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1. Introduction 

The screen-printed silver (Ag) thick-film is the most widely used front side contact in 

industrial crystalline silicon solar cells. The front contacts have the roles of efficiently 

contacting with the silicon (Si) and transporting the photogenerated current without 

adversely affecting the cell properties and without damaging the p-n junction. Although it is 

rapid, has low cost and is simplicity, high quality screen-printed silver contact is not easy to 

make due to the complicated composition in the silver paste. Commercially available silver 

pastes generally consist of silver powders, lead-glass frit powders and an organic vehicle 

system. The organic constituents of the silver paste are burned out at temperatures below 

500°C. Ag particles, which are ~70-85wt% and can be different in shape and size 

distribution, show good conductivity and minor corrosive characteristics. The concentration 

of glass frit is usually less than 5wt %; however, the glass frit in the silver paste plays a 

critical role for achieving good quality contacts to high-doping emitters. The optimization of 

the glass frit constitution can help achieve adequate photovoltaic properties.  

The melting characteristics of the glass frit and also of the dissolved silver have significant 

influence on contact resistance and fill factors (FFs). Glass frit advances sintering of the 

silver particles, wets and merges the antireflection coating. Moreover, glass frit forms a glass 

layer between Si and Ag-bulk, and can further react with Si-bulk and forms pin-holes on the 

Si surface upon high temperature firing. 

This chapter first describes the Ag-bulk/Si contact structures of the crystalline silicon solar 

cells. Then, the influences of the Ag-contacts/Si-substrate on performance of the resulted 

solar cells are investigated. The objective of this chapter was to improve the understanding 

of front side contact formation by analyzing the Ag-bulk/Si contact structures resulting 

from different degrees of firing. The observed microscopic contact structure and the 

resulting solar-cell performance are combined to clarify the mechanism behind the high-

temperature contact formation. Samples were fired either at a optimal temperature of 

~780°C or at a temperature of over-fired for silver paste to study the effect of firing 

temperature. The melting characteristics of the glass frit determine the firing condition 

suitable for low contact resistance and high fill factors. In addition, it was found the post 

forming gas annealing can help overfired solar cells recover their FF. The results show that 

after 400°C post forming gas annealing for 25min, the over-fired cells improve their FF. On 

the other hand, both of the optimally-fired and the under-fired cells did not show similar 
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effects. The FF remains the same or even worse after post annealing. Upon overfiring, more 

silver dissolve in the molten glassy phase than that of optimally fired; however, some of the 

supersaturated silver in the glass was unable to recrystallize because of the rapid cooling 

process. The post annealing helps the supersaturated silver precipitate in the glass phase or 

on silicon surface. This helps in recovering high FF and low contact resistance. An increase 

in the size and number of silver crystallites at the interface and in the glass phase can 

improve the current transportation.  

2. Overview of Ag contacts on crystalline Si solar cells 

2.1 Silver paste 
Currently, screen printing a silver paste followed by sintering is used for the deposition of 

the front contacts on almost all industrial crystalline silicon solar cells. Metallization with a 

silver paste is reliable and particularly fast. The silver paste have to meet several 

requirements: opening the dielectric antireflection layer and forming a contact with good 

mechanical adhesion and low contact resistance. For most crystalline silicon solar cells, SiNx 

is used as an antireflection coating. The surface must be easily wetted by the paste. Figure 1 

shows a typical front-electrode configuration of a commercial crystalline silicon solar cell. 

The electrode-pattern consists of several grid fingers that collect current from the 

neighboring regions and then collected into a bus bar. The bus bar has to be able to be 

soldered.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. A typical front-electrode configuration of a commercial crystalline silicon solar cell. 

The contact performance is influenced by the paste content, the rheology and the wetting 
behavior.  
Commercially available silver pastes generally consist of silver powders, lead-glass frit 

powders and an organic vehicle system. The glass frit is used to open the antireflection 

coating and provide the mechanical adhesion. The glass frit also promotes contact 

formation. The organic vehicle system primarily includes polymer binder and solvent with 

small molecular weight. Other additives like rheological material are also included in the 

paste for better printing. The paste system must have a fine line capability. This requires a 

well-balanced thixotropy and low flow properties during printing, drying and firing. In 

addition, the paste should have wide range for firing process window. 
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2.2 Screen printing and firing 
Screen printing and the subsequent firing process are the dominant metallization techniques 
for the industrial production of crystalline silicon solar cells. The front contact of the cell is 
designed to offer minimum series resistance, while minimizing optical shadowing. The high 
current density of the cell can be achieved by the low shadowing loss due to the high aspect 
ratio of the front grid. However, a compromise between the shadowing loss and the 
resistive loss due to the front grid is needed. The finger-pattern with the bus bar typically 
covers between 6-10% of the cell surface. To achieve good performance contact, the printing 
parameters should be selected based on criteria directly related to the silver paste. All 
parameters such as the screen off-contact distance, squeegee speed and shore hardness of 
the squeegee rubber must be optimized and matched according to the requirements. 
The industrial requirements for technical screen printing regarding excellent print 
performance, long screen life and higher process yields have increased significantly over 
recent years. The high mesh count stainless steel mesh is well suited for fine line, high 
volume printing. The screen should have good tension consistency and suitable flexibility 
required for the constant deformation associated with off-contact printing. Besides, the 
combinations of mesh count and thread diameter should be capable of printing the grid 
thickness electrode requires. 
The fast firing techniques are usually applied for electrode formation. During the firing step, 
the contact is formed within a few seconds at peak temperature around 800°C. A typical 
firing profile of a commercial crystalline silicon solar cell is shown in Figure 2. The optimal 
firing profile should feature low series resistance and high fill factor (FF). A high series 
resistance of a solar cell usually degrades the output power by decreasing the fill factor. The 
total series resistance is the sum of the rear metal contact resistance, the emitter sheet 
resistance, the substrate resistance, the front contact resistance, and the grid resistance.  
 

 

Fig. 2. A typical firing profile of a commercial crystalline silicon solar cell. 

2.3 Contact mechanisms 
A good front-contact of the crystalline silicon solar cell requires Ag-electrode to interact with 
a very shallow emitter-layer of Si. An overview of the theory of the solar cell contact 
resistance has been reported (Schroder & Meier, 1984). Despite the success of the screen 
printing and the subsequent firing process, many aspects of the physics of the front-contact 
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formation are not fully clear. The major reason is probably because the metal-silicon 
interface for screen printed fingers is non-uniform in structure and composition. The Ag 
particles can interact with the Si surface in a few seconds at temperatures that are 
considerably lower than the eutectic point.  
Many mechanisms have been proposed to explain how contact formation is though to occur. 
The general understanding of the mechanisms agree that the glass frit play a critical role on 
front-contact formation. Silver and silicon are dissolved in the glass frit upon firing. When 
cooled, Ag particles recrystallized (Weber 2002, Schubert et al. 2004). It has been suggested 
that Ag crystallites serve as current pickup points and that conduction from the Ag 
crystallites to the bulk of the Ag grid takes place via tunneling (Ballif et al., 2003). The effect 
of glass frit and Ag particles on the electrical characteristics of the cell was also reported 
(Hoornstra et al. 2005, Hillali et al. 2005, Hillali et al. 2006). It was further suggested that lead 
oxide gets reduced by the silicon. The generated lead then alloys with the silver and silver 
contact crystallites are formed from the liquid Ag-Pb phase (Schubert et al. 2004, Schubert et 
al. 2006). Due to the complicate and non-uniform features of the contact interface, more 
evidence and further microstructure investigation is still needed. The objective of this 
chapter was to improve the understanding of front side contact formation by analyzing the 
Ag-bulk/Si contact structures resulting from different degrees of firing. The influences of 
the Ag-contacts/Si-substrate on performance of the resulted solar cells are also investigated. 

3. Structural properties of Ag-contacts/Si-substrate  

3.1 Sample preparation 
This study is based on industrial single-crystalline silicon solar cells with a SiNx 
antireflection coating, screen-printed silver thick-film front contacts and a screen-printed 
aluminum back-surface-field (BSF). The contact pattern was screen printed using 
commercial silver paste on top of the SiNx antireflective-coating (ARC) and fired rapidly in a 
belt furnace. The exact silver paste compositions are not disclosed by the paste 
manufacturers. The glass frit contents are estimated from the results found in this work. The 
boron-doped p-type 0.5-2Ωcm, 200-230μm thick (100) CZ single-crystalline Si wafers were 
used for all the experiments. Si wafers were first chemically cleaned and surface texturized 
and then followed by POCl3 diffusion to form the n+ emitters. The resulted pyramid-shaped 
silicon surface is sharp and smooth, as shown in Figure 3. After phosphorus glass removal, a 
single layer plasma-enhanced chemical vapor deposition (PECVD) SiNx antireflection 
coating was deposited on the emitters. Then, both the screen-printed Ag and the Al contacts 
were cofired in a lamp-heated belt IR furnace.  
In this work, cells were fired either at a optimal temperature of ~780°C or at a temperature 
of over-fired for silver paste to study the effect of firing temperature. Some cells were 
further post annealed in forming gas (N2:H2=85:15) at 400°C for 25min. The forming gas 
anneal improve the fill factor (FF) for some over-fired cells.  
Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) was 
used to study the microstructures and features at contact interface. Microstructural 
characterization of the contact interface was performed using a JEM-2100F transmission 
electron microscope (TEM) operated at 200kV. Cross-sectional TEM sample foils were 
prepared by mechanically thinning followed by focused-ion-beam (FIB) microsampling to 
electron transparency. Current-voltage (I-V) measurements were taken under a WACOM 
solar simulator using AM1.5 spectrum. The cells were kept at 25°C while testing. 
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Fig. 3. SEM image of a pyramid-textured silicon surface structure 

3.2 Interface microstructure 
The microstructural properties of the screen-printed Ag-bulk/Si contacts were examined by 
TEM (Lin et al., 2008). TEM results confirmed that the glassy-phase plays an important role 
in contact properties. The typical Ag-bulk/Si microstructure, which includes localized large 
glassy-phase region, is shown in Figure 4(a). The area where Ag-bulk directly contact with 
Si through SEM observation is actually with a very thin glass layer (<5nm) in between as 
shown in Figure 4(b). This possibly can be attributed to shape-effect of Ag particles and to 
the existence of the glassy-phase. Ag particles do not sinter into a very compact structure 
and a porous Ag-bulk is formed, resulting in a complex contact structure. In this study, it 
was found that in optimal fired contacts, there are at least three different microstructures, 
illustrated in Figure 5(a)-(c) (Lin et al., 2008). The combination effects of glassy-phase and 
the dissolved metal atoms have a crucial influence on Ag-bulk/Si-emitter structures, and 
consequently, the current transport across the interface is affected.  
 

 

Fig. 4. (a) TEM bright field cross-sectional image of the the Ag-bulk/Si contact structure 
with localized large glassy-phase region. (b) HRTEM of the Ag-bulk/Si interface. There is a 
very thin glass layer between Si and Ag-bulk. 
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Figure 6 shows a high-resolution TEM (HRTEM) contrast of the Ag embryos on Si-bulk. This 
results in Ag-bulk/thin-glass-layer/Si contact structure which is schematic drawing in 
Figure 5(a). It is suggested that Ag-bulk/thin-glass-layer/Si contact structure shown in 
Figure 5(a) is the most decisive path for current transportation (Lin et al., 2008). 

 
                                        (a)                                             (b)                      (c) 

Fig. 5. Schematic drawing of the three major microstructures present in optimal fired Ag-
bulk/Si contacts: (a) Ag-bulk/thin-glass-layer/Si; (b) Ag-bulk/thick-glass-layer/Si; and (c) 
Ag-bulk/glass-layer/ARC/Si contact structure. 

 

 

Fig. 6. HRTEM contrast of the Ag embryos on Si-bulk. This results in Ag-bulk/thin-glass-
layer/Si contact structure. 
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The schematic Ag-bulk/thick-glass-layer/Si contact structure shown in Figure 5(b) may 
arise if there are large glass-frit clusters and/or large voids at the interface plane prior to 
high temperature treatment. Upon firing, the glass frits soften and flow all around. The flow 
behavior of the molten glassy-phase, to a degree, is associated with capillary attraction force 
caused by the tiny spacing between Ag particles, and it also depends on their wetting ability 
to the antireflection layer. Large and thick glassy-phase region is very likely due to the 
agglomeration of the molten glass frit at high temperature, and is responsible for a 
significant variation in glass-layer thickness.  
Another interesting feature shown in Fig. 4(a) is the curve-shaped glassy-phase/Si 
boundary, which suggests the occurrence of mild etching of Si-bulk by the Ag-
supersaturated glassy-phase. Penetration of native SiOx and SiNx ARC is essential for 
making good electrical contact with the Si emitter, thus achieving a low contact resistance. 
However, this must be achieved without etching all the way through the p-n junction and 
results in shorting the cell. It is found that a smooth curve-shaped Si surface is a 
distinguishable phenomenon for samples fired optimally (Lin et al., 2008). Underfired 
samples usually have sharp and straight interface under <110> beam direction, while rough 
Si surface is usually observed for overfired samples. 
Even for optimally fired samples, the residual antireflection coating can be observed at some 
locations, especially in the valley area of the pyramid-shaped textured structure as shown in 
Figure 7. Amorphous antireflection layer is thus in between the glassy-phase and Si-bulk. 
This lead to an Ag-bulk/glass-layer/ARC/Si contact structure as illustrated in Figure 5(c). 
Here, ARC (~100nm thick prior to firing) includes native SiOx layer and SiNx ARC. To some 
extent, the residual SiNx under the contacts help to reduce surface recombination. 
Microstructures studies revealed that there is more residual ARC in underfired samples  
 

 

Fig. 7. TEM bright field cross-sectional image. Even for optimally fired samples, the residual 
antireflection coating can be observed at some locations, especially in the valley area of the 
pyramid-shaped textured structure. This leads to an Ag-bulk/glass-layer/ARC/Si contact 
structure. 
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than in optimally fired samples. In addition, no Ag embryo was found on Si-bulk because 
the residual ARC helps inhibit Ag diffusion onto Si substrate. 
It is still not clear how does glassy-phase, which is a molten phase of the glass frit, etch or 
interact with the SiNx ARC? It was reported that the SiNx ARC can be opened during the 
firing step by a reaction between the PbO (glass) and SiNx (Horteis et al., 2010). In the 
reaction, lead oxide (PbO) was reduced to lead. By tracing Pb content, this work shows that 
Pb precipitates usually appear in the area where SiNx ARC can be found. That is, lead 
embedded in the glassy-phase with an Ag-bulk/glass-layer/ARC/Si contact structure as 
illustrated in Figure 5(c). The Pb concentration in glassy-phase, which originates from lead 
silicate glass frit, is much higher than that in ARC. Therefore, Pb can serve as a good tracer 
to distinguish glassy-phase-area from ARC using energy dispersive spectroscopy (EDS). 
Figure 8 shows Pb precipitates in the glassy phase. The inset in Figure 8 is an energy 
dispersive spectroscopy (EDS) mapping. This work suggests that during the firing process, 
the amorphous SiNx ARC was incorporated into the already-existing glass phase. It is like 
two loose glassy-phase merge to each other upon firing. It is shown in this work that the 
SiNx ARC in more dense structure, ex. deposited at 850°C through low-pressure CVD 
(LPCVD), is difficult to merge in the lead silicate glass phase.  
 

 

Fig. 8. TEM bright field image shows Pb precipitates in the glassy phase. The inset is the 
energy dispersive spectroscopy (EDS) mapping. 

3.3 Crystallite-free zone in glassy phase 
Commercially available Ag pastes consist of Ag powders, lead-glass frit powders and an 
organic vehicle system. It was found that the glass frit plays a very important role during 
contact formation. Upon firing, the glass frits soften and flow all around. Furthermore, the 
melted lead silicate glass dissolves the Ag particles. The melted glass also merges the 
amorphous silicon nitride layer. Upon further heating, the melted glass etches into the 
silicon bulk underneath and results in non-smooth silicon surface. 
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TEM micrographs in Figure 9(a) and (c) show the precipitates in the large solidified glassy-

phase region which is enclosed with Si and Ag-bulk (Lin et al., 2008). The selected area 

diffraction (SAD) pattern (Figure 9(d)) reveals that only Ag precipitates exist. As shown in 

Figure 9(a) and its schematic drawing in Figure 9(b), the dissolved Ag atoms near Si-bulk 

tend to nucleate on the Si surface and lead to an Ag-crystallite-free zone in close vicinity of 

the Si surface. Also, an Ag-crystallite-free zone near the bulk-Ag can be found. Few or 

virtually no Ag microcrystallites were found in the Ag-crystallite-free zone. This indicates 

that the observed Ag microcrystallites are not un-melted Ag particles which were trapped or 

suspended in the glassy region; instead, they are precipitates from Ag supersaturation 

molten glassy-phase. 

 

 
 

 

Fig. 9. (a) TEM bright field image. The large glassy-phase enclosed with Si and Ag-bulk.  
(b) Ag precipitates in the large solidified glassy-phase region. (c) Schematic drawing of 
image in (b). (d) Selected-area-diffraction pattern of the glassy-phase region shown in (b). 
Only Ag crystallites exist. 

The occurrence of the observed Ag-crystallite-free zone can be accounted for by the 
diffusion-dependent nucleation mechanism (Porter and Easterling, 1981) as illustrated in 
Figure 10 (Lin et al., 2008). Upon heating, the dispersed lead silicate glass frits soften into 
molten phase, in the mean time. They further merged and surrounded the Ag particles due 
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to capillary attraction force. Some Ag atoms then dissolved in the molten glassy-phase. The 
observed Ag precipitates confirm the dissolution of Ag because a critical Ag supersaturation 
must be exceeded for nucleation to occur. Higher temperature increases the Ag dissolution 
in the glassy-phase. In the mean time, the majority un-dissolved Ag particles, which are in 
contact with one another, sinter or coalesce to achieve Ag-bulk via interdiffusion of Ag 
atoms. The molten glassy-phase can further merge (or etch) the amorphous antireflection 
coating and, therefore, is in direct contact with the Si-bulk. The formation of Ag-crystallite-
free zone is attributed to the nucleation and growth of Ag crystallites on Si-bulk. Upon 
cooling, the dissolved Ag was drained from the surrounding area to Si surface and an Ag-
crystallite-free zone results. The width of the Ag-crystallite-free zone is affected by the 
cooling rate. High cooling rate will produce narrow Ag-crystallite-free zone. This helps in 
tunneling-assisted carrier transportation. A narrow (width < 20nm) Ag-crystallite-free zone 
was observed in a large glassy-phase region for optimally fired samples. 
It can be found that Ag precipitates in glassy-phase tend to coarsen into larger crystallites 
with smaller total interfacial area. Also, wide Ag-crystallite-free zones, which surround the 
large Ag precipitate, were observed. However, the combination effects of low Ag-precipitate 
density and wide Ag-crystallite-free zone are not favor for current transportation. It, 
therefore, suggests that long stay in high temperature as well as low cooling rate is of 
particular concern in the design of firing profile. 

 
Fig. 10. (a) Schematic cross-section drawing of the Ag-embryo on Si-bulk. (b) Schematic 
drawing of the dissolved Ag-concentration profile near an Ag embryo. 

4. Impacts of contact structure on performance of solar cell 

4.1 A possible mechanism for carrier transportation 
The current transport across screen-printed front-side contact of crystalline Si solar cells should 
be strongly affected by the contact microstructures. This study shows that the area where Ag-
bulk directly contact Si, through SEM observation, is actually with a very thin glass layer in 
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between. In addition, high-density Ag-embryo was found on Si-bulk for samples fired 
optimally. In Figure 11, Ag embryos with sizes less than 5 nm in diameter nucleate epitaxially 
on the Si surface. The Ag-embryo density is more than 2×1016cm-2, which was counted via 

TEM. This results in Ag-bulk/thin-glass-layer/Si contact structure. The lack of Ag-bulk/Si 
direct contact for optimally fired samples leads to a reasonable assumption that Ag-bulk/thin-
glass-layer/Si contact structure is the most decisive path for current transporting across the 
interface. The glass layer between Ag-embryos and Ag-bulk for samples fired optimally is too 
thin (<5nm) to be an effective barrier to electron transfers, which can occur by tunneling. 
 

 

Fig. 11. Cross-sectional HRTEM of the Ag embryos on Si-bulk. This results in Ag-bulk/thin-
glass-layer/Si contact structure. 

The schematics of a possible conductance mechanisms across the Ag-bulk/thin-glass-
layer/Si contact structure is shown in Figure 12. Current transport between Si substrate and 
front contact is enabled by separated silver crystallites. Since the curved regions of the tiny-
pricipitate/glass-phase interface have higher field intensity due to the small radius of 
curvature; therefore, the breakdown voltage is less (Sze S.M., 1981). Besides the curved-
interface effect mentioned above, the metal-supersaturated glassy-phase has better 
conductivity. The embedded metal precipitates in glassy-phase, as shown in Figure 9, can 
retain the charge and form the interfacial charge storage centers. In addition, the embedded 
Ag precipitates can be charged and discharged by quantum-mechanical tunneling of 
electrons. Moreover, the dissolved Ag can substantially increase the trap density at the 
interface, thereby allowing shorter times for the transportation. Thus, current can transport 
through the thick glassy-phase not only by multi-tunneling steps between Ag precipitates, 
but also by thermally excited electrons hopping from one isolated precipitate to the next. In 
the case of a current transport by multi-tunneling steps between microscopic Ag 
precipitates, high Ag-precipitate density in the glassy-phase could help to decrease the 
specific contact resistance of samples (Gzowski et al. 1982, Ballif et al. 2003).  
Many of the ideas that were discussed with regard to Ag-particles/thick-glass-layer/Si 
microstructure can be carried over to Ag-particles/thin-glass-layer/Si (Figure 5(a)). Only 
the thick glassy-phase is replaced by an ultrathin glass layer, and this has important 
consequences for the current conduction across the interface. It was reported (Rollert et al., 
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1987) that if the Ag-bulk is in direct contact with the Si and if there was no glass layer in 
between, the Ag would diffuse at least 5μm deep during the firing cycle and it would shunt 
the p-n junction. The high-density Ag-embryo on Si found in this study originates from the 
dissolved Ag in glassy phase, which is in direct contact with Si-bulk. This should play an 
important role in current transport across the interface. This could be supported by the 
observation of less Ag-embryo on Si was found for underfired samples, which result in 
poorer FF of the cell compared to those of optimally fired samples. In the case of underfired 
samples, the dissolution of Ag is much less; it therefore reduces the supersaturation of Ag. 
Thus, few Ag precipitates were detected on Si. 

 

Fig. 12. (a) Schematic cross-section drawing of the Ag-embryo on Si-bulk. (b) Schematic 
energy-band drawing of a possible conductance mechanisms across Ag-bulk/thin-glass-
layer/Si contact structure. 

As shown in Figure 12, Ag-embryo on Si could serve as current pickup points and that 
conduction from the Ag-embryo to Ag-bulk takes place via tunneling through the ultrathin 
glass layer in between. An increase in the width and the number of Ag precipitates on Si 
may improve the probability of the encounter of thin glass regions where tunneling can take 
place. Also, due to tunneling-assisted carrier transport, the fraction of thin glass regions at 
Ag-bulk/Si interface is critical in reducing the macroscopic contact resistance. Thus, the 
abilities to generate high-density Ag-embryos on Si-bulk and to keep the glass layer thin are 
crucial in achieving good electrical contact. 
It was reported (Card & Rhoderick 1971, Kumar & Dahlke 1977) that if the insulator layer is 
sufficiently thick, the tunneling probability through the insulator layer is negligible. 
Alternatively, if the insulator layer is very thin (< 5nm), little impediment is provided to 
carrier transport. This study confirms that the spacing between Ag-embryos and Ag-bulk can 
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be less than 5nm. In addition, the dissolved Ag could improve the electrical conductivity of the 
glass layer. It, therefore, suggest that carriers through the ultrathin glass layer are the most 
decisive path for current transportation. A possible mechanism for carriers passing through 
the thin glass layer is illustrated by considering electron tunnel, as shown in Figure 12.  
The interface microstructure analysis of the screen-printed front-side contact shown in this 
work is based on industrial-type rapid firing-profile, which results in good contact quality. 
Although Ag-paste composition and characteristics can be different between manufacturers, 
the results and trends shown in this work have high degree similarity to other screen-printed 
crystalline Si solar cells using different types of Ag-paste. Further understanding of the effects 
of the paste constituents and firing conditions on the contact interface can lead to the 
development of better, more reproducible, and higher performance contacts in the future. 

4.2 Effects on fill factor 
The fill factor, FF, is a measure of the squareness of the I-V characteristic. The fill factor is 
given: FF=(VmaxImax)/(VocIsc), where Voc is the open-circuit voltage and Isc is the short-circuit 
current. Vmax and Imax are voltage and current at maximum power point (Pmax) respectively. 
The graphical interpretation of Pmax is the area of the largest rectangle below the I-V curve. 
In practice, FF is less than one because series and parallel resistances will always result in a 
FF decrease. A good value for industrial silicon solar cells is ~76-78%. 
It was found that the glass frit plays an important role during contact formation. During 
firing procedures, the glass frits firstly get fluid, wet and merge the SiNx dielectric layer. It 
was then etching into silicon substrate. It was known that defects and impurities tend to 
move to surface upon high temperature treatments to release their high thermodynamic 
energies. Therefore, the etching degree of silicon by the glass fluid, to some extent, affects 
the quality of the contacts. On cooling down, silver precipitates, which serve as a transport 
medium, recrystallize on silicon surface as well as in the glassy phase. This chapter shows 
that silver precipitates during cooling and the etching degree of silicon during firing are 
important for achieving good quality contacts. 
On cooling down from high temperature firing, the over-saturated silver tends to precipitate. 
Figure 13(a) shows a SEM microstructure image of optimally fired sample. Besides 
precipitating in the glassy phase, high density Ag recrystallizes appear on the silicon substrate. 
The area where silver directly contacts to Si through SEM observation is actually with a very 
thin glass layer in between. The dissolved Ag atoms near Si-bulk tend to nucleate on the Si 
surface. Ag-embryo on Si can serve as current pickup points and that conduction from the Ag-
embryo to Ag-bulk takes place via tunneling through the ultrathin glass layer in between. 
Thus, the abilities to generate high density Ag embryos on Si-bulk and to keep the glass layer 
thin are crucial in achieving good electrical contact. The observed Ag precipitates confirms the 
dissolution of Ag because a critical Ag supersaturation must be exceeded for nucleation to 
occur. In the case of underfiring, the less dissolved Ag reducing the supersaturation, and 
therefore, fewer Ag precipitates grow on Si during cooling as shown in Figure 13(b). 
Penetration of native SiOx and SiNx antireflective coating is essential for making good 
electrical contact to the Si emitter, thus achieving a low contact resistance. However, this 
must be achieved without etching all the way through the p-n junction and results in 
shorting the cell. It is found that a smooth curve-shaped Si surface is a distinguishable 
phenomenon for samples fired optimally. Underfired samples usually have sharp and 
straight interface, while rough Si surface is usually observed for overfired samples. As 
shown in Figure 14(a) and (b), overfiring results in rough Si surface. Rough Si surface  
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Fig. 13. (a) SEM cross-sectional image of the optimally fired sample. Besides precipitating in 
the glassy phase, high density Ag recrystallizes on the <111> planes of the pyramid Si. (b) 
SEM cross-sectional image of the underfired sample. Fewer Ag precipitates grow on Si. 

 

Fig. 14. (a) SEM cross-sectional image of the overfired sample. More bulk Si, especially in the 
area near the tip of the pyramid, was etched during firing. (b) TEM bright field cross-
sectional image of the overfired sample. 

increase the possibility of undesired surface recombination. Furthermore, as shown in 
Figure 14(a), more bulk Si, especially in the area near the tip of the pyramid, was etched 
during firing. The overetching of Si may result in locally shunt of the cell. 
In general, the relation between the current density through the contact and the potential 
across it is non-linear for metal-semiconductor contacts (Schroder and Meier, 1984). The metal-
silicon interface for screen printed fingers is known to be non-uniform in structure and 
composition. It is found the melting characteristics of the glass frit and its ability to dissolved 
Ag have significant influence on contact resistance and fill factors (FF). Glass frit advances 
sintering of the Ag particles, wets and merges the antireflection coating. Moreover, glass frit 
forms a glass layer between Si and Ag-bulk, and can further react with Si-bulk and forms pin-
holes on the Si surface upon high temperature firing. Typical firing temperatures of a 
commercial solar cell were between 750C and 800C, where the optimum balance between the 
Ag-crystallite density and the distribution of the glass layer should be found. 
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For optimum solar cell efficiency, the current-voltage curve must be as rectangular as 
possible. The new paste design should increase the fill factor of the solar cell without 
hurting the short-circuit current density. The current-voltage (I-V) characteristic of an ideal 
silicon solar cell is plotted in Figure 15 denoted as curve-1. In Figure 15, Curve-2 shows the 
effect of shunt resistance on the current-voltage characteristic of a solar cell (series resistance 
Rs=0). The shunt resistance, Rsh, has little effect on the short-circuit current, but reduces the 
open-circuit voltage. Curce-3 shows the effect of series resistance on the current-voltage 
characteristic of a solar cell (Rsh∞). Conversely, the series resistance, Rs, has no effect on 
the open-circuit current, but reduces the short-circuit current.  Sources of series resistance 
include the metal contacts. The extreme current-voltage characteristic, ex. Curve-2 or Curve-
3 shown in Figure 15, is not difficult to explain. However, the original sources for I-V curve 
denoted as Curve-4 in Figure 15 remain unclear. It is not unusually to have I-V feature  
 

similar to that of Curve-4. The difference between the curve-1 and curve-4 (the rounded 
corner of the I-V curve) is probably due to the non-uniform contact resistance of the front 
contact. Although it is known that the curve can be rounded by series resistance, in practice 
curve shapes are often found that cannot be explained by the single series resistance.   
  

 

Fig. 15. Current-voltage (I-V) characteristic of a silicon solar cell. The I-V curve for an ideal 
cell is denoted as curve-1. 

The front-contact interface for screen printed fingers is non-uniform in structure and 
composition. The complicate interface-structure influences the series resistance and the fill 
factor of the cell. From the view of contact-formation mechanism described in this chapter, 
the melting characteristics of the glass frit determine whether the paste together with the 
firing condition is suitable for low contact resistance and high fill factors.  
It was found the post forming gas annealing can help overfired solar cells recover their F.F. The 
results show that after 400°C post forming gas annealing for 25min, the overfired cells improve 
their FF. On the other hand, both of the optimally-fired and the under-fired cells did not show 
similar effects. The FF remains the same or even worse after conducting post-annealing.  
The mechanism of FF recovers for overfired cells after post forming-gas annealing was 
further investigated. It was found that the supersaturated silver in the glassy-phase plays a 
very important role for FF recover. More Ag can dissolve in the molten glassy phase for 
overfired samples than that of optimally fired counterparts. Either higher temperature or 
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longer heating time increases the Ag dissolution in the glassy-phase. Some of the 
supersaturated silver in the glass for overfired cells was unable to recrystallize because of 
the rapid cooling process. The post-annealing helps the supersaturated silver further 
precipitate in the glassy-phase or move to already exist Ag crystallites. The number of small 
precipitates is increased and the conductivity of the insulating glass is improved. Post-
annealing the overfired cells thus results in recovering high FF and low contact resistance. 
An increase in the size and number of silver crystallites at the interface and in the glass 
phase can improve the current transportation. 
Post-annealing of overfired cells helps the supersaturated Ag precipitate. It also coalesce the 
pre-formed Ag crystallites. More Ag embryos were generated and grew to larger size, which 
decreased the contact resistance, and enhanced the F.F. As shown in Table 1, the forming-
gas anneal reduces the contact resistance, and thus, it improves the FF for the overfired cells.  
In Table 1, the post-annealing increases the FF by 1.5~9%. However, it should be mentioned 
that the cells cannot be overfired too much. It must be avoided to etch all the way through 
the p-n junction, which results in shorting the cell. The overetching of Si underneath may 
result in locally shunt of the cell. Besides, overfiring results in rough Si surface. Rough Si 
surface increase the possibility of undesired surface recombination. 
 

Sample # 
Jsc/Jsc 

(%) 
Voc/Voc 

(%) 
FF/FF 

(%) 
Eff/Eff 

(%) 

1 -0.68 -0.25 2.66 1.71 

2 -0.30 -0.27 1.75 1.16 

3 -0.36 -0.05 4.68 4.25 

4 -1.92 -0.61 3.19 0.58 

5 -0.01 -0.68 9.13 8.38 

Table 1. The forming gas anneal improves the FF for the overfired cells. 

The mechanism for FF enhancement of the overfired cells after post-annealing is related to 
the supersaturated Ag. Figure 16(a) shows a HRTEM image of the silicon/electrode  
 

 

Fig. 16. (a) HR TEM contrast of more and large Ag crystallites in the glassy phase. (b) HR 
TEM contrast of contact interface. Ag precipitates are closer to Ag-bulk. 
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interface structure. It can be found that the Ag crystals in the glassy phase grow to larger 
size either by electron beam annealing or by heat treatments, indicating a better current 
transportation. The Ag area coverage at the Si-Ag interface is increased. More and larger Ag 
crystallites in the glassy phase increase the contact area fraction, which improves the 
probability of tunneling from Ag crystallites to the Ag bulk. The better conductance 
contributes to lower contact resistance and a higher FF. Also shown in Figure 16(b), more 
Ag embryos were generated and result in a locally decreased contact resistance. The 
rounded-corner feature of the I-V curve, as shown as Curve-4 in Figure 15, can be improved. 
The rounded-corner feature of the I-V curve is caused by combination effects of resistance 
and recombination. Control the process better and decrease the carriers’ jumping-path can 
improve the fill factor of the cell. 

5. Conclusion 

Despite the success of the screen printing and the subsequent firing process, many aspects of 
the physics of the front-contact formation are not fully clear. The major reason is probably 
because the contact-interface for screen printed fingers is non-uniform in structure and 
composition. The contact microstructures have a high impact on current-transport across the 
contact-interface. 
This chapter first presents the Ag-bulk/Si contact structures of the crystalline silicon solar 
cells. Then, the influences of the Ag-contacts/Si-substrate on performance of the resulted cells 
are investigated. The objective of this work was to improve the understanding of front-side 
contact formation by analyzing the individual contact types and their role in the Ag-bulk/Si 
contact. Microstructure analyzing confirmed that the glassy-phase plays an important role in 
contact properties. The location where Ag-bulk directly contact Si-substrate, through SEM 
observation, is actually a very thin glass layer in between. High density Ag-embryos on Si-
bulk were found for samples fired optimally. It is suggested that Ag-bulk/thin-glass-layer/Si 
contact is the most decisive path for current transportation. Possible conductance mechanisms 
of electrons across the contact interface are also discussed. 
Ag-embryo on Si could serve as current pickup points and that conduction from the Ag-
embryo to Ag-bulk takes place via tunneling through the ultrathin glass layer in between. 
Thus, the abilities to generate high density Ag embryos on Si-bulk and to keep the glass 
layer thin are crucial in achieving good electrical contact. 
This chapter also reports that after 400°C post forming-gas annealing for 25min, the 
overfired cells improve their FF. The mechanism for FF enhancement of the overfired cells 
after post-annealing is related to the supersaturated silver in glassy-phase. The post-
annealing helps the supersaturated silver further precipitate in the glassy-phase or move to 
already exist Ag crystallites. More and larger Ag crystallites in the glassy phase increase the 
contact-area fraction, which improves the probability of tunneling from silver crystallites to 
the silver bulk. 
The interface microstructure analysis of the screen-printed front-side contact shown in this 
work is based on industrial-type rapid firing-profile. Although Ag-paste composition and 
characteristics can be different per manufacturer, the results and trends shown in this work 
have high degree similarity to other screen-printed cell using different type Ag-paste. 
Further understanding the effects of the paste constituents and firing conditions on the 
contact-interface can lead to develop a better, more reproducible, and higher performance 
screen-printed electrode. 
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