Aneuploidy, an abnormal number of chromosomes, is the result of 
asymmetrical segregation of chromosomes to daughter cells during mitosis. Once 
aneuploid, cells will continue to segregate chromosomes asymmetrically during subsequent 
rounds of mitosis, a process that has been termed “chromosome error propagation” (for 
review see: Holliday, 1989).  
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Unlike oncogenes, tumor suppressor genes generally follow the “two hit” model, which 
implies that both alleles of a particular tumor suppressor gene have to be inactivated before 
an effect is manifested. If only one allele is inactivated, the second correct allele can still 
produce the correct protein. Whereas mutant oncogene alleles are typically dominant, 
mutant tumor suppressor genes are usually recessive.  
The mutational activation of oncogenes induces loss of heterozygosity and genomic 

instability in mammalian cells. These results have used to formulate the oncogene-induced 

replication stress model (for review see: Halazonetis et al., 2008). In precancerous lesions 

with intact p53 gene, the oncogene-induced DNA damage leads to p53-dependent apoptosis 

and/or senescence. After the function of p53 is lost, cells are able to escape its apoptotic 

and/or senescence effects, and the precancerous lesion is predestinated to become cancerous 

(Gorgoulis et al., 2005; Bartkova et al., 2005; Bartkova et al., 2006; Di Micco et al., 2006). DNA 

damage has an important role in promoting polyploidization. If cells with altered DNA 

enter mitosis, defects in chromosomal segregation and cytokinesis occur (for review see: 

Chow and Poon, 2010). 

The gene for the tumor suppressor protein p53 is mutated in about half of human cancers. It 

was shown recently by several groups, that eliminating p53 function by mutation leads to 

dramatically increased reprogramming efficiency of differentiated cells into induced 

pluripotent stem cells. Important for the field of cancer biology is the report of Mizuno et al. 

(2010), demonstrating that breast and lung cancers harboring TP53 mutations exhibit stem 

cell-like transcriptional signatures. These data suggest a role for active p53 in preventing the 

emergence of cancerous stem-like cells during tumor progression. Since TP53 mutations 

often arise in a late stage of tumor progression, when many cancer cells with different 

genetic alterations coexist, some cancer cells may be susceptible to reprogramming to 

generate stem-like cancer cells, leading to further tumor progression and cellular 

heterogeneity. 

2.2 Genetic diversity of glioblastoma multiforme 
DNA sequencing and gene dosage analysis of GBM revealed a high number of shared as 

well as individual-specific mutations, deletions and amplifications of DNA sequences. A 

hallmark of many primary GBMs is the loss of one copy of chromosome 10 harboring the 

locus for the PTEN tumor suppressor gene and/or amplification of the EGF receptor locus 

at chromosome 7. As a consequence, the Akt signalling pathway is often overactivated in 

GBM. Array comparative genomic hybridization (CGH) analyses revealed, that primary 

glioblastomas can be divided into three major genetic subgroups, i.e. tumors with 

chromosome 7 gain and chromosome 10 loss, tumors with chromosome 10 loss and tumors 

without copy number changes in chromosomes 7 or 10 (Misra et al., 2005). 

Parsons et al. (2008) sequenced 20661 genes coding for proteins in 22 GBM samples and 1 

normal sample. They observed that 685 genes contained at least 1 non-silent somatic 

mutation. 94% of these alterations were single base substitutions that were uniformly 

distributed among the 21 GBM samples, resulting in an average of 47 mutations per GBM.  

About 15% of the missense mutations were predicted to have a significant effect on protein 

function. The same 22 GBM samples were analysed for copy number alterations through 

hybridization of DNA samples to single nucleotide polymorphism (SNP) arrays, leading to 

the identification of 147 amplifications and 134 homozygous deletions.   
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Parsons et al. (2008) next studied the probabilities that the mutations were either “driver” or 
“passenger”. Driver mutations may provide a selective advantage to the cancer cell, whereas 
passenger mutations arise by the instability of the tumor genome and have no effect on 
tumor growth. Analysis of all data was used to identify GBM candidate cancer genes that 
were likely drivers, pointing to alterations in several signaling pathways: CDKN2A (altered 
in 50% of GBMs); TP53, EGFR, and PTEN (altered in 30 to 40%); NF1, CDK4, and RB1 
(altered in 12 to 15%); and PIK3CA and PIK3R1 (altered in 8 to 10%). By analysing 
additional gene members within signaling pathways affected by these genes, the authors 
identified alterations of critical genes in the RB1 pathway (RB1, CDK4, and CDKN2A; 
altered in 68% of GBMs), TP53 pathway (TP53, MDM2, and MDM4; altered in 64%), and the 
PI3K/PTEN pathway (PIK3CA, PIK3R1, PTEN, and IRS1; altered in 50%). Mutations in the 
NF1 gene (coding for neurofibromatosis-related protein NF-1 or neurofibromin 1, a 
stimulator of GTPase activity of ras proteins) were observed in 16 of 105 GBMs (15%). 
Mutations in the IDH1 gene (coding for the citric acid cycle enzyme isocitrate dehydro-
genase 1) were reported in 18 of 149 GBMs (12%).   
The Cancer Genome Atlas Research Network (2008) study analysed 91 GBM samples and 

found 453 non-silent somatic mutations in 223 genes. Affected signaling pathways include 

TP53, PTEN, NF1, EGFR, ERBB2, RB1, NF1, PIK3R1, and PIK3CA. High-level amplifications 

were observed frequently for EGFR, CDK4, PDGFR, MDM2, and MDM4 genes, whereas 

homozygous deletion events were often associated with CDKN2A/B and PTEN genes. In 

this study, GBMs from patients treated with temozolomide and/or lomustine were analysed 

for mutations. Treatment with alkylating agents resulted in more than tenfold increase in 

the number of mutations, that was dependent on the methylation status of the gene for the 

DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT). 

Bredel et al. (2009) published “A Network Model of a Cooperative Genetic Landscape in 

Brain Tumors”. The authors demonstrate that a multigene risk scoring model based on gene 

dosis and expression of 7 landscape genes (POLD2, CYCS, MYC, AKR1C3, YME1L1, 

ANXA7, and PDCD4) is associated with the overall length of survival in 189 glioblastoma 

samples. Yadav et al. (2009) reported that loss of function of ANXA7 (annexin 7) stabilizes 

the EGFR protein and increases EGFR signaling in glioblastoma cells. ANXA7 

haploinsuffiency doubles the tumorigenic potential of glioblastoma cells. The heterozygous 

loss of ANXA7 in about 75% of GBM in the Cancer Genome Atlas Research Network study 

(2008) plus the observed infrequent ANXA7 mutation in about 6% of GBM is indicative for 

its role as a haploinsuffiency gene. A multigene predictor model of outcome in GBM based 

on expression analysis of 9 genes was published by Colman et al. (2009). 

Verhaak et al. (2010) used gene expression analysis to divide GBM into 4 subtypes: I. 

Classical, II. Mesenchymal, III. Proneural, and IV. Neural. The reproducibility of this 

classification was demonstrated in an independent validation set. To get insight into the 

genomic events, the authors used copy number and sequence data from the Cancer Genome 

Atlas Research Network (2008).  

I. Classical subtype of GBM  (21% of core samples): 

Neural precursor and stem cell markers NES, as well as Notch and Sonic hedgehog 
signaling pathways were highly expressed in the Classical subtype. Chromosome 7 
amplification paired with chromosome 10 loss was seen in 100% of the Classical subtype. 
High level EGF receptor (EGFR) gene amplification was observed in 97% of the Classical 
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subtype and infrequently in other subtypes. Even though TP53 is the most frequently 
mutated gene in GBM (Cancer Genome Atlas Research Network, 2008), there was a distinct 
lack of TP53 mutations in the Classical subtype samples sequenced. Deletion events at 10q23 
harboring the PTEN locus were observed in 100% of the Classical subtype. Focal 9p21.3 
homozygous deletion targeting CDKN2A (encoding for both p16INK4A and p14 ARF) was 
frequent and co-occurred with EGFR amplification in 94% of the Classical subtype. 

II. Mesenchymal subtype of GBM (32% of core samples): 

The Mesenchymal subtype displayed expression of mesenchymal markers as described 

earlier (Phillips et al. 2006). Genes in the tumor necrosis super family pathway are highly 

expressed in this subtype. Focal hemizygous deletion of a region at 17q11.2, containing the 

gene NF1 (coding for neurofibromatosis-related protein NF-1 or neurofibromin 1, a 

stimulator of GTPase activity of ras proteins) occurred predominantly in the Mesenchymal 

subtype. NF1 mutations were found in 20 samples, 14 of which were classified as 

Mesenchymal subtype, resulting in 53% of samples with NF1 abnormalities. 

 

Mutated 
Gene 

Classical 
Subtype 

Mesenchymal 
Subtype 

Proneural 
Subtype 

Neural 
Subtype 

Approximate 
Overall 

Frequency 

TP53 0% 32% 54% 21% 23% 

PTEN 23% 32% 16% 21% 17% 

NF1 5% 37% 5% 16% 13% 

EGFR 32% 5% 16% 26% 13% 

IDH1 0% 0% 30% 5% 8% 

PIK3R 5% 0% 19% 11% 6% 

RB1 0% 13% 3% 5% 5% 

ERBB2 5% 3% 5% 16% 5% 

EGFRvIII 23% 3% 3% 0% 5% 

PIK3CA 5% 3% 8% 5% 4% 

PDGFRA 0% 0% 11% 0% 3% 

Table 2. Frequently mutated genes in Glioblastoma multiforme and their distribution among 
GBM subtypes according to Verhaak et al (2010). Outstanding frequencies are grayed out for 
comparison between subtypes. Modified from Verhaak et al. (2010). 

III. Proneural subtype of GBM  (31% of core samples): 

The Proneural group showed high expression of oligodendrocytic genes, underlining its 

status as an atypical GBM subtype. The majority of TP53 mutations and TP53 loss of 

heterozygosity were found in Proneural samples.  The classic GBM signature, chromosome 

7 amplification associated with chromosome 10 loss was less prevalent and occurred in only 

54% of the Proneural subtype. Focal amplifications of the locus at 4q12 harboring the PDGF 

Receptor A (PDGFRA) gene were seen in all subtypes of GBM but at a much higher rate 
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(35%) in Proneural samples. 11 of the 12 observed mutations in the isocitrate dehydrogenase 

1 gene (IDH1) were found in this class. 

IV. Neural subtype of GBM (16% of core samples): 

The Neural subtype was typified by the expression of neuron markers. The two normal 
brain tissues samples examined in this data set were both classified as Neural subtype. 
Chomosome 7 amplification associated with chromosome 10 loss was prevalent in the 
Neural subtype. 
 

 Known 
Cancer Gene 

in Region 

Classical 
Subtype 

Mesenchymal 
Subtype 

Proneural 
Subtype 

Neural 
Subtype 

A
m

p
li

fi
ca

ti
o

n
 

E
v

en
ts

 

7p11.2 EGFR 100% 95% 54% 96% 

7q21.2 CDK6 92% 89% 46% 96% 

7q31.2 MET 86% 91% 54% 92% 

7q34  86% 91% 52% 92% 

4q12 PDGFRA 5% 9% 35% 13% 

H
o

m
o

- 
an

d
 

H
em

iz
y

g
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u
s 

D
el

et
io

n
 E

v
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ts
 

17q11.2 NF1 5% 38% 6% 17% 

10q23 PTEN 100% 87% 69% 96% 

9p21.3 
CDKN2A/C
DKN2B 

95% 67% 56% 71% 

13q14 RB1 16% 53% 52% 46% 

Table 3. Frequency of copy number alterations in Glioblastoma subtypes according to gene 
expression. Modified from Verhaak et al. (2010). 

2.2.1 Subtypes and clinical correlations 
Three of four tumors classified as secondary GBMs were found in the Proneural group. The 
Proneural subtype was associated with younger age, PDGFRA abnormalities, IDH1 and 
TP53 mutations, all of which have been associated with secondary GBM in earlier studies 
(Arjona et al., 2006; Furnari et al., 2007; Kleihues and Ohgaki, 1999; Watanabe et al., 1996; 
Yan et al., 2009). Verhaak et al. (2010) concluded that tumors did not change class at 
recurrence, because recurrent tumors were found in all subtypes (Murat et al., 2008). 
Although statistically not significant, there was a trend towards longer survival for patients 
with a Proneural signature. Aggressive treatment significantly reduced mortality in Classi-
cal and Mesenchymal subtypes, had a less pronounced effect in the Neural subtype and did 
not alter survival in the Proneural subtype. There was no association of GBM subtype with 
methylation status of the DNA repair gene MGMT, which has been positively linked to 
therapy response (all data and conclusions from Verhaak et al., 2010).  
Bredel et al. (2010) reported that NFKBIA (nuclear factor of κ-light polypeptide gene 
enhancer in B-cells inhibitor-┙), an inhibitor of EGFR signaling pathway, is often deleted in 
GBM (Table 4). Most deletions occur in non-classical subtypes of GBM. Deletion and low 
expression of NFKBIA were reported to be associated with unfavorable outcomes. The 
authors present a two-gene model based on the expression of NFKBIA and MGMT that is 
strongly associated with the clinical course of GBM (Table 5). 

www.intechopen.com



 
Genetic Diversity of Glioblastoma Multiforme: Impact on Future Therapies 

 

109 

Genetic Alteration Classical 
Subtype 

Nonclassical Glioblastomas 

Mesenchymal 
Subtype 

Proneural 
Subtype 

Neural 
Subtype 

NFKBIA deletion 6% 30% 39% 22% 

EGFR amplification 80% 20% 11% 46% 

Table 4. Relationship of four molecular subtypes of glioblastoma to gene-dosage profiles for 
NFKBIA and EGFR across 188 glioblastomas. NFKBIA deletions are rare in classical (6%) and 
more common in non-classical (32%) glioblastomas.  

Irrespective of subtype a degree of mutual exclusivity between NFKBIA deletion and EGFR 

amplification was suggested: NFKBIA deletion or  EGFR amplification were observed in 

53%, whereas concomitant occurrence (NFKBIA deletion together with EGFR amplification) 

was observed only in 5%. All data and conclusions are from Bredel et al. (2010). 

Glioblastoma subtypes were classified according to Verhaak et al. (2010). 

 

Risk 
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NFKBIA 
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Expression 

and 
MGMT 
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With Radiotherapie and 

Temozolomide 

NFKBIA 
Expression and 

MGMT 
Promoter 

Methylation 
Status M
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(W
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High-risk Low NFKBIA, 

High MGMT 
44 Low NFKBIA, 

Unmeth. MGMT 
45 Low NFKBIA, 

Unmeth. MGMT 
35 

Inter-
mediate-

risk 

Low NFKBIA, 
Low MGMT 

or 
High NFKBIA,
High MGMT 

59 Low NFKBIA, 
Meth. MGMT 

or 
High NFKBIA, 

Unmeth. MGMT 

63 Low NFKBIA, 
Meth. MGMT 

or 
High NFKBIA, 

Unmeth. MGMT 

71 

Low-risk High NFKBIA,
Low MGMT 

92 High NFKBIA, 
Meth. MGMT 

91 High NFKBIA, 
Meth. MGMT 

122 

Table 5. The strong association of the clinical course of GBM with expression of NFKBIA 
and expression/methylation status of the promoter of O6-methylguanine-DNA methyltrans-
ferase (MGMT). All data and conclusions are from Bredel et al. (2010). 

To add an additional level of complexity, gene dosage analysis of separate tumor areas 

derived from one GBM revealed area-specific genomic imbalances (see chapter 5). 
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2.3 Correlation between genetic and histopathologic diversity in GBM 
Glioblastomas are morphologically highly heterogeneous and in addition the histological 
features often vary in different areas of one tumor. Currently three distinct common 
histopathological variants of GBM are recognized by the actual World Health Organization 
classification scheme, including conventional glioblastoma, giant cell glioblastoma, and 
gliosarcoma.  
Despite of lack of any histopathological difference, primary (de novo) and secondary (with an 
evidence of a lower-grade precursor) conventional glioblastomas harbor distinct molecular 
genetic abnormalities: Primary glioblastomas are characterized by relatively high 
frequencies of EGFR amplification, PTEN deletion, and CDKN2A (p16) loss, whereas secon-
dary glioblastomas often contain TP53 mutations, especially those involving codons 248 and 
273 or G:C->A:T mutations at CpG sites (Ohgaki et al., 2004). 
Even within the conventional glioblastoma category, the cellular composition is 
heterogeneous and may include small or fibrillary, gemistocytic, granular, lipidized and 
occasional giant cells or oligodendroglial components. According to the predomination of 
one of these cell types indicating patterns of differentiation, the WHO distinguishes 
respective subtypes of glioblastoma such as small cell glioblastoma, glioblastoma with 
granular cell astrocytoma features, glioblastoma with lipidized cells; whereas giant cell 
glioblastoma is recognized as a distinct clinicopathologic entity (Kleihues et al., 2007; Miller 
and Perry, 2007). 
Small cell astrocytoma is an aggressive histologic variant being often misdiagnosed as 
anaplastic oligodendroglioma because of considerable morphologic similarities. Despite of 
histological overlap clinicopathologic and genetic features are distinct: there are no small 
cell astrocytomas harboring 1p/19q codeletions, whereas vIII mutant form of EGFR, EGFR 
amplification and 10q deletions are present in 50%, 69% and 97% of small cell astrocytomas, 
respectively (Perry et al., 2004). 
Once thought to represent a reactive component, gemistocytes have been found to harbor 
TP53 mutations and cytogenetic abnormalities (chromosome 7p gains and 10q losses); 
therefore, they are now thought to represent a true neoplastic component (Kros et al., 2000). 
In rare cases granular cells may predominate and create the impression of a granular cell 
tumor. Similar to astrocytomas with non-granular cytology, these tumors may also harbor 
TP53 mutations, high-frequency loss of heterozygosity at 9p, 10q, and 17p, and less frequent 
loss of heterozygosity at 1p and 19q (Castellano-Sanchez et al., 2003). Brat et al. (2002) 
reported the largest series of such tumors to date (22 cases, including 4 grade II, 7 grade III, 
and 11 grade IV tumors) and found that these tumors were more aggressive than non-
granular cell astrocytomas of the same grade. 
Glioblastoma with oligodendroglioma component is an astrocytoma WHO-grade IV containing 
oligodendroglial areas varying in size and frequency (Kleihues et al., 2007). Despite of 
oligodendroglial component and in contrast to rather frequent codeletions in WHO grade III 
anaplastic oligodendroglioma (approximately 85%), deletion of either 1p (24%), 19q (43%), 
or combined 1p/19q (22%) is relatively infrequent in glioblastoma with oligodendroglioma 
component (Miller and Perry, 2007). 
Giant cell glioblastoma is a rare variant that constitutes up to 5% of glioblastoma and is 
recognized as a distinct clinicopathologic entity in the WHO 2007 classification. Although 
occasional giant cells may be found in conventional glioblastoma, these cells are a 
predominating cytologic component in giant cell glioblastoma. As the name implies, the 
tumor cells are markedly enlarged and bizarre, often appear often multi-nucleated and 
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tumor masses are typically well-circumscribed. It occurs in younger patients (fifth decade) 
(Kleihues et al., 2007). 
The molecular genetic features include relatively high frequencies of TP53 mutations (59% 
to 90%) and PTEN deletion (up to 33%), whereas EGFR amplification/overexpression and 
homozygous p16 deletion (p16INK4a gene at the CDKN2A locus, 9p21) are lacking in 
comparison to conventional glioblastoma (Meyer-Puttlitz et al., 1997; Peraud et al., 1997; 
Peraud et al. 1999; Temme et al. 2010). Therefore, giant cell glioblastomas contain clinical 
and molecular genetic features of both primary and secondary glioblastomas. Giant cell 
glioblastomas have an increased expression of Aurora Kinase B; combined with TP53 
mutations this may be responsible in induce cytokinesis defects and the development of 
multinucleated cells (Temme et al., 2010).  
 

 
Gliosarcoma Primary 

glioblastoma 
Giant cell 

glioblastoma 
Secondary 

glioblastoma 

PTEN mutation 38% 32% 33% 4% 

EGFR amplification 0% 39% 5% 0% 

TP53 mutation 23% 11% 84% 67% 

p16INK4a deletion 37% 36% 0% 4% 

MDM2 amplification
5% 8% 0% 0% 

Table 6. Genetic profile of the common histopathological glioblastoma subtypes. Similar 
tendencies are indicated by grayscale. Modified from Kleihues et al., 2007; Peraud et al., 
1997; Peraud et al., 1999 and Reis et al., 2000. 

Despite showing a very poor prognosis giant cell glioblastoma appears to carry a slightly 
better prognosis than conventional glioblastoma (Burger and Vollmer, 1980; Margetts and 
Kalyan-Raman, 1989; Shinojima et al., 2004), perhaps because of a less infiltrative behaviour. 
Gliosarcoma constitutes roughly 2% of GBMs and is also recognized as a distinct clinico-

pathologic entity in the WHO 2007 classification. These tumors are characterized by their 

well-circumscribed, biphasic tissue pattern with clearly distinguishable areas of glial and 

mesenchymal differentiation. The glial component of gliosarcoma may display any of the 

aforementioned cytologic attributes and is typically immunoreactive for GFAP. The 

mesenchymal component is GFAP-negative and may also carry a wide variety of 

morphologic appearances, with evidence of differentiation along fibroblastic, cartilaginous, 

osseous, smooth and striated muscle, and adipose lines (Kleihues et al., 2007). There is a 

cytogenetic and molecular evidence for a monoclonal origin of both components (Actor et 

al., 2002; Paulus et al., 1994; Reis et al., 2000).  

Exept for the infrequent EGFR amplification, gliosarcomas are genetically similar to primary 

glioblastomas: they harbor likewise low frequency of TP53 mutations (up to 24%) and 

similar rates of PTEN deletions (38%) as well as deletions of p16INK4a gene (at the CDKN2A 

locus, 9p21) in roughly 37% (Actor et al., 2002; Reis et al., 2000). 

Comparative genomic hybridization analysis in 20 gliosarcomas by Actor et al. (2002) 
revealed such common chromosomal imbalances as gains on chromosomes 7 (75%), X 
(20%), 9q and 20q (15% each) as well as losses on chromosomes 13q (15%), 10 and 9p (35% 
each). 
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2.4 Area-specific genomic Imbalances in glioblastoma multiforme 
Using flow cytometry data analysis Hoshino et al. (1978) reported that different tumor 
regions of one glioblastoma showed a highly variable distribution of ploidy. By use of a 
DNA fingerprinting technique Misra et al. (2000) analysed genetic alterations within two or 
three tumor areas from seven glioblastomas. In all cases except one, different areas of one 
tumor displayed different fingerprints, indicating a striking extent of intratumoral genetic 
heterogeneity. Conventional comparative genomic hybridization (CGH) was used to study 
the intratumoral patterns of genomic imbalance in Glioblastoma multiforme (Harada et al., 
1998; Jung et al., 1999). Array comparative genomic hybridization was utilized by 
Nobusawa et al. (2010) to study in detail tumor area-specific genomic imbalances. Genetic 
alterations common to all the areas analyzed within a single tumor included gains at 
chromosomes 1q32.1 (PIK3C2B, MDM4), 4q11-q12 (KIT, PDGFRA), 7p12.1-11.2 (EGFR), 
12q13.3-12q14.1 (GLI1, CDK4), and 12q15 (MDM2), and loss of chromosomes at 9p21.1-24.3 
(p16INK4a/p14ARF = CDKN2a), 10p15.3-q26.3 (PTEN, etc.), and 13q12.11-q34 (SPRY2, RB1). 
These alterations are likely to be causative in the pathogenesis of glioblastomas (driver 
mutations). Additionally, the authors reported numerous tumor area-specific genomic 
imbalances, which may be either nonfunctional (passenger mutations) or functional, but 
constitute secondary events reflecting clonal selection and/or progressive genomic 
instability, a hallmark of glioblastomas. Area specific-evolution of genomic imbalances in 
GBM may be comparable to the genetic evolution and genomic instability of metastatic 
pancreas cancer that has been studied in detail recently (Campbell et al., 2010; Yachida et al., 
2010). 
Loeper et al. (2001) reported that frequent mitotic errors occur in genetically micro-
heterogenous glioblastomas. The authors used fluorescent in situ hybridization (FISH) to 
study chromosome numbers in a series of 24 glioblastomas. All examined chromosomes 
showed mitotic instability indicated by numerical aberrations within significant amounts of 
tumor cells.  For chromosomes 10 and 17 only monosomy was observed, whereas 
chromosome 7 showed trisomy/polysomy. In contrast to other chromosomes displaying 
monosomy as well as trisomy, copy number changes of chromosomes 7, 10 and 17 seem to 
be the result of selection in favor of the respective aberration (Loeper et al., 2001). In this 
context it is interesting to note that neural stem and progenitor cells in the subventricular 
zone of mouse postnatal brain are frequently aneuploid (Kaushal et al., 2003) and that 
chromosome segregation defects contribute to aneuploidy in normal neural progenitor cells 
of the mouse cerebral cortex (Yang et al., 2003). Studies in mice and human demonstrate that 
chromosomal mosaicism is a prominent feature of neural stem cells, whereas 
interchromosomal translocations or partial chromosomal deletions or insertions are 
extremely rare (for review see: Peterson et al., 2008). Glioblastoma stem cells share several 
properties with neural stem cells, i.e. the growth in floating spheres under serum-free 
conditions, the expression of the stem cell marker nestin and the differentiation into neural 
cells like astrocytes or neurons. This similarity in marker expression and behaviour has led 
to the hypothesis that glioblastoma stem cells may be derived from NSCs (Berger et al., 2004; 
Sanai et al., 2005).  
Recent research makes clear that GBMs do not behave as a whole; local heterogeneity may 
arise because the tumor regionally adapts to the microenvironment. The influence of 
microenvironment-induced stimuli may be the force behind clonal selection and acquisition 
of area specific genomic imbalances in GBM. In addition, regional genomic alterations may 
be associated with the development of resistance to irradiation and/or chemotherapy, 
resulting in tumor recurrence and/or progression. 
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2.5 Mechanisms leading to genetic alterations in glioblastoma multiforme 
Analysis of copy number alterations showed an average of 7 amplifications and 6 
homozygous deletions per GBM. In addition, an average of 47 mutations was reported 
(Parsons et al., 2008). 
A characteristic feature of GBM is a chromosomal instability (CIN) phenotype distinguished 
by the loss or gain of complete chromosomes, for example by the gain of chromosome 7 
and/or loss of chromosome 10. These chromosome copy number changes can be explained 
by merotelic spindle attachment that is associated with bipolar but more often with 
multipolar mitosis. Multipolar spindle pole coalescence in cells with supernumerary 
centrosomes has been reported as a major source of chromosomal misattachment and 
chromosome missegregation in colorectal cancer cell lines (Silkworth et al., 2009). 
Obviously, specific chromosome aberrations may be associated with growth advantage for 
clonal populations of cancer cells (for example by the loss of tumor suppressor genes).  
In addition to its well-defined role in signal transduction at the plasma membrane, recent 
results have identified PTEN as a new guardian of the genome (for review see: Yin and 
Shen, 2008). Pten-deficient mouse embryo fibroblasts revealed an increased frequency of 
mitotic centromere-associated chromosomal instability as well as spontaneous DNA double-
strand  breaks (Shen et al., 2007). Li Li et al. (2008) developed a mouse model by infecting 
PTEN-/- neural precursor cells with an EGFRvIII expressing retrovirus and found that 
EGFRvIII expression and PTEN loss synergistically induced chromosomal instability and 
glial tumors. 
Interestingly, polyploidization of mammalian hepatocytes occurs through failed cytokinesis 
and is followed by a process that was called reductive mitoses (Duncan et al. 2010). The 
authors postulate a dynamic model of hepatocyte polyploidization, ploidy reversal and 
aneuploidy (ploidy conveyor) and propose that this mechanism evolved to generate genetic 
diversity and permits adaptation of hepatocytes to xenobiotic and nutritional injury.  
Several studies point to a link between centrosome amplification, chromosomal  instability 
and the development of cancer (for review see: D´Assoro et al., 2002). Cells in resected high 
grade gliomas and cultured glioblastoma cells have been reported to exhibit often 
centrosome amplifications (Loh et al., 2010) and the centrosomal protein ┛-tubulin is over-
expressed and shows altered subcellular localization in GBM (Katsetos et al., 2006; Loh et al., 
2010). Multipolar mitoses were occasionally observed in time lapse recordings of cultured 
glioblastoma cells (Hegedüs et al., 2000). Our laboratory used long term life cell imaging to 
study mitoses in a newly established glioblastoma cell line and found that cytokinesis 
defects followed by multipolar mitosis may be an important mechanism that is used by 
glioblastoma cells to reduce ploidy and generate viable daughter cells (our unpublished 
results). 

2.6 Epigenetics in glioblastoma multiforme 
To add another level of complexity, many types of cancer cells carry aberrant epigenetic 
modifications. Changes in epigenetic marks (caused or not caused by genetic alterations) 
may have an fundamental impact on tumor development and/or tumor progression. 
Epigenetic markers in human gliomas have been reviewed by Hesson et al. (2008). Two 
groups have studied in detail DNA methylation profiles in GBM (Etcheverry et al. 2010; 
Nousmehr et al., 2010).  Hypermethylation at a large number of genetic loci occurred in a 
subgroup (proneural group) of glioblastoma patients and was associated with improved 
outcome (Nousmehr et al., 2010).  
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Epigenetic mechanisms like methylation of DNA have already an impact on chemotheraypy 
of GBM. Temozolomide (TMZ, Temodal®) is an orally administered alkylating drug that is 
often used for chemotherapy of GBM. O6-Methylguanine-DNA methyltransferase (MGMT) 
is a DNA repair enzyme that specifically removes promutagenic alkyl DNA adducts from 
the O6 position of guanine residues in DNA which are induced by alkylating agents like 
temozolomide (Goth and Rajewsky, 1974; Margison and Kleihues, 1975). Loss of MGMT 
expression may be caused by transcriptional silencing through hypermethylation of its CpG 
islands (Esteller et al., 1999; Qian & Brent, 1997), is frequently (45% to 75%) present in 
glioblastomas (Bello et al., 2004; Kamiryo et al., 2004; Nakamura et al., 2001) and results in 
improved survival of glioblastoma patients treated with the alkylating agent temozolomide 
(Fukushima et al., 2009; Hegi et al, 2005; Hegi et al., 2008). On the other hand not all 
glioblastoma patients with MGMT promoter methylation respond to alkylating agents and 
in addition responding GBMs cannot avoid eventual recurrence (Fukushima et al., 2009; 
Hegi et al., 2008). MGMT promoter methylation appears to occur with a higher frequency in 
secondary than in primary glioblastoma (Bello et al., 2004; Nakamura et al., 2001) but there 
is no evidence about its correlation with other histopathologic subtypes.  
However, prospective randomized studies of EORTC (European Organisation for Research 
and Treatment of Cancer) and NCIC (National Cancer Institute of Canada) trial have 
revealed a significant prolongation of progression free and overall survival for patients with 
newly diagnosed glioblastoma treated by the concomitant and adjuvant temozolomide and 
irradiation. By this means median survival has been increased over one year (Stupp et al., 
2005, 2009).  
The methylation status of the MGMT gene promoter is being used as a biomarker for the 
potential benefit of the addition of temozolomide to the therapy because its epigenetic 
silencing has been identified as a strong and independent predictive factor of treatment 
response for anaplastic glioma patients undergoing chemotherapy with alkylating agents 
(Hegi et al., 2005; Wick et al., 2009). 3 to 5% of the GBM patients survive for more than 3 
years. MGMT hypermethylation was reported to be significantly more frequent in the long-
term survivor group (Krex et al., 2007).  
The assumption that DNA methylation of CpG island on the MGMT promoter represses 
consecutively transcriptional activity of the MGMT gene and expression of MGMT protein 
has been used to explain the correlation between the positive promoter methylation status 
and favorable treatment response after chemotherapy with temozolomide (Kaina et al., 
2007).  
However, studies that were performed to validate a relationship between MGMT promoter 
methylation and protein expression have yielded contradictory results in brain tumors as 
well as in other neoplasms (Brell et al., 2011). While some studies report a significant 
correlation between MGMT protein expression analyzed by immunohistochemistry (IHC) 
and MGMT promoter status measured by methylation-specific polymerase chain reaction 
(MSP) in glioblastoma and brain metastases of various origin (Ingold et al., 2009; Spiegl-
Kreinecker et al., 2009; Tang et al., 2011), other studies failed to detect correlations between 
both parameters (Brell et al., 2005, 2011; Christmann et al., 2010; Preusser et al., 2008).  
In addition, there is increasing evidence that MGMT mRNA expression, unlike MGMT protein 
expression, could be a better predictor for tumor sensitivity to alkylating agents than MGMT 
methylation status (Everhard et al., 2009; Kreth et al., 2011). Kreth et al. (2011) provide not only 
evidence that the degree of MGMT mRNA expression is highly correlated with the MGMT 
promoter methylation status, but also that low MGMT mRNA expression is strongly 
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predictive for prolonged time to progression, treatment response, and length of survival. 
Furthermore, the authors found that in case of discordance the patients with methylated 
tumors combined with high MGMT mRNA expression did significantly worse than those with 
low transcriptional activity or unmethylated tumors with low MGMT mRNA expression. 
Finally Kreth et al. (2011) assume  methylation-independent pathways of MGMT expression 
regulation; however, the exact role of DNA-methyltransferases DNMT1 and DNMT3b that are 
likely to be involved in methylation of CpG islands of MGMT gene promoter remains unclear. 
In the Cancer Genome Atlas Research Network (2008) study, GBMs from patients treated 
with temozolomide and/or lomustine were analysed for mutations. Treatment with 
alkylating agents resulted in a more than tenfold increase in the number of mutations that 
was dependent on the methylation status of the MGMT gene. This phenotype seems to be 
caused by mutations in the MSH6 gene (Cahill et al., 2007; Hunter et al., 2006; Yip et al., 
2009) and other genes of the DNA mismatch repair pathway (Cancer Genome Atlas 
Research Network, 2008). The loss of the mismatch repair protein MSH6 in GBM is 
associated with tumor progression during temozolomide treatment (Cahill et al., 2007; 
Hunter et al., 2006; Yip et al., 2009). 

2.7 Stem cells in glioblastoma multiforme 
The cancer stem cell concept that is of importance for the genesis of many types of cancer 
receives increasing credit also in the field of GBM. A minor population of GBM cancer stem 
cells, which may be derived from genetically altered neural stem cells, is presumed to 
generate transit amplifying cells with high mitotic activity. Because these stem cells appear 
to have a low mitotic activity, they are difficult to target by radiotherapy and conventional 
chemotherapy. 
For recent reviews on glioblastoma stem cells the reader is referred to Huang et al. (2010) 

and McLendon and Rich (2010). Ignatova et al. (2002) firstly described cells with stem-like 

properties in human cortical glial tumors. Singh et al. (2003) used the cell surface marker 

CD133 to isolate a clonogenic population of cells showing stem-like features in medullo-

blastomas and pilocytic astrocytomas. These cells were declared as tumor stem cells based 

on their capabilities of self-renewal and multilineage differentiation. Galli et al. (2004) and 

Yuan et al. (2004) confirmed these findings for glioblastomas. Bao et al. (2006a) selected 

CD133+ cells from glioblastoma biopsies that were capable of forming tumorspheres in 

vitro, demonstrated self-renewal and multilineage differentiation and resulted in tumours 

after transplantation into nude mice. In contrast, CD133- cells did not form tumorspheres in 

vitro und were not tumorigenic in nude mice. CD133+ cells proved to be a minor population 

of cells in GBM biopsies. Clinical studies suggested that the percentage of CD133+ cells 

(Zhang et al., 2008; Zeppernick et al., 2008) or the rate of tumorsphere formation in vitro 

(Laks et al., 2009; Panosyan et al., 2010) can be used to predict overall survival time of 

patients. However, it should be noted, that contrary results also exist (Phi et al., 2009; Kim et 

al., 2011). In recurrent glioblastomas the percentage of CD133+ cells is increased strongly 

when compared with primary glioblastomas (Pallini et al., 2010). Surprisingly, the increase 

in expression of CD133 after tumor recurrence was associated significantly with longer 

survival.  Thon et al. (2008) described a correlation between the amount of CD133+ cells 

within the tumor mass and the WHO grade of glioma (WHO grade II, III and IV). Bao et al. 

(2006a) demonstrated that CD133+ cells constitutively expressed DNA repair genes at much 

higher levels that CD133- cells, mediating resistance to X-irradiation in CD133+ cells.  
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Brain tumor stem cells seem to be localized in a perivascular niche (Bao et al., 2006b; 
Calabrese et al., 2007; Shen et al., 2008) and low oxygen tension (hypoxia) is associated with 
its undifferentiated state. In glioblastomas, cancer stem cells express much higher levels of 
VEGF than non-stem cancer cells and show increased angiogenic potential in vivo (Bao et 
al., 2006b; Li et al., 2009). Because VEGF expression is under control of transcription factors 
of the hypoxia inducible factor (HIF) family, one should note that expression of HIF2┙ is 
unique to glioma stem cells and correlated with poor patient survival, whereas HIF1┙ is 
found in all malignant cells (Li et al., 2009).  It has been reported that different human 
cancers (GBM, colorectal carcinoma, and NSCL carcinoma) converge at the HIF2┙ oncogenic 
axis (Franovic et al., 2009). The authors propose that inhibition of HIF2┙ may be of broad 
clinical interest in the treatment of cancers with different genetic signatures. Hjelmeland et 
al. (2010) published recently that acidic stress promotes a glioma stem cell phenotype by 
induction of HIF2┙ and other glioma stem cell markers. The authors suggest that an increase 
in intratumoral pH may be of benefit for targeting the stem cell phenotype.   
Three recent papers demonstrate that stem-like cells in GBM are able to differentiate into 
endothelial cells and may give rise to tumor endothelium (Ricci-Vitiani et al., 2010; Thon et 
al., 2008; Wang et al., 2010). These results define a novel mechanism for cancer 
vasculogenesis and may help to explain the failure of currently used inhibitors of 
angiogenesis. Glioma stem cells as targets for novel strategies of treatment have been 
recently reviewed (Dietrich et al., 2010; Gilbert & Ross, 2011). 

2.8 Promising targets for chemotherapy of glioblastoma multiforme 

GBMs are highly infiltrative tumors that show resistance to conventional chemotherapy. 
Many chemotherapeutic agents are not able to reach the tumor in sufficient doses, because 
the blood brain barrier is at least partially intact in these tumors. 
Most mitotic inhibitors used in clinic impair the function of mitotic spindles by targeting 
tubulins that are basic components of microtubules. Because microtubules in non-mitotic 
cells are also affected, these compounds often exhibit significant side effects (for example 
neurotoxicity). Future therapies of GBM may involve small molecules that inhibit the 
activity of aurora kinases A or B, polo kinases or the mitotic kinesin Eg5, all proteins that 
have specific functions in different phases of mitosis (for review see: Kaestner and Bastians, 
2010; Sudakin and Yen, 2007). Pharmaceutical companies are on the way to develop 
selective inhibitors that target these proteins. Phase I and II studies on different forms of 
solid cancers are currently underway to study newly developed mitosis inhibitors and may 
also open the way for a more efficient therapy of GBM. Interestingly, it has been reported 
that in glioblastoma expression of aurora kinases A (Barton et al., 2010) and B (Zeng et al., 
2007) were both associated with poor prognosis and may be targets for therapy. Among 
several other proteins also histone deacetylases (HDACs) may be promising targets for 
future therapy of GBM (Argyriou and Kalofonos, 2009). ABC transporters play an important 
role in the development of multidrug resistance. The role of ABC transporters in the 
resistance network of glioblastoma was reviewed by Bleau et al. (2009). 
The humanized monoclonal antibody against vascular endothelial growth factor 
(Bevacizumab, Avastin®) has been approved by the FDA for treatment of GBM. Although 
targeting the tumor vasculature with Bevacizumab reduced the number of cancer-like stem 
cells in orthotopic brain tumor xenografts (Calabrese et al., 2007), a recent phase II study 
indicates that bevacizumab does not affect median survival of patients with recurrent GBM 
(Pope et al, 2011). 
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Potential targets for directed therapy of GBM may include extracellular matrix proteins of 
the perivascular niche that influence proliferation and/or migration of cancer stem cells. 
Targeting integrin ┙6 has recently been shown to inhibit self-renewal, proliferation, and 
tumor formation capacity of glioblastoma stem cells (Lathia et al., 2010). Cilengitide 
(Impetreve®) is a cyclic pentapeptide harboring a RGD sequence. RGD sequences present 
on extracellular matrix proteins mediate the binding to integrins, a class of cell surface 
receptors. Cilengitide is a selective inhibitor of ┙ν┚3/5 integrins and currently under study 
as an inhibitor of angiogenesis in several types of solid cancer. Cilengitide monotherapy was 
well tolerated and exhibited modest antitumor activity among patients with recurrent GBM 
in a randomized phase II study (Reardon et al., 2008). Also targeting glioma stem cells 
through the neural cell adhesion molecule L1CAM has been reported to suppress glioma 
growth (Bao et al., 2008). Glioblastoma cells display complex surface structures with 
numerous microvilli and filopodia that resist the actions of cytolytic effector lymphocytes 
(Hoa et al., 2010). It should also be noted that gliomas are accompanied by numerous 
microglia/macrophages. As was recently reported, inhibition of microglia/macrophage 
activation may represent a new and effective strategy to suppress proliferation of glioma 
cells (Zhai et al., 2011). 
Subtypes of breast cancer or leukemia can be efficiently treated by inhibiting the one 
excessively activated signal transduction pathway that is linked to malignancy. For GBM a 
monocausal therapy by inhibition of a single overactivated signaling pathway seems to be 
less promising, because cells or even regions with different genetic defects coexist in one 
tumor. A personalized therapy based on analysis of the individual genetic defects is not yet 
in sight for GBM. 

3. Summary and perspective 

Many types of cancer cells evolve through a multistep process in which genetic aberrations 
accumulate and finally lead to cells exhibiting aberrant gene expression programs. GBM has 
been considered as a system/network disease (Fathallah-Shaykh, 2010), because its 
phenotypes appear to be generated by several interconnected aberrant signal transduction 
pathways as well as numerous molecular abnormalities, thereby resulting in uncontrolled 
mitosis and migration of GBM cancer cells. In GBM local heterogeneity arises as the tumor 
regionally adapts to microenvironmental cues. Future molecular therapies of GBM should 
target its Achilles' heels: the elimination of the small intratumoral subpopulation of cells that 
exert stem cell properties and the inhibition of mitosis within the population of transit 
amplifying cells, which is responsible for forming the tumor mass. 
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