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1. Introduction   

Research in Organic Light Emitting Diode (OLED) displays has been attaining greater 
momentum for the last two decades obviously due to their capacity to form flexible (J. H. 
Burroughes et al, 1990) multi color displays. Their potential advantages include easy 
processing, robustness and inexpensive foundry (G.Yu & A.J.Heeger, 1997) compared to 
inorganic counterparts. In fact, this new comer in display is rapidly moving from 
fundamental research into industrial product, throwing many new challenges (J. Dane and 
J.Gao, 2004; G. Dennler et al, 2006)  like degradation and lifetime. In order to design suitable 
structures for application specific displays, the studies pertaining to the device physics and 
models are essentially important. Such studies will lead to the development of accurate and 
reliable models of performance, design optimization, integration with existing platforms, 
design of silicon driver circuitry and prevention of device degradation. More over, a clear 
understanding on the device physics (W.Brutting et al, 2001) is necessary for optimizing the 
electrical properties including balanced carrier injection (J.C.Scott et al, 1997: A.Benor et al., 
2010) and the location of the emission in the device. The degradation (J.C.Scott et al, 1996; J. 
Dane and J.Gao, 2004) of the device is primarily caused by the moisture , which poses 
questions to the reliability and life of this promising display. How the device responds to 
different temperature ambience (T.W.Lee and O.Park, 2000) also attracts attention of 
researchers since its applications at cryogenic temperature are yet to be explored.  The basic 
device physics and modeling philosophies based on the mathematical formulations of its 
physical behavior are revisited in this article. Also it reviews the prominent ambient studies 
and the efforts to enhance the reliability of the device by new fabrication methods with 
inexpensive ways of encapsulation, making it suitable for long life display applications. 

2. Principle and physics of organic LEDs 

2.1 Device structure, principle 

The simplest structure of OLED is shown in fig 1. The Tris(8-hydroxyquinolinato) 
aluminium (Alq3) is an evaporated emissive layer on the  top of spun cast hole transport 
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layer Poly-(3,4-ethyhylene dioxythiophene):poly-(styrenesulphonate) (PEDOT:PSS). Indium 
Tin Oxide (ITO) and aluminium are the anode and cathode respectively. Charge injection, 
transport and recombination (I.H.Campbell et al,1996) occur in the light emitting conductive 
layer of organic light emitting diodes and its features influence efficiency and color of 
emission from the device. Besides the characteristics of light emitting organic layer, interface 
interactions  (P.S.Davids et al, 1996) of this layer with other layers in OLED play important 
role in defining the characteristics of the display. There have been innumerable studies on 
different aspects of PEDOT: PSS (L.S.Roman et al,1999;S.Alem et al,2004) enhancing the 
performance of photo cells and light emitting diodes. In practical implementations, more 
layers for carrier injection and transport are normally incorporated.  
 

 

Fig. 1. Structure of Organic Light Emitting Diode. 

 

 

Fig. 2. Injection, Transport and Recombination in PLED[15]. 

In Polymer Light Emitting Diodes(PLED), conducting polymers like Poly (2-methoxy, 5-(2-

ethylhexoxy)-1, 4-phenylene-vinylene (MEH- PPV) are used as the emissive layer in which 

dual carrier injection takes place (Fig. 2). Electrons are injected from cathode to the LUMO of 

the polymer and holes are injected from anode to HOMO of the conducting polymer and 

they recombine radiatively within the polymer to give off light (Y.Cao et al,1997). The 

fabrication of the device is easy through spin casting of the carrier transport layer and 

Electro Luminescent layer (MEH-PPV) for thickness in oA range. 
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2.2 Device physics 

For OLEDs, it is more often a practice to follow many concepts derived from inorganic 
semiconductor physics. In fact, most of the organic materials used in LEDs form disordered 
amorphous films without forming crystal lattice and hence the mechanisms used for 
molecular crystals cannot be extended. Detailed study on device physics of organic diodes 
based on aromatic amines (TPD) and aluminium chelate complex (Alq) was carried out by 
many research groups (W.Brutting  et al,2001).Basic steps in electroluminescence are shown 
in fig. 3 where charge carrier injection, transport, exciton formation and recombination are 
accounted in presence of built-in potential. Built-in potential(Vbi) across the organic layers is 
due to the different work functions between anode and cathode (I.H.Campbell et al,1996).  
 

 

Fig. 3. Basic Steps of Electroluminescence with Energy Band[4]. 

Built-in potential (Vbi) found out by photovoltaic nulling method, where OLED is 
illuminated and an external voltage is applied till photocurrent is equal to dark current 
(J.C.Scott et al,2000). Its physical significance is that it reduces the applied external voltage V 
such that a net drift current in forward bias direction can only be achieved if V exceeds built 
in voltage.Carrier injection is described by Fowler-Nordheim tunneling or Richardson-
Schottky thermionic emission, described by the equations 
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The current is either space charge limited (SCLC) or trap charge limited (TCLC).The 
recombination process in OLED has been described by Langevin theory because it is based 
on a diffusive motion of positive and negative carriers in the attractive mutual Coulomb 
field. To be more clear, the recombination constant (R) is proportional to the carrier mobility 
(W.Brutting et al,2000).  

 0[ / ][ ]h eR q      (3) 

Apart from the discussion on the dependence of current on voltage and temperature, the 

current has a direct dependence on the thickness of the organic layer and it was observed 

that thinner the device better will be the current output. Similar observations were also 
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made by the group on J-V and luminance characteristics of ITO/TPD/AlQ/Ca hetero 

junction devices for different organic layer thickness. The thickness dependence of current 

at room temperature  leads to the inference that the electron current in Alq device is 

predominantly space charge limited with a field dependent charge carrier mobility and that 

trapping in energetically distributed states is additionally involved at low voltage and 

especially for thick layers. The temperature dependence of current in Al/Alq/Ca device 

(from 120 K to 340K) indicates that device is having a less turn-on current at higher 

temperature and recombination in OLED to be bimolecular process following the Langevin 

theory.  The mathematical analysis of the device, considering traps and temperature has 

been a new approach in device physics.  

Towards the search of highly efficient device, the combining of Alq and NPB, with a 

thickness of 60nm for the Alq layer has been determined to yield higher quantum efficiency 

whereas thickness variation of NPB layer doesn’t show any measurable effect. 

The field and temperature dependence of the electron mobility in Alq leads to the delay 
equation (W.Brutting et al,2000) as  

 d

d
t

F  (4)  

where 

 biV V
F

d

 .   

The behavior of hopping transport in disordered organic solids has been better explained by 
Gaussian Disorder Model (H.Bassler,1993). The quantitative model for device capacitance 
with an equivalent circuit of hetero layer device gives more insight into interfacial charges 
and electric field distribution in hetero layer devices.  

The transport behavior in polymer semiconductor has been a matter of active debate since 

many theories were put forwarded by different groups. Charge transport is not a coherent 

motion of carriers in well defined bands - it is a stochastic process of hopping between 

delocalized states, which leads to low carrier mobilities 2( 1 / )cm Vs  (W.Brutting et 

al,1999). Trap free limit for dual carrier device was studied by Bozano et al,1999. Space 

charge limited current was observed above moderate voltages (>4V), while zero field 

electron mobility is an order of magnitude lower than hole mobility. Balanced carrier 

injection is one of the pre requisites for the optimal operation of single layer PLEDs. 

Balanced carrier transport implies that injected electrons and holes have same drift 

mobilities. In fact, it is difficult to achieve in single layer devices due to the predominance of 

one of the carriers and hence bi-layer devices are used to circumvent the problem. 

ITO/PPV/TPD: PC/Al devices fabricated where ITO/PPV is an ideal hole injecting contact 

for the trap-free MDP TPD: PC. Here ITO/PPV contact acts as an infinite, non depletable 

charge reservoir, which is able to satisfy the demand of the TPD: PC layer under trap-free 

space-charge-limited (TFSCL) conditions (H.Antoniadis et al,1994). Trap free space charge 

limited current (TFSL) [L.Bozano et al,1999) can be expressed as   

 2
0

9
/

8
TFSLJ E d   (5) 
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where 0  is the permittivity of vacuum,  is the permittivity of the polymer,   is the 

mobility of holes in trap free polymer, d is inter electrode distance(M. A. Lampert and P. 

Mark ,1970). Trapping is relatively severe at low electric fields and in thick PPV layers. At 

high electric fields, trapping is minimized even for thick PPV layers. 

The carrier drift distance x at a given electric field E before trapping occurs is given by 

x E   where   is the trapping time. The electron deep trapping product   determines 

the average carrier range per applied electric field before they get immobilized in deep 

traps. It is imperative that the difference in    values of electrons and holes in PPV ( 1210  

and 9 210 /cm v  respectively) reflects their discrepancy in transport. In fact, not the 

structure of PPV contributes to this difference, but oxygen related impurities in PPV (P.K. 

Konstadinidis et al,1994) with strong electron accepting character and reduction potential 

lower than PPV may act as the predominant electron traps and limit the range of electrons. 

The study of  temperature dependence of current density versus electric field for single 

carrier (both electron dominated and hole dominated) and dual carrier devices at 

temperatures 200K and 300K exhibits interesting results (L.Bozano et al,1999).  In both 

temperatures, the reduction in space charge due to neutralization contributes to significant 

enhancement in current density in dual carrier devices . Also it was deduced that the electric 

field dependence of the mobility is significantly stronger for electrons than for holes. The 

electric field coefficient   is related to temperature as per the empirical relation 

0(1 / 1 / )kT kT B    where B and 0T  are constants (W.D.Gill,1972).   In MEH-PPV devices, 

charge balance will be improved by cooling which in turn leads to enhanced quantum 

efficiency. By adjusting barrier heights, at the level of 0.1eV, quantum efficiency close to 

theoretical maximum can be achieved. In order to limit the space charge effects and hence to 

enhance the performance in terms of current density, the intrinsic carrier mobility to be 

taken care by modifying dielectric constant or electrically pulsing the device at an interval 

greater than recombination time. The other means of improvisation is aligning of polymer 

backbone, but such efforts may lead to quenching (L.Bozano et al,1998)  

2.3 Device models 

Device modeling is useful in many ways like optimization of design, integration with 

existing tools, prediction of problems in process control and better understanding of 

degradation mechanism. By modeling PLEDs current-voltage -luminance behavior, with 

which quantum and power efficiencies can be analytically seen, this in turn normally has to 

be subjected to experimental validation. 
Both band based models and exciton based models were proposed to explain the 

electronic structure and operation of polymer devices. Out of the two, there are more 

supportive arguments for band based model. I.D.Parker examined (I.D.Parker,1994) the 

factors that control carrier injection with a particular reference to tunneling, by 

experimenting on ITO/MEH-PPV/Ca device. The thickness dependability of current 

density with respect to bias and field strength are  shown in fig.4 and 5 respectively. It is 

obvious from these figures that the device operating voltage shall be reduced by reducing 

the polymer thickness. The field dependence of I-V behavior points to the tunneling 

model of carrier injection, in which carriers are field emitted through a barrier at 

electrode/polymer interface (fig.4). 
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Fig. 4. Thickness Dependence of the I-V Characteristics in ITO/MEH-PPV/Ca Device 
(I.D.Parker,1994). 

 

 

Fig. 5. Field v Current Dependence for ITO/MEH-PPV/Ca Device ((I.D.Parker,1994). 

For a clear understanding of the device physics and models, it is customary to fabricate 
single carrier and dual carrier devices. On replacing Ca, having low work function (2.9eV) 
with higher work function metals like In (4.2eV), Au (5.2eV), hole only devices can be made. 
This increases the offset between Fermi energy of cathode and LUMO of polymer which 
causes a substantial reduction in injected electrons and holes become dominant carriers. It is 
apparent that the external quantum efficiency reduces in single carrier devices. The current 
characteristics show only a slight dependence with temperature which is predicted by 
Fowler-Nordheim tunneling. 

   2 exp( )
k

I F
F

  (6)  

where F is the field strength The constant k is defined by 
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where   is the barrier height and *m  is the effective mass of the holes(S.M.Sze,1981). 

A rigid band model better explains experimental results where holes and electrons tunnel 
into the polymer when applied electric field tilts the polymer bands to present sufficiently 
thin barriers. Fig.6 clearly indicates how this model envisages tunneling of holes.  
 

 

Fig. 6. Band Diagram (in Forward Bias) for Model, indicating positions of Fermi Level for 
different electrode materials (I.D.Parker,1994). 

From the band based model and characterization, the improvements in device performance 
was suggested by I.D. Parker. Of the devices he made, ITO/MEH-PPV/Ca devices exhibit 
better results due to the reasons explained elsewhere. The device turn – on happens at a flat 
band condition and it is in fact the voltage required to reach the flat-band condition and it 
depends on the band gap of the polymer and work-function of electrodes. The operating 
voltage of the device is sensitive to barrier height whereas the turn-on voltage is not. 
From the equations mentioned before, an approximation for the current can be made as 

 
2

exp( )I
V

   (8) 

where V is the applied voltage and   is the barrier height. This prediction of barrier height 

dependence of operating voltage has been supported by experimental credentials. 
Efficiency of the device is a function of current density due to minority carriers, increasing 
barrier height leads to an exponential decrease in current and efficiency, which is shown in 
fig.7.Parker had suggested the suitable combination of electrode materials and polymers so 
that low turn-on voltage and operating voltage can be achieved. 
J.C.Scott et al(J.C.Scott et al,2000) contributed to unveil the phenomena like built in 

potential, charge transport, recombination and charge injection with a numerical model to 

calculate the recombination profile in single and multilayer structures. ‘Essentially trap free’ 

transport, Langevin mechanism for recombination and model of thermionic injection with 

Schottkey barrier at metal organic interface are the important features used by them. It is to 

be highlighted that charge trapping is neglected in the analysis and transport is described in 

terms of trap free space charge limited currents. Fowler-Nordheim mechanism was used to 

explain the injection, but by analytical methods and simulations, thermionic injection ( G.G. 

Malliaras ,1998) is said to best suit for explaining the injection in organic diodes. 
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Fig. 7. Device Efficiency v (Barrier Height)3/2 [I.D.Parker,1994). 

There are remarkable efforts (P.W.M.Blom & Marc J.M,1998) in characterization and 
modeling of polymer light emitting diodes. Their experiments on PPV devices, both single 
carrier and dual carrier devices, paved the way to the better understanding of mobility of 
electrons and holes. Electron only devices are fabricated by a PPV layer sandwiched 
between two Ca electrodes whereas hole only devices with an evaporated Au on top. For 
hole only devices, current density depends quadratically on voltage. 
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where p is hole mobility and L is the thickness of the device. Transport properties of the 

single carrier devices are described in detail with analytical expressions. Hole only device is 

having effect of space charge holes and electron only devices show trapping of electrons. For 

double carrier device, two additional phenomenon becomes important-recombination and 

charge neutralization. Recombination is bimolecular since its rate is directly proportional to 

electron and hole concentration. Without traps and field dependent mobility, the current in 

double carrier device is 
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where B is bimolecular recombination constant. (P.W.M.Blom & Marc J.M,1998). 
In PLEDs, conversion efficiency is dependent on applied voltage whereas in conventional 
LEDs, it is not. Temperature dependence of charge transport in PLEDs is investigated by 
performing J-V measurements on hole only and double carrier devices. Carrier transport 
strongly dependent on temperature (P.W.M.Blom et al, 1997) and the fig.8 explains the 
variation of current density with respect to applied voltage for different temperature. 
Also, the plot of bimolecular recombination constant B for different temperatures (fig.9) 
sheds light into the fact that recombination is Langevin type [31] and mathematically it is 
expressed in terms of mobility 
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Fig. 8. Experimental and Calculated (Solid lines) J-V characteristics in hole only (squares) 
and double carrier (circle) for different thickness (P.W.M.Blom & Marc J.M,1998).  

The enhancement of maximum conversion efficiency is by decreasing non radiative 
recombination and by use of electron transport layer which shifts recombination zone away 
from metallic cathode. 
 

 

Fig. 9. Temperature Dependence of Bimolecular Recombination Constant (P.W.M.Blom & 
Marc J.M,1998). 

Device model based on Poisson’s equation and conservation of charges was  more a 

traditional presenattion (Y.Kawabe et al,1998) in organic electronic devices. By assuming 

that recombination rate is proportional to collision cross section A, electric field, sum of 

mobility values of electrons and holes and the product of carrier densities, charge 

conservation equation has been rewritten as 

 
, ( )

( ) ( ) ( ) ( )
h e x

h e h e

dJ
A E x n x n x

dx
     (12)  

where + and – signs indicate electron and hole currents. 
By conservation law of the total current  

 ( ) ( ) 0( ) ( ) ( ) ( )h x e x h h e eJ J eE x n x eE x n x J     ,  (13) 
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with the boundary conditions given by current injection at both electrodes (Y.Kawabe et 
al,1998) . 
Besides, current density, relative quantum efficiency was calculated  by the model equation  

 
(0) ( ) ( ) (0)

0 0

h h d e d eJ J J J

J J
     (14) 

Here numerical values of the parameters are used to simulate J-V and quantum efficiency 

characteristics .Two devices-one with semiconducting polymer (BEH-PPV) and the other 

with dye doped polymer ( 3:PVK AlQ ) were fabricated by spin casting techniques and  

characterized. The results validate the model for the single layer devices and its suitability 

for complex devices is yet to be tested. 

The model is having the advantages of incorporating   charged traps as shown in equation 

below 

 
( )

[ ( ) ( ) ( )]h e t

dE x e
n x n x n x

dx q
    (15) 

where   indicates positive ad negative charges respectively. This sends limelight to the 

causes of degradation process in real devices due to the accumulation of electrons in the 

vicinity of the cathode. The inferences include low barrier height for low voltage operation, 

high mobility for high brightness devices and low electron mobility confines the emission 

region near the cathode and should be avoided to prevent electrode quenching.  

3. Ambient studies of organic light emitting diodes 

The temperature dependence of current density versus bias voltage exhibits interesting 

results in organic light emitting diodes. The studies made on four sets of devices namely 

Device A: ITO/PEDOT-PSS/MEH-PPV/Al, Device B: ITO/PEDOT-PSS/MEH-

PPV/LiF/Al, Device C: ITO/PEDOT-PSS/Alq3/Al and Device D: ITO/PEDOT-

PSS/Alq3/LiF/Al show the effects of temperature variation in their performance. The 

OLEDs were fabricated on ITO coated glass of surface resistivity in the range of tens of 

ohms. The standard cleaning procedure (] W. H. Kim  et al,2003) in deionized water, acetone 

and isopropyl alcohol were carried out. PEDOT:PSS and MEH:PPV were spun cast  on ITO 

coated glass for polymer devices. For fabricating small molecule based OLEDs, Tris(8-

hydroxyquinolinato) aluminium (Alq3) was vacuum evaporated at 10-6 torr by physical 

vapor deposition. The buffer layer of LiF was also vacuum evaporated in the devices where 

such caps were used to enhance the injection of carriers. The metallic cathode was also 

vacuum evaporated in all the four sets of devices.The J-V characteristics were plotted by 

using a Keithley 2400 Source meter interfaced to a computer.   Impedance versus frequency 

behavior was studied using Electrochemical workstation IM6 ex from Zahner, Germany. It 

also gives the plots of real versus imaginary impedances. The measurements from cryogenic 

temperature to room temperature were taken with the help of cryostat. The thickness of the 

evaporated as well as spun cast layers and refractive index of PEDOT:PSS film on ITO  were 

measured by Sopra make Spectroscopic Ellipsometer. The luminance behavior was observed 

with the help of a  fibre optic spectrometer Avantes. 
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3.1 Current density versus bias voltage 

The variation of current density with respect to the applied voltage explains the turn on 
phenomena of the device. Figures 10 and 11 show the J-V characteristics of  devices A, B, C 
and D respectively at a temperature varying from very low value of 100K to room 
temperature.  The devices A and B are having MEH:PPV as the emissive layer and their J-V 
characteristics are shown in figure  10a and 10b respectively. The devices C and D in which 
the emissive material is small molecule Alq3 exhibits a current variation as shown in figure 
11a and 11b respectively. 
 

 

Fig. 10. JV characteristics of Device A and B at different temperatures. 

 

 

Fig. 11. J-V Characteristics of Device C and D at different temperatures. 

The lowest voltage required [26] for the start of tunneling and hence the light emission is the 
‘turn on’ voltage. At very small forward voltage, tunneling doest not occur and it begins at 
the flat band condition. In fact, ‘flat band voltage’ is the energy gap minus the two energy 
offsets. The turn on voltage is a function of the energy levels of the polymer and considered 
to be independent of the polymer thickness. The emission from the device starts to occur at a 
point where the current starts to increase rapidly when plotted in linear axis. This is the 
‘operating voltage’ at which light emission becomes visible to the naked eye and it is a 
function of the thickness of the emissive layer.  
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In the device A, ‘turn on’ happens at 4volts at 100K and it gradually comes down at every 
fall of 50k and finally it reaches 2.2 volts at 300K. For the device where LiF buffer layer 
(device B) is used to catalyze the carrier injection, ‘turn on’ occurs  bit earlier than device A- 
2.8 volts at 300K and falls to 2.1 volts at 100K. It is obvious that the rate of this fall in device 
A is more than that of device B. The operating voltage also experiences a similar shift due to 
the variation in temperature-5.8 volts at 100K to 3.9 volts at 300K in device A and in the case 
of device B, it is 4 volts at 100K to 2.9 volts at 300K. A similar variation can be seen in 
organic light emitting devices also where Alq3 is the emissive material. 
In all the four sets of devices, it was observed that the ‘turn on’ occurs at smaller values of 
applied bias voltage in room temperature. As the temperature goes on decreasing, the turn 
on becomes slower and it becomes worst at the lowest temperature of 100K.   At lower 
forward bias Fowler Nordheim tunneling contributes to the device current whereas at 
higher bias voltages, space charge limited current (SCLC) governs the current. The current 
density in dual carrier device is a direct function of the product  and the sum of the 
mobilities of electrons and holes (P.W.M.Blom et al,1998) , which is clear from the eqn.10.  

 

1/21/2 2

3

2 ( )9

8

p n p n
o r

o r

q V
J

B L

       
            [10] 

On increasing the recombination constant B, the neutralization decreases which brings 
down the current density.The mobilities at lower temperatures substantially come down 
which contribute to the slower ‘turn on’ process at lower temperatures.  

3.1.2 Impedance characteristics 

Impedance spectroscopy is a powerful tool (Shun-Chi Chang et al,2001) to investigate the 

behavior of OLEDs when applied with an alternating input having a frequency ranging 

from tens of hertz to several hundreds of kilohertz with a small ac input signal like 100mV 

peak to peak and this can be performed in the presence or absence of a superimposing DC 

voltage. The use of lower excitation voltage could assure the quasi-equilibrium condition 

needed to carry out such experiments and probe charged states in the bulk. Further, small ac 

voltage without a superimposing DC voltage would ensure clear separation of bulk effects 

from interfacial effects.  By using spectroscopic investigations, real versus imaginary 

impedance can be derived which helps to evolve the electrical models of the device.  

The equivalent circuit of OLED is normally represented by a series resistance with a parallel 

combination of resistance and capacitance in the case of single layer devices. More RC layers 

to be included when more layers are added in the device. This is normally deduced from the 

real and  imaginary impedance obtained through impedance spectroscopy. The resistance 

and capacitance can be computed by fixing the points of series resistance (Rs) and the 

parallel resistance as shown in the figure 12. From the measurements of imaginary 

impedance (Z’’) the frequency corresponding to its maximum value can  be equated as ω = 

1/(Rp.Cp). From this equation value of Cp can be computed and the equivalent circuit is 

drawn as shown in figure 13.  It is to be highlighted that when PEDOT:PSS is used as hole 

transport layer in organic or polymer devices, the impedance spectra resembles to that of a 

single layer device giving only one semicircle in the Cole-Cole plot or only one peak in the 

imaginary impedance measurements. In the real versus imaginary impedance plot (Cole-

Cole plot), frequency is always an implicit variable. 
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Fig. 12. Deducing equivalent circuit from impedance plots. 

 

 

Fig. 13. Equivalent Circuit. 
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Fig. 14a. Impedance spectra of ITO/PEDOT:PSS/MEH:PPV/Al. 
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The qualitative difference between the device behaviors when subjected to a small excitation 
of 100mV peak to peak with no superimposing DC voltages at different  temperature is an 
interesting case to be analyzed. Figures 14 and 15 show the impedance spectra of the devices 
which use the polymer and small molecule electroluminescent layers in dual carrier 
injection devices. It is clear from the figure 14a and 14b that the device in which a buffer 
layer of LiF is used (device B) offers more impedance at the same frequency than the one 
without it (device A). 
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Fig. 14b. Impedance spectra of ITO/PEDOT:PSS/MEH:PPV/LiF/Al. 

 

10 100 1k 10k 100k 1M
10

100

1k

10k

100k

1M

 

 

Im
p

e
d

a
n

c
e
 O

h
m

s

Frequency Hz

 100K

 150K

 200K

 250K

 300K

 

Fig. 15a. Impedance spectra of ITO/PEDOT:PSS/Alq3/Al. 
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Fig. 15b. Impedance spectra of ITO/PEDOT:PSS/Alq3/LiF/Al. 

In both cases, impedance remains high for higher value of frequency and it comes down as 
temperature is lowered. The impedance falls at lower frequencies in device B than A.  
In the case of the devices which use small molecule Alq3 as emissive layer exhibits a higher 
impedance than that of MEH:PPV device in identical thickness of the layers. Here in low 
frequency regime of the spectra, the impedance remains constant for a smaller span of 
frequencies than that of the polymer devices. It is worth mentioning that the organic light 
emitting device which does not use a buffer layer of LiF offers less impedance than its 
counterpart which uses a buffer layer. At room temperature, the fall of impedance is faster 
for the device D. 
 

Temp. Value of Rs Value  of Rp Value of Cp 

100K 20Ω 23.35 KΩ 725 pF 

150K 40Ω 13.1 KΩ 16.6 nF 

200K 72Ω 7.78 KΩ 5.76nF 

250K 50Ω 5.8KΩ 9.68nF 

300K 60Ω 3.89 KΩ 144.6nF 

Table 1. Values of the Parameters in the Equivalent Circuit. 

A sample computation of the parameters in the equivalent circuit of the device shown in fig. 
14a is given in Table1. 

4. Encapsulation and reliability enhancement 

Ever since efficient organic light emitting diodes were reported (C.W.Tang et al,1989), there 
has been unending efforts for devising full color displays with the least degradation. 
Evolution of dark spots and consequent decay of device luminance were the reported 
(P.E.Burrows et al,1994) phenomena in degradation studies of organic luminescent devices. 
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No doubt, the degradation due to moisture poses threat in lifetime and performance  and 
this problem is worse in devices having flexible substrates since they are more permeable to 
moisture and oxygen to which organic materials are sensitive too. 
The first systematic study in this respect was from Burrows et al (P.E.Burrows et al,1994)   
and they had proposed encapsulation as a means of circumventing the decay of life time. 
Large area devices when operated for extended life, there has been occurrence of short 
circuits. Once the device is applied with a voltage, current in the range of tens of milli 
amperes is allowed to send through it and short circuit begins to develop. If a high current is 
applied for a short period, again it causes short circuit between electrodes. The formation of 
microscopic conduction paths through organic layers leads to burn out when high current is 
applied. These paths exist initially due to the non planarity at the interfaces, eventually 
leading to the formation of short circuits. Considering the sustainable features of the OLED 
devices, the encapsulation material (G.Dennler et al,2006) should be having low moisture 
absorption, low curing temperature, short curing time and transparent to visible light. A 
structure with an encapsulation proposed by Burrows et al is shown in figure 16. The device 
fabricated by conventional cleaning and coating procedures to be transferred from vacuum 
to a  glove box in nitrogen ambience. A thin bead of epoxy adhesive to be applied through 
syringe around the edges with care that adhesive doesn’t get in contact with the active 
layers. A clean glass of suitable dimension to be used for covering the top and UV curing 
can be used to ensure proper adhesion and connections from electrodes are to be taken out 
with thin Au bonding connected with colloidal silver solution.  
 
 
 
 
 
 

 
 
 
 
 

Fig. 16. Schematic on Encapsulation of OLEDs (P.E.Burrows et al,1994). 

www.intechopen.com



Organic Light Emitting Diodes:  
Device Physics and Effect of Ambience on Performance Parameters 

 

19 

Another method of encapsulation is based on physical lamination (Tae-Woo Lee  et al,2004) 
of thin metal electrodes supported by elastomeric layer against an electroluminescent 
organic is shown in figure 17. This method relies only on van der Waals interactions to 
establish spatially homogeneous, intimate contacts between the electrodes and the organic 
layers. 
 

 

Fig. 17. Soft Contact Lamination of OLEDS [Tae-Woo Lee et al,2004). 

The disruption at the electrode-organic interface can be substantially minimized with a high 
degree of protection against pinhole defects. This is better termed as soft contact lamination, 
which is intrinsically compatible with soft contact lithography which could very well be 
used for devices in nanometric regime. The encapsulation methods, however precise they 
are, induce morphological, physical or chemical changes in organic layers, which could be 
minimized by this soft contact lamination technique. 

5. Perimeter leakage 

Computation of leakage current is necessary for taking measures to gain control over it in 

order to enhance the performance of organic light emitting diodes. Not many number of 

studies have been reported so far in this regard and Garcia-Belmonte et al (Germa` Garcia-

Belmonte et al,2009) has made some pioneering works considering the structural aspects of 

organic light emitting diodes. No doubt, leakage current has a momentous role in the stand-

by life of the battery operated device and hence tracing its physical origin is equally 

important. The ohmic behavior in reverse biased and forward biased region (till built in 

voltage) is assumed to be linked to leakage current component too and hence total current 

density can be equated as  Jtot= Joper+Jleakage .The current till built in voltage has a 

predominant leakage component and after this point it is due to the applied potential. The 

surface roughness of Indium Tin Oxide Layer (K.B. Kim et al,2003) and the local damage of 

the organic layer induced during radio frequency sputtering of cathodes (] H. Suzuki & M. 

Hikita ,2003;L.S.Liao et al,1999) are assumed to have  links with the leakage paths. 
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