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1. Introduction 

Bacterial adhesion and the subsequent biofilm formation on dental implants is a persistent 
problem that can cause implant failure. Once biofilm is formed, bacterial cells become 
highly resistant to antibiotics and host defences (Costerton et al., 1999, Patel, 2005), and 
clinical experience has shown that biofilms must be removed physically before the infection 
can be resolved (Costerton, 2005).  
There is an apparent clinical and microbiological similarity between peri-implantitis and 
periodontitis (Listgarten and Lai, 1999, Papaioannou et al., 1996). The first indication of the 
specific role of bacteria in peri-implant infections was originated from microscopic analysis 
of samples taken from failing implants that shown an abundance of motile rods, fusiform 
bacteria and spirochetes, whereas samples from successful implants contained only a small 
number of coccoid cells and very few rods (Mombelli, 2002, Mombelli et al., 1987, Rams and 
Link, 1983). These findings revealed a site-specific disease process with microorganisms 
associated in patterns known from chronic periodontitis of natural teeth. The term peri-
implantitis introduced in the 1980s, describe a destructive inflammatory process affecting 
the soft and hard tissues around osseointegrated implants, leading to the formation of a 
peri-implant pocket and loss of supporting bone (Mombelli et al., 1987).  
Adhesion to a surface is the essential first step in the development of a biofilm and the 
sequential colonization and formation of the dental plaque is highly orchestrated (Xie et al., 
2000). The association of bacteria within mixed biofilms is not random; it has been shown 
that there are specific associations (complexes) among bacteria in dental biofilms (Socransky 
and Haffajee, 2005, Socransky et al., 1998, Kolenbrander et al., 2006). In addition, these 
microbial complexes, can be used to describe the sequential colonization of the subgingival 
plaque. Some bacterial strains, mainly belonging to the genus Actinomyces (blue complex) 
and Streptococcus (yellow complex) have been identified as early colonizers of the dental 
surface, attaching and proliferating at an early stage. A second group of bacteria that 
functions as bridge between the early and late colonizers are formed by species belonging to 
the green, purple and orange complexes (i.e. Fusobacterium nucleatum, Capnocytophaga 
sputigena, Eikenella corrodens). Finally, the third group of species that appears at late stages in 
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biofilm development and that are considered true periodontal pathogens are species of the 
red complex (Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola). 
This biomaterial-related infection is characterized by chronicity, persistence and lack of 
susceptibility to antimicrobial agents. This information suggests that the first steps on the 
biofilm formation on implant surfaces such as titanium (Ti) or stainless steel (SS) can be 
similar to the process on teeth. In fact, the experimental gingivitis model described by Löe et 
al. that demonstrated the cause and effect relationship between biofilm formation on teeth 
and gingivitis (Loe et al., 1965), has been also used to explain the implant and peri-implant 
mucositis (Pontoriero et al., 1994, Zitzmann et al., 2001). Studies about the peri-implant 
microbiota in vivo have examined the influence of oral health status on the presence of 
specific bacterial species. Some of these studies reported similar supra and subgingival 
microbiota on teeth and Ti implants (Shibli et al., 2008, Furst et al., 2007, Groessner-Schreiber 
et al., 2004). In contrast, other studies found an absence of periodontal pathogens like 
Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans and Porphyromonas gingivalis 
(Heuer et al., 2007) or sporadic high numbers of Parvimonas micra (formerly 
Peptostreptococcus micros), Staphylococcus aureus and Staphylococcus epidermidis (Furst et al., 
2007, Salvi et al., 2008). 
The biofilm formation process is extremely complicated and this is particularly true when 
multiple species are present in the biofilm as in dental plaque. This process is affected by 
many factors including environment, bacterial properties and material surface 
characteristics, such as chemical composition, surface energy, hydrophilicity and 
topography (Katsikogianni and Missirlis, 2004, An and Friedman, 1998, Merritt and Chang, 
1991). In addition, for in vitro studies, the media play an important role as well, as was 
shown in a previous work comparing the influence of two different media on the bacterial 
adhesion and the initial biofilm formation (Mycoplasma media, a standard bacterial culture 
media, and sterilized human saliva); revealing different patterns of adhesion on the same 
surface when bacteria were cultured with different media (Almaguer-Flores et al., 2010).  

2. Surface modifications to prevent bacterial adhesion and biofilm formation 
on dental implants 

Surfaces are critical in the field of biomaterials; the nature of an implant surface determines 
their interaction with the biological environment. Surface modifications can be classified as 
physical modifications (sandblasting, patterning, etching, lithography, etc) or chemical 
modifications (deposition, thin films, polymer coating, etc). Often these techniques are applied 
in combination to alter both topography and surface energy. Surface modifications can be 
classified on basically three classes: (a) topographic modifications; such as size and porous 
distribution and roughness, (b) chemical modifications of the surface; which involve controlled 
cleaning and oxidation by glow discharge plasma techniques, thin film growth, and deposition 
of organic overlayers such as polymers, proteins and antimicrobial substances and (c) 
micromechanical or viscoelastic modifications of the surface, which can affect (enforce or 
reduce) the mechanical stress-strain fields at the interface (Bagno and Di Bello, 2004, Kasemo 
and Gold, 1999). These modifications offers the possibility of combining ideal bulk properties 
with desired properties such as increased bioactivity or prevent bacterial adhesion. 
Antibacterial surface modifications have been created in order to prevent bacterial 
contamination and resulting infections, which can lead to the loss of the implant. These 
surface modifications must be designed to retard bacterial colonization or can function as 
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antimicrobial agents without affecting the cells and tissues adjacent to the implant; in other 
words, they need to be biocompatible. 
Some studies have explored the in vitro biofilm formation on modified titanium implant 

surfaces; unfortunately, most of these biofilm models have only included one or two oral 

bacterial strains (Table 1). In the oral cavity however, the microbial ecology is complex and 

consists of hundreds of species (Socransky and Haffajee, 2005). For this reason, these models 

are good tools in order to study species-specific infections or mono-infections, but not very 

useful to study mixed anaerobic infections such as peri-implantitis. 

 

Strain Surface Ref. 

S. sanguis  
S. mutans 

Ti, and TiN, ZrN, TiO2 
(Grossner-Schreiber  

et al., 2001) 

P. gingivalis 

Ti with ion implantation (Ca+, N+, F+), 
oxidation (anode oxidation, titania 
spraying), ion platting (TiN, alumina) and 
ion beam mixing (Ag, Sn, Zn, Pt)

(Yoshinari et al., 2001) 

E. coli 
P. aeruginosa 
B. cepacia 
B. subtilis 

11 different glass and metal oxide-coated 
glass surfaces 

(Li and Logan, 2004) 

S. sanguis Ti with different roughness 
(Pereira da Silva  

et al., 2005) 

S. aureus  
P. aeruginosa 

Ti coated with albumin (Kinnari et al., 2005) 

P. gingivalis Ti and TiN thin films 
(Jeyachandran  

et al., 2007) 

S. aureus 
S. epidermidis 
S. mutans 
P. aeruginosa 

Ti with bioactive polymers layers [Maddikeri, 2008 #56] 

S. sanguinis 
Ti, Au, and ceramic and composite dental 
materials

(Hauser-Gerspach  
et al., 2007) 

S. aureus Ti with polyelectrolyte multilayers (Chua et al., 2008) 

S. aureus 
S. epidermidis 

Ti with (P(MAA)) followed by 
immobilization of silk sericin

(Zhang et al., 2008) 

S. aureus Ti, Ta, Cr and DLC surfaces (Levon et al., 2009) 

S. sanguinis Ti with two modified different roughness (Burgers et al., 2010) 

S. aureus 
P. aeruginosa 

Ti with micro and nano scale surface 
roughness

(Truong et al., 2010) 

S. epidermidis Ti with four modified different roughness (Wu et al., 2011) 

Table 1. In vitro bacterial adhesion studies on Ti modified implant surfaces. 

2.1 Amophous carbon films 

It has been shown that all the different forms of amorphous carbon can be considered as 
biocompatible (Das et al., 2007, Hauert, 2003, Lettington, 1998, Du et al., 1998) and might be 
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adequate as a surface modification for biomedical applications, such as, dental and 
orthopaedic implants (Santavirta, 2003, Affatato et al., 2000). Amorphous carbon films are 
nanostructured materials deposited as thin films which consist of sp2 hybridized carbon 
atoms, clustered within a typical size of a few nanometers, and connected among them by 
sp3 hybridized carbon atoms. Depending on the fraction of sp2 to sp3 hybridized C atoms, 
the films have been name as diamond-like carbon (DLC), graphite-like carbon (GLC) or 
when highly hydrogenated as polymer-like carbon (PLC). The fundamental difference 
between graphite and diamond-like is the amount of sp3 hybridized carbon atoms, which is 
very low in the first group and above 40-50% for DLC. This leads to strong differences in 
many of the physical properties, such as, optical gap, conductivity, surface energy, etc. 
(Robertson, 2002). 

2.1.1 Biocompatibility 

Biomaterials must satisfy certain criteria in order to be used as implants or medical devices. 
The most important requirement for biomaterials is that they need to be biocompatible. 
Several definitions of biocompatibility have been established, but in general, 
biocompatibility can be defined as the ability of the material, intentionally in contact or 
implanted into the body tissues, to perform as designed without inducing any local effect in 
the cells or tissue or a systemic response that elicits an immunological reaction. In addition, 
the biomaterial should not cause denaturalization of the proteins adsorbed on the surface or 
leach any substance that can induce toxicity to the cells or tissues adjacent to the implant.  
In dental and orthopaedic implants, de novo bone formation in direct contact with the bone, 
also known as osseointegration, is desired. In order to achieve successful osseointegration, 
progenitor cells and osteoblasts must attach to the implant surface, differentiate into mature 
osteoblasts, produce an organized extracellular matrix, and finally mineralize the 
extracellular matrix. Several biomaterials have been applied with a broad range of success in 
orthopaedic and dental implants. Metallic biomaterials generally have been used for dental 
and orthopaedic application due to their mechanical properties. Several publications have 
addressed in vitro, in vivo, and clinically that metallic implant surface modifications improve 
osseointegration, increase bone to implant contact, decrease healing time, and are clinically 
successful (Schwarz et al., 2010, Stanford, Li et al., 2010, Dohan Ehrenfest et al., 2010, 
Karabuda et al., 2010, Schatzle et al., 2009). 
During the last years, we have been investigating different aspects of the interaction 
between human cells (osteoblasts) and graphite-like carbon films (GLC) as possible 
candidates for coating dental implants. Contrary to many other research groups, we choose 
GLC instead of DLC films because the main interest was on the osseointegration and not on 
the tribological properties and graphite itself has been established as a good osteoinductor 
material (Rodil et al., 2003, Rodil et al., 2005). Graphite-like amorphous carbon films were 
produced by a hollow cathode DC magnetron sputtering system attached to a high vacuum 
chamber. We have obtained good results concerning the interaction to human osteoblasts 
and also good osteoconductive properties (Rodil et al., 2006, Olivares et al., 2004). 

2.1.2 Bacterial adhesion 

Nevertheless, another important factor for the success of implants (included dental 
implants) is to avoid formation of biofilms that might lead to implant failure or strong 
inflammatory process (infection). Limited studies regarding bacterial adhesion on the 
different carbon films have been published before (Wang et al., 2004, Ishihara et al., 2006, 
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Jones et al., 2006, Katsikogianni et al., 2006, Morrison et al., 2006, Kwok et al., 2007, Zhao et 
al., 2007, Zhou et al., 2008, Kinnari et al., 2008). These works included mainly DLC or 
modified-DLC films and concluded that the carbon surface has great biocompatibility 
properties and good resistance to microbial adhesion. However, these results could not be 
extrapolated to the GLC films due to the strong differences between DLC and GLC physical 
properties, which are known to affect the bacterial adhesion. Moreover, none of these 
studies include oral bacteria and in any case no more than three bacterial strains were used.  
We have developed a biofilm model using nine selected species representative of all the 

complexes of the subgingival dental plaque, described by Socransky et al. (Socransky et al., 

1998) (Table 2). We used A. israelii and S. sanguinis as early colonizers. A second group of 

bacteria included F. nucleatum, C. rectus, E. corrodens, P. micra and P. intermedia, these species 

are known because functions as a bridge between the early and late colonizers. P. gingivalis 

was used as a representative of the third group of species that appears at late stages of 

biofilm development and A. actinomycetemcomitans was used due to the role that seems to 

have in periodontal infections (Wilson and Henderson, 1995). All strains were grown under 

anaerobic conditions (80% N2, 10% CO2 and 10% H2).  

In a first study, the bacterial adhesion of these microorganisms was evaluated on 

amorphous carbon (a-C) films in comparison to titanium (Ti) and stainless steel (SS) control 

surfaces. The results showed that the oral bacterial adhesion on these GLC films was relative 

high in comparison to standard surfaces (Ti and SS) (Almaguer-Flores et al., 2009).  

In a second experiment, (Almaguer-Flores et al., 2010), the influence of the surface 

roughness and culture media was investigated comparing carbon and titanium films. The 

surface roughness was modified by deposition of films on both rough stainless steel and 

silicon substrates, the roughness of the stainless steel was significantly larger than the silicon 

(1.89 ± 0.5 µm and 0.028 ± 0.003 µm, respectively) therefore two different roughness were 

compared. In addition, the study was done comparing two different media; Mycoplasma 

media (MM), which is an standard bacterial culture media, and sterilized human saliva (HS) 

because is the major bulk fluid in the oral cavity. 

 

Specie ATCC* 

Aggregatibacter actinomycetemcomitans serotipe b 43718 

Actinomyces israelii 12102 

Campylobacter rectus 33238 

Eikenella corrodens 23834 

Fusobacterium nucleatum subsp. nucleatum 25586 

Parvimonas micra 33270 

Porphyromonas gingivalis 33277 

Prevotella intermedia 25611 

Streptococcus sanguinis 10556 

* American Type Culture Collection, Rockville, MD 

Table 2. Reference strains employed for the adhesion and biofilm formation assays. 
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AFM images of the samples presented in Figure 1 (a,b,c and d), showed that not only the 

roughness values were modified, but also the topographical features of the samples were 

different. The samples deposited on silicon showed a spiky homogeneous topography but 

the maximum height of the peaks is in the nanometer scale. While for the rough surfaces, the 

topography is like a series of non-homogeneous hills and valleys, reaching heights in the 

micrometer scale. 

 

 

Fig. 1. AFM images of the test substrates. Vertical scale has been normalized, Z value 
indicate maximum height in each film. (a) a-C film deposited on the stainless steel 
sandblasted substrate (a-C r). (b) a-C film deposited on silicon substrate (a-C s). (c) Ti film 
deposited on the stainless steel sandblasted substrate (Ti r). (d) Ti film deposited on silicon 
substrate (Ti s). 

Bacterial adhesion on the test samples varied depending on the media used, the surface 

roughness and the surface chemistry, data are presented in Figure 2A as the number of 

CFUs/cm2 x 105. There were consistently more bacteria on the rough surfaces and in the 

surfaces cultivated with Mycoplasma media. The number of CFU´s was reduced on the Ti 

surfaces compared with the a-C surfaces. Significant differences were observed between Ti s 

and Ti r (p < 0.05) and Ti s and a-C s (p < 0.05). When human saliva was used, lower 

bacterial counts were detected on all surfaces compared to the Mycoplasma media. Indeed, 

the number of CFU’s was highly reduced on the a-C s surfaces, and statistical differences 

were found comparing a-C s vs a-C r  and a-C s vs Ti s (p < 0.05).  
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A 

Fig. 2A. Bacterial adhesion (CFU’s x 105) on rough (r) and smooth (s) a-C and Ti films, after 
24h of anaerobic incubation with Mycoplasma medium (MM) or Human Saliva (HS). 

 

 

Fig. 2B. Proportion of the nine bacterial strains in the biofilms formed on rough (r) and 
smooth (s) a-C and Ti films, after 24h of anaerobic incubation with Mycoplasma medium 
(MM) or Human Saliva (HS). Table at the bottom shows the statistical analysis divided 
according to the factors that influence the bacterial colonization. Where the bacteria name is 
shown, it indicates a significance of p<0.05 for that strain and NS means no statistical 
difference. 

The influence of roughness was clearly observed in the number of bacteria attached to the 
rough surfaces (number of CFU’s). Similarly, a positive correlation between surface roughness 
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and bacterial attachment in vitro has been shown (Quirynen et al., 1996). The proportions of the 
bacterial strains were also affected by the surface roughness and this effect seems to be more 
pronounced when saliva was used. The proportion of S. sanguinis was significantly higher (p < 
0.05) on rough surfaces for both a-C and Ti, i.e. independently of the surface chemistry. 
Meanwhile, P. intermedia showed a higher proportion on the smooth surfaces (p < 0.05). 
Nevertheless, other studies have suggested that regarding to bacterial adhesion or initial 
biofilm formation; roughness appears to be a minor factor (Bos et al., 1999). 
Regarding the surface chemistry, higher numbers of attached bacteria (CFU´s) were detected 
on amorphous carbon than on the Ti samples, confirming the results from the initial study 
that indicate large affinity of oral bacteria for the carbon surface (Almaguer-Flores et al., 
2009). These results differ with other published papers that have reported that carbon-based 
films can inhibit bacterial adhesion (Wang et al., 2004, Liu et al., 2008, Zhou et al., 2008).In 
addition, it has been suggested that Ti has some antibacterial properties explained due to 
the formation of peroxides at the surface (Jeyachandran et al., 2007). Although, another 
study suggested that pure Ti was more colonized by two oral bacteria strains in comparison 
to other surfaces like TiN, ZrN or TiO2, (Grossner-Schreiber et al., 2001). 
An interesting finding was the proportion of E. corrodens on the biofilms formed on the a-C 
surfaces. This strain was found in higher proportions on the a-C samples on both, rough and 
smooth surfaces, for both media MM or HS, suggesting that E. corrodens was more sensitive 
to surface chemistry than to roughness or the cultured media used. This finding supported 
the notion that chemical surface is directly affecting the colonization of the oral bacteria 
(Groessner-Schreiber et al., 2004). E. corrodens posses an specific lectin-like substance that 
mediates its adherence to various host tissue cell surfaces (Yamazaki et al., 1988), so it is 
possible that the specificity that this microorganism show to the a-C surfaces has to be with 
some specific adhesion properties of this strain. 
We found higher numbers of bacteria on all surfaces when Mycoplasma culture media was 
used. A possible explanation could be the differences between the components of both 
media; saliva contains an important presence of some antimicrobial substances, such 
lysozyme, lactoferrin, lactoperoxidase, and secretory IgA (Tenovuo, 1998). Meanwhile, the 
Mycoplasma media contains only nutrients and some proteins. The saliva is a more 
biologically significant media for the bacterial adhesion test and many studies indicate that 
the saliva is critical for the colonization of certain taxa (Gibbons, 1996, De Jong and Van der 
Hoeven, 1987), and it is determinant for the type and amount of bacteria that will attach on a 
surface (Gibbons, 1996, Sela et al., 2007). However, human saliva is a very complex and non-
homogeneous media in comparison to the MM, and actually changes in the composition can 
be found from donor to donor. So, in order to study the surface-bacteria interactions, a more 
homogeneous media could be more convenient. 

2.2 Silver – amorphous carbon films (a-C:Ag) 

Searching for reducing implant infections different modifications have been proposed such as 
functionalization of the surface with bactericidal polycationic groups (Tiller et al., 2001, Cen et 
al., 2004), developing delivery systems to coating the surface with polymers loaded with 
antibiotic or antimicrobial substances (Shi et al., 2006, Schmidmaier et al., 2006) or covering the 
implant surface with quaternary ammonium compounds or silver and iodine ions (Yorganci et 
al., 2002, Nohr and Macdonald, 1994, Tyagi and Singh, 1997, Ewald et al., 2006).  
Silver antimicrobial properties have been recognized since historic times (Klasen, 2000, 
Burrell, 2003), and the coating of medical devices with silver coatings (Ewald et al., 2006, 
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Bosetti et al., 2002, Darouiche, 1999, Schierholz et al., 1998) or the addition of silver 
nanoparticles (Chen et al., 2006, Kwok et al., 2007, Jung et al., 2009, Rai et al., 2009) into the 
material’s surface might be a good method to prevent device-associated infections by 
physical routes instead of the chemical routes mentioned above. Silver exhibits a rather 
broad-spectrum antimicrobial activity in vitro by binding both to microbial DNA, 
preventing bacterial replication, and to the sulfhydryl groups of the metabolic enzymes of 
the bacterial electron transport chain, causing their inactivation (Darouiche, 1999). 
Considering the well-known silver antibacterial activity, amorphous carbon films with 
silver nanoparticles inclusions were produced and the biocompatibility and antibacterial 
properties of such films was evaluated. Details concerning the deposition conditions and 
properties of the films can be found somewhere else (Garcia-Zarco et al., 2009). 

2.2.1 Biocompatibility 

Several assays are used to test biocompatibility; however, due to the scope of this chapter 
focus on common assays that we perform to test the biocompatibility of our surface 
modifications. 
To test biocompatibility of a-C:Ag surfaces, we perform the following assays. 

MTT Assay 

The MTT is a colorimetric assay that measures the reduction of a tetrazolium component 

(MTT, 3-(4,5-Dimethylthiasol-2-yl)-2,5-diphenyltetrazolium bromide) into a insoluble purple 

formazan product by the cell mitochondria. This reaction only occurs in viable cells, which 

have metabolic activity are capable to reduce the MTT. This assay is commonly used to 

determine the cytotoxicity of potential medical agents and biomaterials since released 

molecules can cause metabolic dysfunction that decreases or abolishes MTT reduction in the 

mitochondria and result in cell toxicity (Mosmann, 1983, Denizot and Lang, 1986). Thus, 

MTT reduction is proportional to cellular metabolic activity, and decreased MTT reduction 

infers a possible toxicity of the biomaterial or drug tested (Chen et al., 2011, Niu et al., 2011, 

Sahithi et al., 2010, Bispo et al., 2010). 

Cell culture 

Human MG63 osteoblast-like cells are commonly used in testing metallic biomaterials. 

MG63 cells present an immature osteoblast phenotype, which gives them the potential to be 

studied as a model of osteoblastic differentiation (Bachle and Kohal, 2004) (Schwartz et al., 

1999). MG63 cells were purchased from the American Type Culture Collection (ATCC, 

Manassas, VA). Cells were cultured in Dulbecco’s Modification of Eagle’s Medium (DMEM, 

cellgro ®, Manassas, VA) supplemented with 10% fetal bovine serum (Gibco, Carlsbad, CA) 

and 1% penicillin-streptomycin (Gibco) at 37°C in 5% CO2 and 100% humidity. 

Cell viability 

MG63 cells were plated at a density of 10,000 cells/cm2 on tissue culture polystyrene (TCPS) 

or substrates coated with amorphous carbon (a-C) or amorphous carbon/silver (a-C:Ag). 

Cell viability was measured using Methylthiazolyldiphenyl-tetrazolium bromide (MTT) dye 

after 1, 3, or 7 days in culture. MTT dye was dissolved in water to yield a 5 mg/mL solution. 

MTT dye was then added to culture media of each well to a final concentration of 1 mg/mL 

and incubated for 4 hours. The media was then removed, the monolayer rinsed twice with 

PBS, and formazan crystals dissolved in 500 µL DMSO. 200 µL of the resulting solution was 
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aliquoted into a 96 well microplate and read in an absorbance plate reader using a test 

wavelength of 570 nm and a reference wavelength of 630 nm. 

Viability of MG63 cells cultured on a-C or a-C:Ag thin films was measured using MTT. One 
day after plating, cells cultured on both a-C and a-C:Ag had similar MTT activity to cells 
cultured on TCPS (Fig. 4). Viability at day 3 and day 7 was also similar in cells cultured on 
thin films than cells on TCPS. These results indicate that thin film coatings analyzed in this 
experiment did not affect cellular metabolism, indicating that they are not cytotoxic. 
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Fig. 4. Effect of thin films on MG63 cell viability. MG63 cells were cultured on tissue culture 
polystyrene (TCPS) or amorphous carbon (a-C) or amorphous carbon-silver (a-C:Ag) thin 
films. MTT activity was measured after 1 day, 3 days, or 7 days in culture. No significant 
differences were detected between the surfaces. 

Osteoblast phenotype 

MG63 cells were plated at a density of 10,000 cells/cm2 on tissue culture polystyrene (TCPS) 

or substrates coated with amorphous carbon (a-C) or amorphous carbon/silver (a-C:Ag).  At 

confluence, cells were incubated with fresh media for 24h. Conditioned media was harvested 

and levels of secreted osteocalcin measured using a commercially available radioimmunoassay 

(Biomedical Technologies, Inc., Stoughton, MA). Cells were detached from the surface using 

two sequential incubations in 0.25% trypsin-EDTA and cell number determined using a Z2 

Particle Counter (Beckman Coulter, Hialeah, FL). Cells were lysed in 0.05% Triton X-100 and 

homogenized by sonicating each sample for 10 s. Alkaline phosphatase specific activity was 

measured in cell lysates as a function of the release of p-nitrophenol from p-

nitrophenylphosphate at pH 10.2  (Martin et al., 1996, Bretaudiere, 1984) and normalized to the 

total protein concentration (BCA Protein Assay, Pierce Chemical Co., Rockford, IL). 

Whether surface modifications enhance osteoblast maturation can be assessed using three 
specific outcomes: cell number, alkaline phosphatase specific activity, and osteocalcin levels. 
Cells attach to biomaterials through the proteins adsorbed in the surface of the material. 
After this event, cell undergo proliferation and extracellular matrix production. It has been 
demonstrated that proliferation is reduced when cells undergo differentiation (Stein et al., 
1990). In our experiment, cell number was lower on a-C and a-C:Ag thin films than on TCPS 
(Fig. 5A). Alkaline phosphatase specific activity, an early marker of osteoblast 
differentiation, is commonly used as a marker of bone formation. Alkaline phosphatase is an 
enzyme that acts on the phosphate groups of various molecules and generates a 
microenvironment rich in phosphate ions, which, in concert with calcium, mineralize the 
extracellular matrix to form bone.  In osteoblasts, alkaline phosphatase increases when 
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proliferation is inhibited during differentiation. Our results show that alkaline phosphatase 
was higher in cells grown on a-C and a-C:Ag than on TCPS (Fig. 5B). However, alkaline 
phosphatase specific activity increases in early differentiation, reaches a maximum, and 
begins to decrease as mineralization is initiated (Stein et al., 1990). To establish the specific 
stage of osteoblast maturation, osteocalcin was measured in the conditioned media. 
Osteocalcin is considered a later marker of osteoblast maturation, is present in all 
mineralized tissues in our body, and increases in relation to total mineralization during 
bone formation. In our experiments, cells cultured on a-C and a-C:Ag secreted more 
osteocalcin than cells on TCPS (Fig. 5C). The combination of these factors allows us to gauge 
more precisely the stage of osteoblast maturation, and the ability of surface modifications to 
enhance this, than any one factor alone. Taken together, our results establish that both a-C 
and a-C:Ag are not toxic, and promote osteoblast maturation increasing two main factors 
needed for bone formation, alkaline phosphatase activity and osteocalcin. 
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Fig. 5. Osteoblast phenotype in response to culture on thin films. MG63 cells were cultured 

on tissue culture polystyrene (TCPS) or amorphous carbon (a-C) or amorphous carbon-

silver (a-C:Ag) thin films. At confluence, cell number (A), alkaline phosphatase specific 

activity in cell lysates (B), and secreted osteocalcin (C) were measured. *p<0.05, vs. TCPS.  
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2.2.2 Antibacterial effect 

The oral bacterial adhesion and the initial biofilm formation on the amorphous carbon films 

modified with the Ag nanoparticles, was evaluated using our standard protocol for the oral 

bacteria. All surfaces (Table 3) were were incubated for 24 hours, 3 and 7 days with a 

mixture of the nine bacterial strains. One set of surfaces was used for determining the total 

counts of bacteria attached to each surface, by counting the colony forming units (CFU’s) 

from each sample. In order to observe biofilm morphology and the surface coverage by 

bacteria, an additional set of samples was prepared for Scanning Electron Microscopy (SEM) 

following standard procedures. 

 

Surface

SEM image (scale 5 m) and

Ra profilometer

(Scan 5 mm)

Film

thickness
Contact angle

Stainless steel

medical grade 316L

sandblasted substrate

NA

a-C film stainless

steel medical grade

316L sandblasted

substrate

53.8 nm

a-C:Ag film stainless

steel medical grade

316L sandblasted

substrate

82.5 nm

Ti film on stainless

steel medical grade

316L sandblasted

substrate

190 nm

 

93¡± 8¡

82¡±3¡

128¡± 6¡

79¡± 5¡

 Ra 2.38 m

 Ra 2.46 m

 Ra 1.76 m

 Ra 2.23 m

 

Table 3. Surface characterization. 

The morphology of the four surfaces was very similar even after the film deposition. This 

was also confirmed by measuring the roughness before and after deposition, which 

remained close to 2 μm. The combined effect of the roughness value and the chemical 

composition lead to water contact angles, which cannot be directly related to the surface 

energy, but reflects the wettability of the surfaces. The more hydrophobic surface was the 

silver modified carbon film. The silver atomic percentage in these samples was around 6 at% 

and the average particle size as calculated using the Image J software (Collins, 2007) was 

63.5 nm corresponding to ~10% of the surface area. 

Figure 6 shows the BE images of the bacteria colonies as a function of the incubation time 

and for the four surfaces, using low magnification in order to observe the bacterial 

distribution among a large area of the surfaces (1.76 mm2). At the first day, mainly isolated 

attached bacteria were observed, as time went on, the formation of the biofilm was clearly 

observed and represents the large dark areas in the image, where the thick glycoprotein 

matrix was developing. 
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SS/1d a-C/1d a-C:Ag/1d Ti/1d

SS/3d a-C/3d a-C:Ag/3d Ti/3d

SS/7d a-C/7d a-C:Ag/7d Ti/7d

 

Fig. 6. Backscattering SEM images of the biofilms formed on the SS, a-C, a-C:Ag and Ti 
surfaces after 1, 3 and 7 days of anaerobic incubation. The scale bar corresponds to 100 μm 
and the magnification used was 250X. 

The increment in the percentage of the surface covered by bacteria (or bacteria surface 
growth, BSG) as a function of time is clearly observed in figure 7, which also included the 
statistical analysis. Six different zones were analyzed and the area quantification was done 
at least three times for each zone, therefore it is possible to describe statistically the 
variations in the BSG. At the first day, less than 10 % of the total area was covered; actually, 
the bacteria were observed forming small groups (figure 6). However, at this time, a large 
amount of bacteria were found in the a-C:Ag films and less number was observed on the 
metallic surfaces. At three days, the larger number was found on the a-C films, while the 
other surfaces present similar coverage (~20 %). At 7 days, the amount of bacteria was 
highly reduced in the a-C:Ag films compared to the other surfaces. 
 

 

Fig. 7. Surface coverage estimated as the percentage of area covered by bacteria in the 
images shown in figure 6, using the ImageJ particle analyzer function. Statistically 
significant data are included in the table (* p < 0.05). 
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The reduction in surface coverage obtained for the a-C:Ag films after 7 days of incubation 
was significant lower than in the other surfaces. This is in agreement with the antimicrobial 
mechanism of the silver, where the active agents are really silver ions or radicals that in our 
samples will be produced via an erosion/corrosion process, taking place as the sample is 
immersed in the medium. 
The addition of silver nanoparticles into the amorphous carbon matrix reduced the bacterial 
surface growth approximately 10% in comparison to the pure carbon matrix. The results 
indicated that the action of silver ions occurs in time, therefore not immediate response was 
observed for the bacterial adhesion. 

3. Conclusions 

The use of different bacterial strains from the oral cavity to study the bacteria adhesion 
profile on amorphous carbon have shown that it is not straightforward to reach conclusions 
about the anti-bacterial properties of any surface. When bacterial adhesion was tested using 
individual species, the adhesion profiles varied on the same surface depending of the 
bacterial strain. 
Our results support the notion that there is a strong influence of the physical and chemical 
properties of the substrate in the colonization of oral bacteria, moreover when using human 
saliva, significantly reduced levels of bacteria were found on the a-C smooth surfaces.  
In summary, it seems that Graphite-like amorphous carbon is not a suitable surface to 
prevent adhesion from the oral media but a-C:Ag films seems to inhibit bacteria adhesion 
after seven days of incubation. However, a-C films seem to be good to repel bacteria from 
certain oral strains, such as, A. israelii, P. gingivalis and P. intermedia. Although E. corrodens 
was capable to colonize in very high rates the a-C surfaces despite of their roughness or the 
culture media used.  
Therefore, the determination of bacterial adhesion properties on biomaterials using only one 
or two bacterial strains is not accurate and cannot lead to general conclusions about the anti-
bacterial properties of the biomaterial, at least when strains from the oral cavity are use. 
Further studies are required in order to evaluate other physical, chemical and biological 
properties of the a-C:Ag films in order to understand the observed differences and also to 
analyze the sequential formation of a bacterial biofilm over these and other implant 
surfaces. 
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