IMP3 and Malignant Melanoma

Mark J. Mentrikoski¹ and Haodong Xu²

¹Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
²Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA

1. Introduction

Malignant melanoma is the deadliest form of skin cancer arising from the abnormal proliferation of epidermal melanocytes. With the incidence and mortality from this disease rising, accurate histopathologic diagnosis is crucial. Most cases of melanoma can be appropriately diagnosed based on morphologic criteria, but a subset of lesions including Spitz and dysplastic nevi, can be difficult to distinguish from malignant proliferations. In addition, even though current immunohistochemical stains tend to be rather sensitive and specific for most types of malignant melanoma (S-100, Melan-A/MART-1, HMB-45 and tyrosinase), they are unable to distinguish malignant from benign melanocytes—a potential pitfall in architecturally and cytologically borderline cases, which can lead to inadequate treatment or surveillance. Also, the distinction between intranodal nevi and metastatic melanoma in sentinel lymph nodes is not morphologically straightforward in certain cases; however, the confirmative status of these lymph nodes is very important for clinical outcome and guiding treatment. Thus, finding a method to precisely distinguish melanoma from its benign mimickers is needed.

Despite advances in melanoma investigation and research, no reliable diagnostic biomarkers have yet been identified.

Another challenge in melanoma treatment is to determine patients’ prognosis. Currently, depth of invasion, tumor ulceration, and status of sentinel lymph node are three common objective measures of prognosis; with invasion greater than 1 mm, ulceration, and lymph node metastases portending a worse outcome. Other features, such as assignment of radial versus vertical growth phase, tumor infiltrating lymphocytes, and Clark’s levels, are also useful for prognosis, but tend to be more subjective. Thus, an immunohistochemical marker predictive of disease progression and poorer prognosis would be useful, to identify melanomas with a more aggressive phenotype.

1.1 IMP3

Insulin-like growth factor-II (IGF-II) messenger RNA (mRNA)-binding protein-3 (IMP3), also known as K homology domain-containing protein overexpressed in cancer (KOC) and L523S, is an mRNA-binding protein which has been considered to play a dual role in
both embryogenesis and tumor proliferation (Nielsen, Christiansen et al. 1999; Yaniv and Yisraeli 2002). IMP3 is a 580 amino-acid protein encoded by a 4350-bp mRNA transcript produced by a gene located on chromosome 7p11.5 (Mueller-Pillasch, Lacher et al. 1997). As a member of the IGF-II mRNA-binding protein (IMP) family, IMP3 is expressed in first trimester human embryos and term placenta (Yaniv and Yisraeli 2002). By binding downstream transcripts of IGF-II, IMP3 plays a role in early cell growth and proliferation through RNA trafficking and stabilization (Mueller-Pillasch, Pohl et al. 1999; Nielsen, Nielsen et al. 2001). After embryogenesis and development, IMP3 expression is detectable in occasional adult tissues, including the internal root sheath of hair follicles, germinal centers of lymph nodes (Figure 1B), patchy gastrointestinal tract and bronchiolar epithelium (Righi, Zhang et al.; Mueller-Pillasch, Pohl et al. 1999; Nielsen, Christiansen et al. 1999; Hammer, Hansen et al. 2005; Simon, Bourne et al. 2007; Xu, Bourne et al. 2007; Mentrikoski, Ma et al. 2009).

Fig. 1. IMP3 expression in lymph node germinal centers. A: Hematoxylin and Eosin stain shows normal lymph node with germinal center. B: IMP3 staining shows positivity in germinal center lymphocytes. C: Melan-A staining does not highlight any nodal elements. Original magnification is 100x for A, B and C.
In addition to its expression in fetal development, IMP3 has been detected in numerous malignancies including germ cell carcinomas, renal cell carcinoma, small and non-small cell lung carcinomas, urothelial carcinoma, endometrial serous and cervical carcinomas, Merkel cell carcinoma, extrapulmonary small cell carcinoma, various lymphomas, thyroid carcinoma, mammary breast carcinoma, colonic, gastric and esophageal adenocarcinomas, and osteogenic sarcoma (Asioli, Erickson et al.; Findeis-Hosey, Yang et al.; Jin, Seys et al.; Righi, Zhang et al.; Wang, Fan et al. 2003; Hammer, Hansen et al. 2005; Jiang 2007; Li, Rock et al. 2007; Simon, Bourne et al. 2007; Do, Kim et al. 2008; Li, Xu et al. 2008; Pryor, Bourne et al. 2008; Zheng, Yi et al. 2008; Jeng, Wang et al. 2009; King, Pasha et al. 2009; Li, Yan et al. 2009; Li, Huang et al. 2009; Lu, Vohra et al. 2009; Mentrikoski, Ma et al. 2009; Pryor, Simon et al. 2009; Slosar, Vohra et al. 2009; Walter, Prasad et al. 2009; Yuan, Wang et al. 2009). Moreover, IMP3 expression has been shown to be a marker of poorer prognosis with decreased overall survival in several tumors including renal cell carcinoma, mammary breast carcinoma, non-small cell lung carcinoma, and numerous gastrointestinal malignancies (Findeis-Hosey, Yang et al.; Jiang, Chu et al. 2006; Hoffmann, Sheinin et al. 2008; Kobel, Xu et al. 2009; Walter, Prasad et al. 2009). Furthermore, another member of the IMP family of proteins, IMP1, was found to be expressed in primary melanomas, and melanoma cell lines suggesting that these proteins may also play a role in melanoma oncogenesis (Thomas and Erickson 2008).

Although IMP3’s precise role in malignant transformation is as yet unknown, it has been shown to promote proper extra-cellular matrix formation, cell adhesion, and tumor invasion (Vikesaa, Hansen et al. 2006; Jeng, Chang et al. 2008), in various cell lines in vitro. These study results, combined with clinicopathologic evidence of a poorer prognosis in tumors with IMP3 overexpression, indicate that regardless of IMP3's exact role in primary oncogenesis, its expression in tumors indicates a more aggressive phenotype. Below we review the identification of IMP3 in cutaneous melanocytic lesions, including malignant melanoma, and discuss its role in the diagnosis and potential prognosis of these lesions.

2. IMP3 expression in cutaneous melanocytic lesions

Given IMP3’s expression in a plethora of different malignancies, our group hypothesized that IMP3 may be of value in segregating malignant melanoma from benign melanocytic lesions. This was proven to be the case in the original paper by Pryor et al. (Pryor, Bourne et al. 2008). In this study, 56 melanocytic neoplasms, including 11 benign nevi, 8 dysplastic nevi, 10 Spitz nevi, 17 primary melanomas, and 10 metastatic melanomas, were evaluated for IMP3 expression through immunohistochemistry. The results revealed that 23 of 27 melanomas (85%) showed moderate-to-strong staining for IMP3, while no benign or dysplastic nevi expressed IMP3. These findings were statistically significant ($P=0.0003$). Spitz nevi showed weak staining in 30% of lesions, which was also significantly less than melanoma ($P=0.0215$) (Pryor, Bourne et al. 2008). Interestingly, when the primary melanomas were subdivided by tumor thickness, IMP3 overexpression was noted to be stronger and more prevalent in tumors with >1 mm of invasion, which suggests that IMP3 may be a marker of melanoma progression. In addition, the results also showed that IMP3 is expressed in metastatic melanoma (Figure 2B) significantly more than in thin melanomas. Whether these findings of IMP3 expression are suggestive of a poorer prognosis, is currently being evaluated using long-term outcomes and survival data.
Fig. 2. Metastatic malignant melanoma in soft tissue is strongly and diffusely positive for IMP3. A: Hematoxylin and eosin staining shows metastatic malignant melanoma. B: Strong IMP3 positivity in melanoma cells. C: Strong nuclear immunohistochemical staining for S-100 in malignant melanoma. Original magnification is 200x for A, B and C.

A second study examining IMP3 and malignant melanoma was performed by Yu et al., and investigated its expression in atypical Spitz tumors, melanoma in situ (MIS), and desmoplastic melanoma (Yu, Xu et al.). The group confirmed the lack of staining in benign and dysplastic nevi, and only occasional, scattered staining in Spitz nevi. Atypical Spitz nevi showed weak to moderate staining in 7 of 10 cases. Desmoplastic melanoma showed overexpression in 4 of 23 (17%) of cases, similar to results obtained with other melanocytic markers (Busam 2005). In MIS, IMP3 staining was noted as isolated, single cells in 40% of cases; a similar percentage was observed in superficially invasive melanomas (<1 mm), but the positive cells had a more prominent, linear arrangement. Although the specificity of IMP3 detection in non-desmoplastic melanomas was less than the original study (50% vs. 85%, see above), there was nonetheless a significant difference between expression in melanoma compared to benign nevi ($P=0.0251$). As in the original study, the trend was for deeper non-desmoplastic melanomas to show stronger and more diffuse positivity than those with <1 mm of invasion.
2.1 IMP3 expression pattern in metastatic melanoma and intranodal nevi

Depending on the Breslow depth of a primary melanoma, sentinel lymph node biopsy is often performed for clinical staging and prognosis. In pathology departments and dermatopathology practice groups, it is not uncommon to stain sections of these sentinel nodes with various melanocytic markers in order to pick up metastatic melanoma cells. When benign, intranodal nevi occur in these specimens, the melanocytic markers will pick them up and can make diagnosis difficult if only a few cells are present. Although the clinical applicability of detecting these so-called micrometastases is debatable, accurate diagnosis is critical. As such, another study by our group was performed to see if IMP3 retained its ability to distinguish melanoma from benign nevi; and this time metastatic melanoma was compared to intranodal nevi (Mentrikoski, Ma et al. 2009).

A total 43 sentinel lymph node specimens were examined, including 30 with metastatic melanoma and 13 with intranodal nevi. The benign nevi were located both in the capsule (n=11) and trabeculae (n=2) (Figure 3). Melan-A was used as a general melanocytic marker, and both intranodal nevi and metastatic melanoma showed Melan-A diffuse and strong positivity (Figure 3C and 4C).

Fig. 3. Intranodal nevus is negative for IMP3. A: Hematoxylin and eosin staining shows a collection of small nevus in the trabeculae in the lymph node. B: IMP3 staining is negative in the benign nevi. C: The intranodal nevus is highlighted by Melan-A staining. Original magnification is 400x for A, B and C.
A diagnosis of melanoma was then made based on usual cytologic features. Examination of the same lymph nodes with immunohistochemistry for IMP3 revealed expression in 21 of 30 metastatic foci (70%) (Figure 4B) while no intranodal nevi showed positive staining (Figure 3B).

Fig. 4. Subcapsular deposit of metastatic melanoma is positive for IMP3. A: Hematoxylin and eosin staining shows a collection of malignant melanocytes within subcapsular area of the lymph node. B: Metastatic melanoma is positive for IMP3. C: Metastatic melanoma is highlighted by Melan-A staining. Original magnification are 400x for A, B and C.

The overall specificity and sensitivity in this study was comparable to the two previous cutaneous studies, and suggests that IMP3 has diagnostic utility in segregating benign nodal nevi from metastatic melanoma.

2.2 Comparing IMP3 to other common melanocytic markers
In general, the diagnosis of both cutaneous and metastatic melanoma can often be done on hematoxylin & eosin stained sections alone. However, there are many times when special and immunohistochemical stains are needed to aid in proper classification; IMP3 is just one of numerous such stains that can be used.
Although particular preference often varies amongst pathologists, and can be institutional-dependent, the immunohistochemical stains commonly used in the evaluation of questionable cases include S-100, HMB-45, and/or Melan-A. S-100 is considered the most sensitive marker (Nakajima, Watanabe et al. 1982; Ohsie, Sarantopoulos et al. 2008), but it is rather nonspecific; showing positivity in benign melanocytes, melanin-laden macrophages, dendritic cells, nerves, and adipose tissue. Both Melan-A (as used in our studies) and HMB-45 show increased specificities for melanocytes when compared to S-100, but with a loss of sensitivity in melanoma cases (Ohsie, Sarantopoulos et al. 2008). With regard to lymph node metastases, one study showed HMB-45 may be more helpful than S-100 or Melan-A, as it was typically negative in most benign nevic cell rests within sentinel lymph nodes (Lohmann, Iversen et al. 2002); yet, it should be noted that HMB-45 can still be positive in up to 16% of these cases, potentially leading to false positive results. (Abrahamsen, Hamilton-Dutoit et al. 2004).

Overall, it is evident that while there is not an exceedingly high sensitivity with IMP3, the specificity is such that it is able to discriminate between benign nevi and malignant melanocytes, in both cutaneous and metastatic lesions. Like some of the other immunohistochemical stains, specifically Melan-A and HMB-45, IMP3 is hurt by its low sensitivity. Therefore, although positive immunohistochemical staining with IMP3 can increase a pathologist’s confidence in the proper diagnosis of malignant melanoma, one needs to be aware of false negative results. The sensitivity and specificity of IMP3 immunohistochemical staining in malignant melanoma are summarized in table 1.

<table>
<thead>
<tr>
<th>Study</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pryor J. G. et al.</td>
<td>85%</td>
<td>100%</td>
</tr>
<tr>
<td>Yu L. et al.</td>
<td>50%¹</td>
<td>100%²</td>
</tr>
<tr>
<td>Mentrikoski M. J. et al.</td>
<td>70%³</td>
<td>100%³</td>
</tr>
</tbody>
</table>

Note: ¹Percentage includes only non-desmoplastic melanoma; ²percentage does not include staining in both Spitz or so-called atypical Spitz nevi; ³percentage includes metastatic melanoma in lymph nodes.

Table 1. Combined sensitivity and specificity of IMP3 immunohistochemical staining for the diagnosis of malignant melanoma versus benign or dysplastic nevi.

3. Conclusions

Although the histopathologic diagnosis of malignant melanoma can be straightforward, many borderline cases exist where objective means to determine the proper diagnosis are largely suspected. To date, no biomarker has been found with high specificity and sensitivity for distinguishing benign from malignant melanocytic proliferations. IMP3 immunohistochemical staining has been shown to have a high specificity for identifying malignant melanoma, and with its overall sensitivity of 70%, a positive immunohistochemical result can give the pathologist confidence when making a diagnosis of malignancy. In addition, IMP3 can also aid in sentinel lymph node biopsy interpretation when the differential is melanoma micrometastasis versus intranodal nevus. Future studies utilizing long-term clinical data will be needed to see if the trend of stronger IMP3 staining
in deeper, more advanced lesions correlates with poorer patient prognosis; and ultimately a more aggressive tumor phenotype.

4. References

This book titled Advances in Malignant Melanoma - Clinical and Research Perspectives represents an international effort to highlight advances in our understanding of malignant melanoma from both clinical and research perspectives. The authors for this book consist of an international group of recognized leaders in melanoma research and patient care, and they share their unique perspectives regarding melanoma epidemiology, risk factors, diagnostic and prognostic tools, phenotypes, treatment, and future research directions. The book is divide into four sections: (1) Epidemiology and Risk Factors of Melanoma, (2) Clinical Phenotypes of Melanoma, (3) Investigational Treatments for Melanoma and Pigmentary Disorders, and (4) Advances in Melanoma Translational Research. This book does not attempt to exhaustively cover all aspects of the aforementioned topics. Rather, it is a compilation of our authors’ pearls and unique perspectives on the relevant advances in melanoma during the recent years.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:
