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1. Introduction  

The family Flaviviridae includes human and animal pathogenic viruses of global importance, 
e.g. the human flaviviruses West-Nile virus (WNV), dengue virus (DENV), Japanese 
encephalitis virus (JEV), tick-borne encephalitis virus (TBEV) and yellow fever virus (JEV) as 
well as hepacivirus hepatitis C virus (HCV). This virus family was named after the jaundice 
occurring in course of YFV infection, the first identified virus of the Flaviviridae (Monath, 
1987; Halstead, 1992). In humans infections with Flaviviridae may lead to fulminant, 
hemorrhagic diseaes [YFV, DENV and omsk hemorrhagic fever virus (OHFV)], viral 
encephalitis [JEV, TBEV, WNV, St. Louis encephalitis virus (SLEV)] or chronic hepatitis C, 
formerly referred to as non-A, non-B hepatitis (HCV) (Monath & Heinz, 1996; Rice, 1996). 
Viruses belonging to the third genus, pestivirus, infect only animals, leading to severe 
disease of the host, usually followed by death [bovine viral diarrhea virus (BVDV), 
classical swine fever virus (CSFV) and border disease virus (BDV)] (Nettelton & Entrican, 
1995). 
The genus flavivirus consists of more than 70 species that are, on the basis of phylogenetic 
analyses, divided into 14 classes which in turn are grouped into three clusters: the mosquito-
borne cluster, the tick-borne cluster and the non-vector cluster. All flaviviruses of human 
importance are mosquito- or tick-borne viruses. They enter through the skin by the bite of 
an infected arthropod, proliferating locally and spreading through the blood circulation and 
cross the blood-brain barrier and finally entering the central nervous system. This fact is 
important for further pathogenesis and unfavorable clinical outcome of the infection (King 
et al., 2007). Most pathogenic flaviviruses are associated with neurological diseases. The 
mosquito-borne encephalitic flaviviruses are grouped phylogenetically in the Japanese 
encephalitis serocomplex. Most tick-borne flaviviruses cause encephalitis and are mainly 
spread through Europe and Asia. Approximately up to 200 million new cases of infections 
caused by viruses of the Flaviviridae family are registered annually. Up to date, there is no 
effective antiviral therapy directed against Flaviviridae viruses. 
Members of the family of Flaviviridae are small (40 to 50 nm), spheric, enveloped RNA 
viruses of similar structure. The genome of the viruses consists of one single-stranded, 
positive-sense RNA with a length of 9100 to 11000 bases [e.g. 10862 for YFV (strain 17D), 
10477 for Russian spring-summer encephalitis virus (RSSEV) and approx. 9100 for HCV]. 
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The RNA possesses a single open reading frame (ORF) flanked by 5’- and 3’- terminally 
located untranslated regions (5’UTR and 3’UTR respectively). In course of infection with 
flaviviruses the polyprotein is cleaved co- and post-translationally by proteases (Pryor et al., 
1998). The amino terminus of the polyprotein is processed into 3 structural proteins. The 
spheric nucleocapsid is composed of one viral capsid protein (C-protein). Furthermore, it is 
surrounded by a lipid bilayer that is acquired for the budding of the virus particle into the 
lumen of intracellular vesicles. The lipid membrane contains two species of glycoproteins. 
Protein M, processed from a larger precursor protein (Pre-M), and the envelope protein (E-
protein) form homodimers that determine the form of the virus particle. Beside the 
structural proteins the polyprotein is additionally processed into seven nonstructural 
proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) (Westaway, 1987; Leyssen et al., 2000; 
Monath & Heinz, 1996; Rice, 1996). Figure 1 presents, schematically, the structure of the 
flavivirus polyprotein. 
 

 
Fig. 1. Genome organization and functions of viral proteins. The polyprotein is co- and 
posttranslationally cleaved by host and viral proteases (as shown in the figure) into 
structural (light) and nonstructural (dark) protein. Putative functions of the viral proteins 
during viral replication are indicated 

2. Viral life cycle 

Genomic replication proceeds very similarly within the Flaviviridae family. After binding to 
the cell by specific receptors and entry of the virus via receptor-mediated endocytosis the 
viral RNA is uncoated by acid-catalyzed membrane fusion and translation is initiated by 
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cap-mediated processes. The viral RNA is translated into one viral polyprotein which is co- 
and posttranslationally cleaved by viral and host proteases. RNA synthesis occurs in 
cytoplasmic replication complexes localized at the perinuclear membranes. All NS proteins 
appear to be involved in RNA replication. The blockade of their activities leads to inhibition 
of the virus propagation. The genomic RNA is encapsidated into the core shell consisting of 
capsid proteins, enveloped by viral surface protein embedded cellular derived lipid 
membranes.  
 

 
Fig. 2. Flaviviral replication cycle. After binding of the virion to the specific host receptor the 
virus enters the cell via receptor-mediated endocytosis. The low pH in the endosomes 
mediates fusion of viral membranes with endosomal membranes and lead to release of viral 
RNA. The viral RNA is translated into one polyprotein and proteolytically processed. Virus 
assembly consisting of coating and formation of immature virion occurs at the ER. 
Maturation of the immature virion particle to the mature virion occurs in the trans Golgi 
network. Mature virions are finally released by exocytosis 

The virus particle is budded through intracellular membranes into cytoplasmic vesicles. By 
the cellular secretory pathway the virus particles are transported to the plasma membrane 
and undergo a maturation procedure. Virus release into the extracellular compartment is 
connected with fusion of the vesicles with the plasma membrane. Figure 2 presents the 
flaviviral life cycle. 
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3. Promising targets for antiviral therapy 

The presumed replication cycle of flaviviruses consists of: I) Adsorption and receptor-
mediated endocytosis; II) low pH-dependent fusion in lysosomes and uncoating; III) cap-
mediated initiation of translation of the viral RNA into viral precursor polyprotein; IV) co- 
and post-translational proteolytic processing of the viral polyprotein by cellular and viral 
proteases; V) membrane-associated synthesis of template minus-strand RNA and progeny 
plus-strand RNA; VI) assembly of the nucleocapsid, budding of virions in the endoplasmic 
reticulum (ER), transport and maturation of virions in the ER and the Golgi complex, vesicle 
fusion and release of mature virions. Some of these steps could be potential targets for 
antiviral compounds. 

3.1 Adsorption and receptor-mediated endocytosis  

To date a broad range of receptors for members of the Flaviviridae have been identified. 
Predominantly there are oligo- and polysaccharides, particularly heparin, heparan sulfate 
and glycosoaminoglycans (GAGs) (Lee & Lobigs, 2000). Nevertheless, in some cases 
membrane proteins, especially receptor proteins, serve as binding site(s) for viruses of the 
Flaviviridae family.  
The entry of flaviviruses into their target cells is mediated by the interaction of the E 
glycoprotein with cellular surface receptor molecules. Receptor usage is both cell type and 
virus-specific and contributes to host range, tissue tropism and viral pathogenicity. Highly 
sulfated, negatively charged glycosaminoglycans, such as heparan sulfate, can be utilized by 
several flaviviruses as low-affinity attachment factors that concentrate the virus on the cell 
surface (Agnello et al., 1999; Germi et al., 2002; Kroschewski et al., 2003; Lee & Lobings, 
2008; Chen et al., 2010; Kozlovskaya et al., 2010). Similar to observations made for other 
Flaviviridae, low-density lipoprotein receptor may play a role as an attachment receptor of 
nonheparan sulfate adapted JEV strains in mammalian cells, and might be responsible for 
the neurovirulence of the virus (Chien et al., 2008). For WNV and JEV, ┙v┚3 integrin has 
been documented as a functional receptor in permissive mammalian cells. Recent studies 
have reported that WNV entry into embryonic mouse fibroblasts and hamster melanoma 
cells is independent from ┙v┚3 integrin, suggesting alternative receptor molecules for 
different cell types or strain differences (Medigeshi et al., 2008). 
C-type lectin receptors (CLR) are host pathogen-recognition receptors (PRR) that are 
specialized in sensing invading pathogens. Several members of this family are highly 
expressed on myeloid cells, including monocytes macrophages and dendritic cells (DCs), 
and thus play a central role in activating host immune defenses (Robinson et al., 2006). 
Dendritic-cell specific ICAM-3-grabbing nonintegrin (DC-SIGN, CD209), one of the CLRs, 
possesses a critical function between viral replication in insect vectors and infection of the 
vertebrate host (Lozach et al., 2005; Navarro-Sanchez et al., 2003; Tassaneetrithep et al., 
2003). DC-SIGN is a tetrameric C-type lectin specialized in pathogen capture and antigen 
presentation and is constitutively expressed on DCs, including those residing in the skin, the 
anatomical site of initial infection (van Kooyk & Geijtenbeek, 2003). DC-SIGN recognizes 
carbohydrate structures present on flavivirus glycoproteins. The remarkable capacity of DC-
SIGN to distinguish between high-mannose glycans typical for insect-derived glycoproteins 
and the complex glycosylation of host-derived proteins (Lozach et al., 2005; van Kooyk & 
Geijtenbeek, 2003) implies that flaviviruses have evolved an elegant strategy to initiate 
infection of human cells by taking advantage of the ligand specificity of this PRR.  
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3.2 Low pH-dependent fusion in lysosomes and uncoating 

After the attachment of an enveloped virus to the cell surface receptors, the fusion of the 
viral envelope with the host membrane follows. This process is mediated by virus-specific 
fusion proteins that merge the viral and cellular membranes. The fusion proteins contain a 
striking motif, so-called fusion peptide, that becomes exposed in course of conformational 
changes, and is inserted into the target membrane. To date two different classes of fusion 
proteins have been described. The proteins (class I and II) differ dramatically in their 
structure and molecular architecture (Weissenhorn et al., 1999; Colman & Lawrence, 2003). 
The fusion protein of class I is represented by hemagglutinin of influenza virus and of other 
related viruses (Wilson et al., 1981; Weissenhorn et al., 1999). Class II fusion protein is 
represented by the E protein of flaviviruses (Modis et al., 2003). The fusion of the viral and 
host membranes may occur at neutral or alternatively at lowered pH in endocytic vesicles. 
Flaviviridae require acidic pH for successful fusion with the cell membrane, followed by 
uncoating of the virus (Bressanelli et al., 2004). As demonstrated for DENV-2 and TBEV at 
neutral pH, the envelope glycoproteins (in the form of homodimers or homotrimers, 
respectively) are so closely packed that the viral membrane is practically inaccessible and 
fusion does not occur. The lowered pH leads to changes of the conformation of envelope 
glycoproteins. In course of these conformational alterations, fragments of the surface area of 
the viral membrane will be exposed, making penetration of the virus particle into the cell 
possible (Bressanelli et al., 2004).  A major role in this process is given to several conserved 
histidine residues of protein E. Mutagenesis confirmed the function and importance of 
initial pH-sensing and fusion-protein refolding (Fritz et al., 2008; Harrison, 2008). 

3.3 Cap-mediated initiation of translation of the viral RNA into viral precursor 
polyprotein 

Signals required for replication of plus-strand RNA viruses are usually located in the 5'-
terminal regions of the template strands. They act as promoter elements for initiation of 
minus- and plus-strand RNA synthesis. In flaviviruses, the translation is initiated by a 
process called capping. The cap is an unique structure found at the 5´-terminus of viral and 
cellular eukaryotic mRNA, which is important for mRNA stability and binding to the 
ribosome during translation. The viral mRNA capping is a cotranscriptional modification 
resulting from three reactions mediated by viral enzymes: (1) 5´-triphosphate of the mRNA 
is converted to diphosphate by an RNA triphosphatase (encoded in the NS3 protein). (2) 
Transfer of guanosine monophosphate (GMP) from GTP to the 5´-diphosphate RNA to form 
a 5’-5’ triphosphate linkage, typical for cap structures. This reaction is mediated by a 
guanylyltransferase. (3) The transferred guanosine moiety is methylated at the N7 position 
by guanine-N7 RNA MTase and forms the cap0 structure m7GpppN (Egloff et al., 2002; Ray 
et al., 2006). A second methylation at the first nucleotide yields a cap1 m7GpppNm and 
additionally at the second to cap2 m7GpppNmNm. Sequence analysis revealed the presence 
of RNA GTase, N7 MTase and 2’-O MTase within the NH2-terminal domain of the NS5 
protein of flaviviruses.  

3.4 Co- and post-translational proteolytic processing of the viral polyprotein by 
cellular and viral proteases 

The flaviviral polyprotein is processed by host and viral proteases. The viral trypsin-like 
serine protease is localized at the NH2-terminal domain of NS3. The viral enzyme catalyzes 
the cleavages at C-prM, NS2A-NS2B, NS2B-NS3, NS3-NS4A, NS4A-NS4B and NS4B-NS5. It 
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has a preference for basic amino acids, like Arg-Arg, Arg-Lys, Lys-Arg or Gln-Arg) at 
position P1 and P2 followed by Gly, Ala or Ser at P1’ (Chambers et al., 1990). The host signal 
peptidase is responsible for cleavage at prM-E and E-NS1 (Speight et al., 1988; Nowak et al., 
1989; Falgout & Markoff, 1995). The NS3 protease activity is dependent from its cofactor, a 
40-amino acid region of NS2B. This protein fulfils the function of a chaperone, like 
stabilization of the latter protein, and is responsible for membrane association of the 
NS2B/NS3 complex. It was shown that a non-cleavable, soluble form obtained by 
substitution of the linker between NS2B and NS3 revealed a very active protease (Leung et 
al., 2001). From this results that the cleavage of NS2B-NS3 is not necessary for protease 
activity. Comparison of NS2B/NS3 full-length protein and NS2B/NS3 protease domain 
demonstrated the marginal influence of the NS3 nucleoside triphosphatase 
(NTPase)/helicase domain towards the protease activity. On the opposite site, the 
unwinding activity of the NS3 protein is significantly decreased by fusion with NS2B using 
DNA substrate (Chernov et al., 2008). Since this protein is essentially involved in the 
formation of the replication complex, it is an attractive target for potential antivirals. 

3.5 Metabolism of RNA - membrane-associated synthesis of templated minus-strand 
RNA and progeny plus-strand RNA 

The negative-stranded RNA of viruses is synthesized with the use of the parental positive-
strand RNA as template. The resulting negative-strand RNA is then used as template for the 
synthesis of the positive-strand progeny RNA, that is then assembled into viral particles. 
Since the negative and positive oriented RNA strands are complementary, the NS3-
associated helicase activity appears to be necessary for strand separation. NTPase/helicases 
are in general nucleoside triphosphate-dependent ubiquitous proteins, capable of enzymatic 
unwinding of double-stranded DNA or RNA structures by disrupting the hydrogen bonds 
that keep the two strands together. Approximately 80% of all known plus-strand RNA 
viruses possess at least one NTPase/helicase. The protein consists of three equally-sized 
structural domains separated by deep clefts. Domains 1 and 3 share with each other a more 
extensive interface than either of them shares with domain 2. In  consequence, the clefts 
between domains 1 and 2 and domains 2 and 3 are the largest. The domain 2 is flexibly 
linked to the other two and could undergo a rigid movement relative to domains 1 and 3.  
Domains 1 and 2 host seven conserved amino acid sequences, characteristic for the majority 
of known NTPase/helicases within superfamily II (Kadare & Haenni, 1997).  
Some of the motifs are attributed to defined function of the enzyme. The motifs I and II, so 
called Walker motifs A and B, have been described as a key part of the NTP binding pocket. 
Walker motif A binds to the terminal phosphate group of the NTP and the Walker motif B 
builds a chelate complex with the Mg2+ ion of the Mg2+ – NTP complex (Walker et al., 1982). 
In the absence of substrate, the residues of the Walker motifs bind one to the other, and to 
the residues of the conserved T-A-T sequence of motif III. This motif is part of a flexible 
‘‘switch sequence’’ connecting domains 1 and 2, which transduces the energy resulting from 
NTP hydrolysis and participates in the conformational changes induced by NTP binding 
(Matson & Kaiser-Rogers, 1990). 
Another main target for potential antivirals within the replication complex is the RNA-
dependent RNA polymerase. The enzyme facilitates the synthesis of both the negative-
strand RNA intermediate, complementary to the viral genome, and the the positive-strand 
RNA complementary to the negative-strand intermediate. The investigated fragment of NS5 is 
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folded in the characteristic fingers, palm, and thumb subdomains. The finger subdomain 
contains a region, the “fingertips”, that displays the same fold with reverse transcriptases 
(RTs). Comparison with the known structures of the RTs showed that residues from the 
palm and fingertips are structurally equivalent (Bressanelli et al., 1999). Conserved clusters 
between Flaviviridae, Picornaviridae families and retroviruses in defined regions of the 
molecular surface are: (1) the RNA and NTP binding groove, (2) the back of the thumb, (3) 
the NTP tunnel, and (4) acidic path at the top-front of the fingers. The back surface of the 
thumb could be conceivably a site of interaction with other components of the replication 
complex mentioned above or cellular proteins (Bressanelli et al., 1999). Due to the fact that 
human cells lack RNA-dependent RNA or DNA polymerases, this protein is the most 
promising and beside the protease activity best examined enzyme within the flaviviral 
nonstructural proteins. 

3.6 Assembly of the nucleocapsid, budding of virions in ER, transport and maturation 
of virions in the ER and the Golgi complex, vesicle fusion and release of mature 
virions 

Progeny virions are assembled by encapsidating the genomic RNA into the core shell of 
capsid proteins, enveloped by two viral surface proteins (prM and E) embedded into host-
derived lipid membranes. Although the intracellular assembly of flaviviruses is not 
completely understood, the viral morphogenesis takes place by budding through 
intracellular membranes into cytoplasmic vesicles (Heinz & Allison, 2003). Virus assembly 
intermediates or nucleocapsid particles during the replication process of the flaviviruses 
have rarely been visualized by electron microscopy, and viral particles first become visible 
at the intracellular membrane compartment in infected cells. A study using cryo-
immunoelectron microscopy has described the nucleocapsid particles of Kunjin virus. 
Intracellular viral particles appear to be present within the lumen of the rough endoplasmic 
reticulum, which are then transported to the plasma membrane via the cellular secretory 
pathway (Mackenzie & Westaway, 2001). During the transport to the plasma membrane, the 
intracellular viral particles undergo the maturation process. Glycans on prM and E proteins 
are modified by trimming and terminal addition of sugar residues (Mason, 1989; Heinz et 
al., 1994). The N-terminal fragment of prM is cleaved by furin or a related protease in the 
trans-Golgi apparatus, and this cleavage is prevented by elevation of the pH in acidic 
intracellular compartments (Heinz et al., 1994; Stadler et al., 1997). This prM cleavage is 
generally considered to distinguish extracellular viral particles from intracellular viral 
particles and is required for converting immature virions into mature virions characterized 
by the ability being highly infectious and to induce cell fusion (Allison et al., 1995; Elshuber 
et al., 2003). The uncleaved prM interacts with E protein, forms a fusion-inactive prM/E 
heterodimer, and keeps E protein from undergoing an acid-induced conformational change 
during the transport to the plasma membrane (Guirakhoo et al., 1991; 1992). Fusion of the 
vesicles with the plasma membrane releases the large amount of progeny virions into the 
extracellular compartment (Mason, 1989). 

4. Potential inhibitors 

4.1 Viral attachment and entry 

The lowered pH leads to conformational changes of envelope glycoprotein. In course of 
these conformational alterations, fragments of the surface area of the viral membrane will be 
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exposed, making penetration of the virus particle into the cell possible (Bressanelli et al., 
2004). In this context, it is likely that compounds or short peptides competing with the 
regions of E protein which mediate the low pH-induced rearrangements of the structure of 
the virus surface would be potential antivirals. Another mechanism of action of potential 
flavivirus inhibitors of fusion and uncoating could be a reduction of the pH-gradient 
between acidified and pH-neutral cell compartments. The macrolide antibiotic bafilomycin 
A1 (Baf-A1, Fig. 3), a specific inhibitor of vacuolar-type H(+)-ATPase, is commonly used to 
demonstrate the requirement of low endosomal pH for viral uncoating (Bayer, et al., 1998; 
Nawa, 1998; Natale & McCullough, 1998). Treatment of the cell with the compound induced 
complete disappearance of acidified cell compartments. The effect of Baf-A1 is 
concentration-dependent. As demonstrated for JEV growth in Vero cells, the rate of 
infection decreases proportionally to the degree of depletion of the pH-lowered 
compartments (Andoh, 1998). Nevertheless, there are indications that Baf-A1 acts 
additionally on further intracellular processes, like blockade of transport from early to late 
endosomes. Since the early endosomes are suspected to lack components essential for 
uncoating, this activity of Baf-A1 could result in a further antiviral mechanism of action of 
the compound (Bayer et al., 1998). 
Stem peptides and their interaction sites along the core trimer are potential targets for 
inhibition. The presence of a DENV derived peptide blocks infection by the flaviviruses 
DENV and WNV (Hrobowski et al., 2005). The hydrophobic pocket in the hinge region 
between domains I and II is thought to be a highly conserved structure amongst the 
flaviviruses. By virtual screening and followed biological tests Kampmann et al. identified 
two peptides (Fig. 3) which are able to block WNV and/or YFV infection with IC50 values in 
low micromolar range (Kampmann et al., 2009). 

4.2 Enzyme activities associated with NS3 and NS5 proteins 

The flavivirus proteases recognize cleavage sites containing dibasic amino acid residues (at 
positions P1 and P2) and a small amino acid side chain (position P1'). Therefore protease 
inhibitors like benzamidine and PMSF are inactive against flaviviral NS3 proteases. Several 
compounds capable of inhibiting the protease activity of NS3 have been identified. Some are 
short peptides that mimic the protease cleavage site, and thus competitively inhibit NS3 
protease activity by binding to its catalytic site. Recently, experiments using palmatine (Fig. 
3) as protease inhibitor showed inhibitory effects towards WNV (Jia et al., 2010). 
Using a high-throuput system and molecular modelling a substrate competitive inhibitor 
(Fig. 3) of the WNV protease activity was detected by Mueller et al. (Mueller et al., 2008). An 
extensive study of pyrazole derivatives (Fig. 3) showed effectiveness in low micromolar 
range (Sidique et al., 2009). These tested analogues possess higher stability in aqueous buffer 
then former tested compounds (Johnston et al., 2007). 
The NS3-associated NTPase is inhibited by a broad range of nucleotide analogues (Fig. 3) 
either with a modified nucleobase, e.g. ribavirin-5’-triphosphate, paclitaxel and some ring 
expanded nucleosides (RENs) triphosphates (Borowski et al., 2000; Borowski et al., 2002; 
Zhang et al., 2003a; Zhang et al., 2003b), or by nucleotide derivatives that possess a 
nonhydrolysable bound between the beta- and gamma-phosphates (unpublished data). 
Nevertheless, inhibition was mostly obtained under selective reaction conditions and the 
antiviral effect of the compounds as well as the exact in vivo mechanism of action is 
unclear. 

www.intechopen.com



 
Flaviviral Infections and Potential Targets for Antiviral Therapy 

 

97 

 
Fig. 3. Structures of antiflaviviral substances. Each panel shows inhibitors from different 
steps during viral replication: (A) entry, (B) polyprotein processing, (C) replication (NS3 
NTPase/helicase activity), (D) replication (NS5 MTase/RdRp activities), and (E) viral 
maturation and release 
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The second promising target for potential antivirals is the viral NS5 protein-associated 
methyltransferase. The majority of the viral and cellular methyltransferases could be 
inhibited by derivatives of S-adenosylmethionine (SAM), the S-adenosylhomocysteine 
(SAH) (De Clercq, 1993). In this context, specific inhibitors of a cellular SAH hydrolase 
might inhibit the replication of Flaviviridae RNA, as demonstrated for rhabdoviruses or 
reoviruses (De Clercq, 1993). Such substances have already been found. For example, 
neplanocin A (Fig. 3), a naturally occurring carbocyclic nucleoside, and related abacavir and 
carbovir, in which the absence of a true glycosidic bond makes the compounds chemically 
more stable, as they are not susceptible to enzymatic cleavage by SAH hydrolase (Song et 
al., 2001). A further possibility to inhibit the interactions between cap-structure and its target 
protein, eucaryotic initiation factor 4E (eIF4E), is the reduction of the affinity of the last to 
the ligand. There are findings suggesting strongly that this affinity is regulated by 
intracellular protein phosphorylation taking place in the cap-structure-binding pocket of 
eIF4E (Scheper & Proud, 2002).  
The majority of currently known HCV polymerase inhibitors fall into two main categories, 
according to their chemical structure and their mechanism of action. There are nucleoside 
analogue inhibitors and non-nucleoside inhibitors. Recently a third class of compounds, 
mimicking the pyrophosphate group and displaying an ability to inhibit RdRp, was 
separated. 
All nucleoside analogues appear to inhibit the polymerase activity in a similar manner. 
After penetration into the cell, the compounds undergo intracellular phosphorylation to 
the corresponding triphosphate. Subsequently the nucleotide analogues are incorporated 
by the viral polymerase into the growing nucleic acid chain. This leads, in turn, to an 
increased error frequency of the polymerase and, in consequence, to early termination of 
the elongation reaction. The second category of RdRp inhibitors comprises structurally 
and chemically heterogenous compounds, not related to the non-nucleosides or 
nucleotides. The substances are not incorporated into growing DNA or RNA strand. The 
compounds inhibit the polymerase indirectly by binding to the enzyme in a reversible and 
non-competitive manner. A third category of polymerase inhibitors consists of the 
chemically and structurally homogenous pyrophosphate mimics possessing a diketo acid 
moiety. The mechanism by which the compounds exert their inhibitory effect is the 
blockade of the active site of the enzyme. Thus, the binding of the phosphoryl groups of 
the nucleotide substrate is blocked and formation of complexes Mg2+-NTP or Mn2+-NTP is 
abolished. 
Recently, several small anti-WNV compounds were identified belonging to four different 
structural classes including pyrazolines, xanthanes, acridines, and quinolines (Goodell et al., 
2006, Fig. 3). 

4.3 Maturation and release 

Endoplasmic reticulum alpha-glucosidase inhibitors block the trimming stem in the course 
of N-linked glycosylation, and eliminate the production of several ER-budding viruses. The 
iminosugar derivative N-nonyl-deoxynojirimycin (Fig. 3) was found to inhibit the 
replication of JEV and DENV significantly (Wu et al., 2002). This effect was probably 
mediated by inhibition of secretion of the viral glycoproteins E and NS1. The latter protein is 
known to be essential for flavivirus replication (Lindenbach & Rice, 1997).  
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5. Conclusion 

Due to the fact that flaviviruses are arthropod-borne viruses their spreading around the 
world is difficult to control. Several strategies in case of YFV or DENV were successful for a 
short period but there is no way for complete eradication of all those arthropods. Especially 
the health infrastructure in most epidemic countries in South-East Asia, Africa or Latin 
America makes the fight against the arthropods and viruses difficult. 
Our aims for the future should be to force all strength to develop vaccines against the most 
severe infection which are available for people living in endemic areas of the world, not only 
for industrial countries. 
Until today no antiviral therapies are effective against flaviviruses. There is an urgent need 
for new molecules that block replication and/or modulate immune response. Much effort 
was done during last decades to resolve the virus structures and to examine their life cycles. 
Further step is the identification of potential antiviral targets. Screening of huge libraries of 
compounds for their inhibitory effect have been proven as the most promising strategy in 
the search of antiflaviviral therapy. Unfortunately, at the moment no candidates are 
detected possessing high activity on the one hand and being less toxic towards human cells. 
Furthermore, another problem which is already known from HIV therapy is the resistance 
development by viruses through mutation at the target site. 
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