
20 

Generation of ICM-Type Human iPS Cells from 
CD34+ Cord Blood Cells 

Naoki Nishishita1,2, Noemi Fusaki3,4 and Shin Kawamata1,2 
1Foundation for Biomedical Research and Innovation 
TRI308, 1-5-4 Minatojima,-Minamimachi, Chuo-ku,  

2Riken Center for Developmental Biology, 2-2-3, Minatojima-Minamimachi, Chuo-ku,  
3DNAVEC Corporation 6, Okubo, Tsukuba, 

4Japan Science and Technology Agency (JST) ,  
PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 

Japan 

1. Introduction 

One of the major technical hurdles for clinical application of embryonic stem (ES) cells or 

induced pluripotent stem (iPS) cells is formation of teratomas by undifferentiated cells after 

transplantation. In addition, iPS cells have their own safety concerns such as an increased 

chance of tumorigenicity caused by chromosomal instability or alteration during the 

reprogramming process (1). Since the first report of mouse iPS cell generation by retroviral 

vectors (2), several non-integrating vector systems have been examined in pursuit of “safer” 

iPS cell generation methods. These approaches include adenoviruses (3), Sendai viruses 

(SeV) (4, 5), Cre-excisable viruses (6), the piggyBac transposition system (7, 8) conventional 

plasmids (9), the oriP/EBNA1-episomal vector (10), direct protein delivery methods (11, 12) 

or small molecule delivery methods (13, 14).  

A number of cell sources for generating human iPS cells have been reported, including 

dermal fibroblasts (15), keratinocytes (16), peripheral blood cells (17), adipose tissue (18), 

and cord blood (CB) cells (19). The three germ layer differentiation potential of these 

established iPS cells has been demonstrated. However, it is not clear which cell source is 

best for generating “standard” iPS cells, as differentiation preferences of established iPS cells 

reflect the epigenetic status of the original cells (called “epigenetic memory”) (20).  

Recently, several groups reported new insights into two distinct stages of pluripotency in ES 
cells. These stem cell stages consist of the inner cell mass (ICM) of blastocyst type (ICM 
type-cells or naïve cells), and epiblast type stem cells (EpiSCs or prime cells) (21). Mouse 129 
or C57/BL6 mouse ES cells are the ICM type: “true” pluripotent stem cells representing pre-
implantation blastocysts that contribute to chimerism and demonstrate germ line 
transmission when placed back into blastocysts. They can also be grown in single cell 
suspension. In contrast, the “EpiSCs” or “prime” ES cells represent post-implantation stage 
epiblasts. They retain the potential of three germ line differentiation in vitro, but are 
incapable of contributing to chimerism and cannot survive after single cell cloning. Human 
ES cells or iPS cells seem to correspond to the EpiSCs with respect to colony morphology 
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and gene expression prolife (22, 23), but can be converted to the naïve stem cell stage by 
cultivation (24) or constitutive activation of KLF2/KLF4 genes (25). In this report, we 
demonstrate an easier and safer reprogramming method for the direct establishment of 
ICM-type human iPS cells from fresh or frozen CB cells using temperature-sensitive SeV 
vectors, which facilitates confirmation of removal of the SeV construct at a single cell level.  

2. Experimental procedures, materials, and methods 

All experimental protocols were reviewed and approved by the ethical committee of the 
Riken Center for Developmental Biology (CDB), the Foundation for Biomedical Research 
and Innovation (FBRI), Asagiri Hospital, and the animal experiment committee of FBRI. 
Fresh CB was supplied by Asagiri Hospital. CD34+ cells were purified from mononuclear cells 

(isolated from fresh CB with Lymphoprep TM (Cosmo Bio Co., Tokyo, Japan)) using a human 

CD34 Micro Bead kit and Auto Macs columns (Miltenyi Biotec) in accordance with the 

manufacturer’s instruction. We also used frozen CD34+ CB cells obtained from Riken RBC 

(Tsukuba, Japan). CD34+ cells were cultured in hematopoietic culture medium (HC media) 

[serum free X-VIVO 10 (Lonza, Basel Switzerland) containing 50 ng/mL IL-6 (Peprotech, 

London UK), 50 ng/mL sIL-6R (Peprotech), 50 ng/mL SCF (Peprotech), 10 ng/mL TPO 

(Peprotech), 20 ng/mL Flt3-ligand (R&D system, MN)] (4) for one day prior to viral infection. 

SNL76/7 feeder cells (European Collection of Cell Culture, Salisbury, UK) were treated with 

100 L of mitomycin C solution (1 mg/mL) (Nacalai Tesque, Kyoto, Japan) in 10 cm dishes for 

three hours to generate mitomycin C treated-SNL 76/7 feeder cells (MMC-SNL). They were 

seeded on 24-well plates (Becton Dickinson, Tokyo, Japan), or in six-well plates, or in 60 mm 

dishes in naïve human ES cell culture medium. Fifty mL of naïve human ES cell medium was 

prepared by mixing 24 mL DMEM/F12 (Invitrogen; 11320), 24 mL Neurobasal (Invitrogen; 

21103), 0.5 mL of x100 nonessential amino acids (Invitrogen), 1 mL B27 supplement 

(Invitrogen; 17504044), and 0.5 mL N2 supplement (Invitrogen; 17502048). The medium also 

contained 0.5 mg/mL of BSA Fraction V (Sigma), penicillin-streptomycin (final x 1, 

Invitrogen), 1 mM glutamine (Invitrogen), 0.1 mM β-mercaptoethanol (Invitrogen), 1.0 M 

PD0325901 (Stemgent), 3.0 M CHIR99021 (Stemgent), 10 M forskolin (Sigma) and 20 ng/mL 

of recombinant human LIF (Millipore; LIF1005). Prime human iPS cells were cultured with 

prime human ES cell medium [DMEM/F-12 (SIGMA) containing 20% KSR (Invitrogen), 2 mM 

L-glutamine (Invitrogen), 1% NEAA (Invitrogen), 0.1 mM 2-ME (Invitrogen), and 4 ng/mL 

bFGF (Peprotech)]. The medium was changed every day. Passage of human ES cell-like cells 

was previously described (26). The split ratio was routinely 1:3 or 1:4.  

2.1.1 Viral infection and generation of ICM-type iPS cells 
Temperature-sensitive Sendai viral vector constructs integrating the four Yamanaka factors 
(SeV18+OCT3/4/TS7, SeV18+SOX2/TS7, SeV18+KLF4/TS7, and SeV(HNL)c-MYC/TS7) were 
supplied by DNAVEC Corp. The CD34+ cells were thawed and cultured for one day in HC 
media in six-well plates at a density of 2 x 104 cells/two mL/well before the infection with 
SeV. The thawed CD34+ cells (1 x 104), or an equivalent number of freshly isolated CD34+ 

cells, were transferred to 96-well plates in 180 L of hematopoietic cell culture medium with 

20 L of viral supernatant containing two m.o.i. each of the five SeV constructs (SeVTS7-
OCT3/4, -SOX2, -KLF4, -c-MYC, -GFP). The medium was replaced by fresh medium the 
following day and infected cells were cultured another four days. At this point, 1 x 104 
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infected CB cells were seeded and cultured on confluent MMC-SNL cells in six-well plates 
in human naïve ES cell medium supplemented with PD0325901, CHIR99021, recombinant 
human LIF (rhLIF) and forskolin under hypoxic conditions (MCO-5M, SANYO Japan, 5% 
O2, 5% CO2 at 37o C). Dome-shaped naive ES cell like-colonies were picked up between 
fourteen and nineteen days, suspended as single cells, seeded on MMC-SNL and cultured 
with naïve ES cell medium. The second passage colonies were subjected to heat treatment 
(38o C for three days) and then passaged again for detection of remaining SeV constructs by 
RT-PCR and immunostaining with anti-SeV (HN) antibody. SeV-free colonies were 
transferred to a normal oxygen environment (MCO-5M, SANYO Japan, 20% O2, 5% CO2 at 
37o C) and cultured on MMC-SNL cells with prime human ES cell medium shown in Fig 1.  
 

 

Fig. 1. Schema for generating naive and prime iPS cell from CB cells with SeV vectors.  

2.1.2  Optimized culture conditions for naïve iPS cells 
1X104 SeV-infected CD34+ CB cells were transferred onto various numbers of pre-seeded 

MMC-SNL cells in 60 mm dishes (from 1.0 x 105 to 2.0 x 106). Cells were cultured for 14 days 

in naïve human ES cell medium either under hypoxic or normoxic conditions. The emergent 

colonies were fixed and stained for ALP activities. The number of colonies stained positively 

for ALP activities was scored. 

The naïve ES cell-like colonies were picked up 14 to 19 days after seeding on SNL in naïve 

ES cell medium under 5% O2 culture conditions. These cells were subjected to heat 

treatment at 38 oC for three days at passage two in the naive state. After heat treatment, 

prime ES cell-like colonies were passaged (passage three) and checked for residual SeV 

constructs by RT-PCR and immunostaining with anti-SeV antibody. Then, the virus-free cell 

clumps from passage three were cultured in prime human ES cell medium under 20% O2 

culture conditions. Viral-Free (VF) iPS cell colonies were passaged two or three times and 

then tested for further appraisal of differentiation potential of the reprogrammed cell clones. 

We tried to induce pluripotency in adherent cells derived from CD34+ cells in Table 1. 
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Cell 
source 

Vector 
Infected 

cell 
numbers 

Infectivity
Substrate on 
cuture plate

Numbers of 
ES-like 
colony 

iPS cell clones 
characterized 

Fresh 
CD34+ CB 

SeV 1.0x104 20 
MMC-SNL 

cells 
5 5 

 

Clone # 
RT-PCT 

(undifferentiation) 
RT-PCT  

(differentiation) 
IHC Teratoma Karyotype 

#24  
 

#30   
 

#35     

#36  

#37      

: performed 

Table 1. Efficiency of induction of iPSC clones from cord blood cells with SeV vectors. 

2.1.3 Alkaline phosphatase and immunohistological staining 
Naive ES cell like- and prime ES cell like-colonies were stained with leukocyte alkaline 
phosphatase kit (VECTOR, Burlingame, CA) in accordance with the manufacturer’s 
instructions. Cells were fixed with 4% paraformaldehyde followed by immunostaining with 
a series of antibodies. Nuclei were stained with DAPI (1:1000, SIGMA). Photomicrographs 
were taken with a fluorescent microscope (Olympus BX51, IX71, Tokyo) and a visible light 
microscope (Olympus CKX31). 
Expression of CD34 and CD45 in mononuclear cells (MNC) from CB was determined by 
flow cytometry (middle). CD34+CD45low+ cells (0.2%) and CD34- CD45+ cells were 
fractionated by cell sorting and both were infected with SeV carrying four factors and GFP. 
Phase contrast microscopic and fluorescence photographs of CD34+ cells (right) and CD34- 
mononuclear cells (left) the day after infection are shown in lower panels.  
We found that the GFP+ population was selectively found in the CD34+ fraction the day after 
SeV infection (Fig. 2). This fraction corresponds to hematopoietic stem cells or progenitors, 
as reported elsewhere (27).  

2.1.4 Determination of SeV construct in naïve ES cell-like cells 
The remaining SeV constructs in naïve ES cell-like colonies were determined by RT-PCR and 
immunostaining. Using four temperature-sensitive Sendai viral constructs (SeV TS7) 
integrating Yamanaka’s transcription factor quartet (c-MYC, KLF4, OCT3/4 and SOX2), we 
were able to generate ES cell-like colonies from CD34+ CD45low+ CB cells. The protocol for 
generating iPS cells from CB cells with temperature-sensitive SeV vector is shown in Fig. 1. 
Naïve ES cell-like colonies were generated by culturing cells in naïve human ES cell medium 
under hypoxic conditions (5% O2). Merged dome-like colonies were picked up three weeks 
after SeV infection and subjected to heat treatment at 38oC to reduce the amount of residual 
SeV constructs. Remaining SeV constructs were detected by RT-PCR and immunostaining 
with anti-SeV antibody. Then, the cell clumps of “naïve" virus-free cell clones were 
transferred to conventional prime human ES cell medium and cultured under normoxic 
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Fig. 2. SeV selectively infects the CD34+ fraction of CB cells. 

conditions (20% O2) to convert cells to “prime” virus-free ES cell-like cells. We cannot 
maintain the naïve state for more than five passages due to the instability of pluripotency in 
naïve culture conditions and the tendency for spontaneous differentiation. In contrast, 
pluripotency in the prime state (like conventional human ES cells) was stable and we could 
maintain prime ES or iPS cells for more than 50 passages. Therefore, further appraisal of the 
differentiation potential of the reprogrammed cells was done in the prime state (Fig. 4A,B). 
Naïve ES cell-like clones from a single cell suspension were examined. Like mouse ES cells, 
emergent dome-like  colonies (P = 1) started to express SSEA-1 in the naïve stage (Fig. 3C, 
lower left ), but its expression ceased after shifting to the prime state (Fig. 3C, lower right). 
Expression of pluripotency-related molecules in the prime state was examined by 
immunostaining with a set of antibodies (Table 2). The presence of SeV constructs in the 
naïve reprogrammed cells was examined by RT-PCR at the single cell level (Fig. 3D). Heat-
treated naïve clones that were free of SeV constructs under hypoxic conditions (5% O2) were 
transferred to prime culture with a normoxic atmosphere (20% O2). These virus-free ES cell 
like-clones were expanded in conventional prime human ES cell culture for further 
appraisal of the differentiation potential.  
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Fig. 3. Elimination of SeV constructs as determined by RT-PCR and generation of naïve or 

prime iPS cells. 

A: Emerging naïve ES cell–like colony. Dome-like colonies emerged and were picked up 

(top left). Naïve ES cell-like colonies were seeded on MMC-SNL cells (passage one:  P = 1, 

top right). Naïve ES cell-like colony (P = 2, lower left). Cells in the center of the naïve colony 

(white arrow) started to differentiate at later passages (P = 6, lower right). B: The efficiency 

of generation of naïve ES cell-like colonies under hypoxic (black) and normoxic (white) 

conditions. The number of MMC-SNL cells seeded on 60 mm dishes and the number of ES 

cell-like colonies which emerged are scored on the X-axis and Y-axis, respectively. C: 

Staining of naïve ES cell-like colonies (left panels) and prime ES cell-like colonies (right 

panels). ALP staining of colonies on MMC-SNL (top left and right), phase contract 

observations of colonies on MMC-SNL (middle left) or Matrigel (middle right), colonies 

stained with DAPI (lower left) or immunostained with anti-SSEA-1 antibody (lower right). 

D: Detection of SeV construct in heat-treated clones by PCR. Picked colonies #24, #35, and 

#37 were subject to heat treatment (passage 2: P = 2) and subcloned. Subclones were named 

#24VF, #35VF, or #37VF (passage 3: P = 3). iPS cells generated from CB by retrovirus (ReV) 

and parent CD34+ CB cell were used as negative controls. % SeV+ in colony is the area 

positively stained with anti-SeV antibody divided by the total area of the colony calculated 

by two value recognition software (Adobe Photoshop). There was no difference in the 

frequency of emerging dome-shaped ES cell-like colonies in the naïve state from freshly 

isolated CD34+ cells and from frozen CD34+ cells.  
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Fig. 4. Expression of pluripotency-associated genes and molecules in established SeV-free 
iPS cell clones. 
A: Phase contrast images of a representative naive ES cell-like colony on MMC-SNL (P = 1: top 
left), after heat-treatment and recloning of a prime clone (SeV iPS #37VF, top middle) and its 
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ALP staining (top right). The expression of SSEA-4, Oct3/4, TRA-1-60, SSEA-3, Nanog and 
TRA-1-81 in the same prime clone (SeV iPS #37VF) was detected by immunohistochemistry. 
Alexa 594 (red) and Alexa 488 (green) conjugated secondary antibodies were used to visualize 
expression. B: Endogenous gene expression determined by RT-PCR. Sample description, 
pluripotency-associated genes, and lanes are indicated. CD34+ and CD34- CB cells were used 
for controls. C: Gene expression comparison of SeV iPS #37VF vs CD34+ CBC (upper panel) 
and SeV iPS #37VF vs human ES cell line KhES-3 (lower panel). Expression levels of 
pluripotency-related genes are marked in the panels. D: Karyotyping of SeV iPS #37VF. 

 

Antibodies supplier Cat No Dilution 

anti-Oct4 Santa Cruz sc-5279 1/ 100 

anti-TRA-1-81 Chemicon  MAB4381 1/ 200 

anti-TRA-1-60 Chemicon MAB4360 1/ 200 

anti-SSEA-3 Chemicon MAB4303 1/ 200 

anti-SSEA-4 Chemicon MAB4304 1/ 200 

anti-Nanog  Reprocell RCAB0003P 1/ 1000 

-fetoprotein(AFP)  R&D MAB1368 1/ 100 

vimentin Santa Cruz sc-5565 1/ 200 

-smooth muscle actin(SMA) SIGMA A-2547 1/ 400 

desmin  Dako  M0760 1/ 50 

beta-III tubulin  SIGMA T4026 1/ 200 

GFAP Santa Cruz sc-6170 1/ 50 

anti-SSEA-1  Santa Cruz sc-21702 1/100 

anti SeV HN DNAVEC IL4.1 1/100 

Alexa Fluor 488 goat anti mouse  Invitrogen A11001 1/ 1000 

Alexa Fluor 594 rabbit anti mouse  Invitrogen A11005 1/ 1000 

Alexa Fluor 594 goat anti rabbit   Invitrogen A11037 1/ 1000 

DAPI  Invitrogen D1306 5ug/ml 

Table 2. List of antibodies used for immunostaining 

2.2 Characterization of virus-free ES cell-like clones  
2.2.1 Reverse transcriptase polymerase chain reaction (RT-PCR) 
Total RNA was purified with RNeasy Mini kit (QIAGEN), according to the manufacturer’s 

instructions. One g of total RNA was used for reverse transcription reactions with 

PrimeScript RT reagent kit (TAKARA, Japan). PCR was performed with EXTaq (TAKARA, 

Japan). Total RNA from cell clones was extracted with the RNeasy minikit (QIAGEN). q-RT-

PCR was performed with an ABI PRISM 7000 (Life Technologies Japan) using SYBR Premix 

EX TaqTM (TAKARA, RR041A) in accordance with the manufacturer’s instructions. Primers 

are listed in Table 3.  

2.2.2 Gene Chip analysis and karyotyping 
Total RNAs from several established iPS cell clones, human ES cell line KhES-1, CD34- CB 

cells and CD34+ CB cells were purified with RNeasy Mini kit (QIAGEN) and hybridized 

with human Gene Chip (U133 plus 2.0 Array Affymetrix) according to the manufacturer’s  
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Primers   Size 
(bp) 

hOCT3/4-F1165  GAC AGG GGG AGG GGA GGA GCT AGG undifferentiated 
ES cell (endo) 

144 
hOCT3/4-R1283 CTT CCC TCC AAC CAG TTG CCC CAA AC 

hSOX2-F1430 GGG AAA TGG GAG GGG TGC AAA AGA GG undifferentiated 
ES cell (endo) 

151 
hSOX2-R1555 TTG CGT GAG TGT GGA TGG GAT TGG TG 

hMYC-F253 GCG TCC TGG GAA GGG AGA TCC GGA GC undifferentiated 
ES cell (endo) 

328 
hMYC-R555 TTG AGG GGC ATC GTC GCG GGA GGC TG 

hKLF4-F1128 ACG ATC GTG GCC CCG GAA AAG GAC C undifferentiated 
ES cell (endo) 

397 
hKLF4-R1826 TGA TTG TAG TGC TTT CTG GCT GGG CTC C 

DPPA4-F  GGAGCCGCCTGCCCTGGAAAATTC undifferentiated 
ES cell 

408 
DPPA4-R  TTT TTC CTG ATA TTC TAT TCC CAT 

REX1-F  CAG ATC CTA AAC AGC TCG CAG AAT undifferentiated 
ES cell 

306 
REX1-R  GCG TAC GCA AAT TAA AGT CCA GA 

NANOG-F  CAG CCC CGA TTC TTC CAC CAG TCC C undifferentiated 
ES cell 

391 
NANOG-R CGG AAG ATT CCC AGT CGG GTT CAC C 

hGAPDH F AAC AGC CTC AAG ATC ATC AGC 
control  337 

hGAPDH R TTG GCA GGT TTT TCT AGA CGG 

hBRACHYURY-
F1292 

GCC CTC TCC CTC CCC TCC ACG CAC AG 

mesoderm 274 
hBRACHYURY-
R1540 

CGG CGC CGT TGC TCA CAG ACC ACA GG 

hPAX6-F1206 ACC CAT TAT CCA GAT GTG TTT GCC CGA G 
ectoderm 317 

hPAX6-R1497  ATG GTG AAG CTG GGC ATA GGC GGC AG 

hSOX17-F423  CGC TTT CAT GGT GTG GGC TAA GGA CG 
endoderm 608 

hSOX17-R583  TAG TTG GGG TGG TCC TGC ATG TGC TG 

SeV vector F15204 GGATCACTAGGTGATATCGAGC 
SeV vectors 193 

SeV vector R15397e CATATGGACAAGTCCAAGACTTC 

Table 3. List of primers used to detect pluripotency-associated genes in reprogrammed cells. 

instructions. Karyotyping of established iPS cells was reported by Nihon Gene Research 
Laboratories, Inc. (Sendai, Japan). 
The expression of pluripotency-related molecules in the prime stage such as SSEA-4, SSEA-

3, TRA-1-60, TRA-1-81, Oct3/4 and Nanog were detected by immunostaining (Fig. 4A). 

Endogenous expression of pluripotency-related genes was determined by RT-PCR (Fig. 4B). 

Total gene expression profiles of the established iPS clone SeV iPS #37VF are compared with 

human ES cell line KhES-3 or CD34+ cord blood cells (Fig. 4C). Karyotype of the established 

iPS cell clone SeV iPS #37VF is presented (Fig. 4D). 

2.3  Differentiation assays of virus-free iPS cells in vitro and in vivo  
2.3.1 In vitro differentiation assay 
Established human ES cell-like clones were harvested using collagenase IV. Cells were 
transferred to six-well ultra-low attachment plates (Corning) and cultured in human prime ES 
cell medium without bFGF to form embryoid bodies (EB). The medium was changed every 
other day. The resulting EBs were transferred to gelatin-coated plates after eight days and 
cultured in the same fresh medium for another eight days. Three cell lines were tested for 
differentiation potential on gelatin coated dishes after EB formation (Fig. 5a). All of these 
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Fig. 5.  In vitro and in vivo differentiation potentials of established iPS cell lines. 
(a-g) Embryoid body-mediated differentiation of established iPS cells. All images shown are 
from cells derived from clone SeV iPS #35VF. Bright field images of embryoid bodies 
generated after eight days of culture (a). Embryoid bodies were transferred to gelatin dishes 
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and differentiated for a further eight days to induce either un-directed or guided 
differentiation (b-g). Phase contrast images of neuron-like cells (b) after differentiation on 
gelatin. Cells were fixed and stained with antibodies against GFAP (c), desmin (d), AFP (e), 

III-tubulin (f), and vimentin (g) to determine lineage-specific differentiation potential. (h) 
RT-PCR for lineage-specific differentiation of established iPS cell lines, SeV clones #35VF 
and #37VF. Retrovirally generated iPS cell clone R#23 from CD34+ CB cells was used for a 
control. (i) Teratoma formed from SeV iPS #35VF was injected into testis capsule. Teratoma 
had a cystic structure. The content of cysts is shown in the 1 mL syringe. (j) Hematoxylin 
and eosin staining of teratoma derived from iPS cells at low magnification. Histology 
showed derivatives of all three embryonic germ layers including bone-like (k: mesoderm), 
cartilage-like (l: mesoderm), gut-like epithelium (m: endoderm) and neural rosette-like (n: 
ectoderm) tissue. 

clones were able to give rise to cells from all three germ layers as evidenced by cell 
morphology (Fig. 5b) and immunocytochemistry (Fig. 5c-g). Upon differentiation, the presence 
of gene expression characteristic of all three germ layers was determined by RT-PCR (Fig. 5h). 

2.3.2 In vivo differentiation assay 
One million iPS cells were injected beneath the testicular capsule of SCID mice (SLC Japan) 
for teratoma formation. Tumor formation was observed 60 - 80 days after cell 
transplantation. Tumor tissues were fixed with 4% formalin followed by hematoxylin and 
eosin staining. Two lines were tested for teratoma formation and both cell lines formed 
teratomas with a cystic structure (Fig. 5i). HE staining of teratoma tissues (Fig. 5j - 5n) 
showed differentiated tissues corresponding to all three germ layers.  

3. Conclusions 

Reprogramming of somatic cells with SeV vector without DNA integration is advantageous, 

as it reduces the chance for tumorigenicity caused by random genomic integration. 

Advantages of using SeV vector over other non-integrating reprogramming methods such 

as using adenovirus, episomal plasmid vectors, conventional plasmid vectors, or small 

molecule delivery systems include superior reprogramming capability with potent protein 

expression potential (13). The remaining concern in using SeV vector is how we can confirm 

the removal of potent SeV vectors from reprogrammed cells. In this report, we used the 

temperature-sensitive SeV vector TS7 to reduce the number of SeV-infected cells. In 

addition, we made use of a single cell cloning technique in the naïve state to confirm the 

absence of SeV vector constructs in the reprogrammed cells at a single cell level. Therefore, 

this cloning technique provides an ultimate solution for RNA virus vector-based 

reprogramming methodology. 

The benefits of reprogramming somatic cells in the naïve state are not limited to a single cell 
cloning technology. It may provide answers to interesting questions like whether 
“standard” human iPS cells, having the correct epigenetic memory, can be generated by 
reprogramming somatic cells in the naïve state. Accumulation of epigenetic information 
before and after transferring to the naïve state would provide an answer to this question. 
Several reports showed that iPS cells can be preferentially generated from the CD34+ 
fraction of CB cells and peripheral blood cells with retroviral vectors (19, 26). In our 
experiment, we also showed that the SeV TS7-GFP vector selectively infects freshly isolated 
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CD34+ CD45low+ cells and is able to reprogram this fraction. These data suggested that the 
use of SeV would facilitate the effective generation of iPS cells from CB cells. However, the 
molecule(s) responsible for SeV viral entry into the cell is elusive. Hemagglutinin-
neuraminidase (HN), an envelope protein of Sev is reported to bind to sialomucin (28) and 
facilitate the cellular entry of virus. CD34 belongs to the sialomucin family. Although SeV is 
not able to infect CD34- cells from freshly isolated (non-cultured) CB cells, SeV is able to 
infect CD34- cells that have differentiated from CD34+ CB cells after seven days of culture in 
hematopoietic cell culture media. With limited information, we cannot conclude that CD34 
is the SeV entry molecule. Rather, it appears that a set of molecules other than CD34, 
expressed in CD45low+ cells, might be responsible for it.  
As a cell source for generating iPS cells, CB cells have certain advantages over other somatic 
cells. Unlike cultured cells or those obtained by biopsy from a variety of tissues at various 
ages, freshly isolated (non-cultured) CD34+ CB cells are the youngest stem cell population 
available following birth. They also have distinct genetic and epigenetic profiles as 
hematopoietic stem cells and progenitors and lack genetic alternations like rearrangements 
or possible post-natal genomic damage caused by UV irradiation or chemical irritants. 
Furthermore, generating iPS cells from this fraction would facilitate our understanding of 
the reprogramming process, since the genetic profiles of the cell source and the 
reprogrammed cells are known. Another advantage of using cord blood cells would be the 
possibility of collaborating with the existing world-wide network of public cord blood 
banks. Extensive discussions concerning the conditions and ethical issues are necessary 
before such clinical applications are pursued. Nonetheless, the use of CB as a source for iPS 
cells is a realistic option for generating “bona fide” iPS cells for future clinical use.  
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