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1. Introduction

Power transformers are some of the most important equipment for the transmission and
distribution of electric power. A single failure in a transformer causes disturbances in the
electric network and may cause severe conflicts in hospitals, banks, industrial installations or
urban areas in general.
In Mexico, the transmission network is composed by 350 power substations and 2,580
power transformers. The capacities of these transformers are typically 375, 225 and
100 MegaVoltAmpere (MVAS), with a nominal tension of 400 kV, 230 kV and lower.
Approximately 27% of these transformers have more than 30 years in operation. For this
reason, it is important to observe and register the amount and type of failures that have
presented the transformers in the country.
Table 1 shows the type of transformer failures from 1997 to 2007 (CFE, 2010).

Failure 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 Total

winding insulation 11 6 5 10 5 2 9 4 6 5 6 69
core 0 0 0 0 0 0 0 0 0 0 2 2

bushing 3 2 5 3 1 3 1 1 5 7 5 36
on load tap changer 2 0 2 2 2 2 1 1 2 3 1 18

explosion with fire 1 3 0 0 2 0 2 0 3 0 0 11
other failures 1 0 1 0 2 4 1 2 0 0 0 11

TOTAL 18 11 13 15 12 11 14 8 16 15 14 147

Table 1. Type of failures in transformers since 1997.

Notice that the highest percentage of failures corresponds to isolation in the windings.
Problems with insulation represent 80% of the failures for contamination, aging and core
insulation. Other causes can be overvoltage or short circuits. The insulation failures can be
slow degradation, while overvoltage and short circuits represent instantaneous failures. The
Mexican case is not unique. Failures in transformers in United States and Russia show similar

results.
All these common failures can be considered as mechanical failures, in contrast to other
chemical based failures. Consequently, mechanical failures cause vibration.
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2 Vibration Analysis

Literature reports different methods for the diagnosis of power transformers. Among the most
important are the following:

• dissolved gas analysis: analyzes the chemical composition of the isolating oil. Percentages
of different gases are found and tables provide a relation between these percentages and
the status of the transformer. It is widely used to detect all the faults related with oil.

• frequency response analysis: analyzes the transformer response given a voltage or current
excitation. The response is analyzed in the domain of frequency in magnitude and phase.
Later, this response is compared with known reference responses and then, a difference

from the correct operation can be detected. Also, a signature of certain faults can be
obtained and compared.

• partial discharge: utilizes acoustic sensors to detect the location of partial discharges
occurrence inside the transformer. A partial discharge is a transient electric discharge that
bridges the isolation gap between two conductors. It is then possible to detect deficiencies
in the transformer isolation.

An alternative method for detecting failures in transformers is the analysis of the vibration
produced inside the transformer due to its operation. Normally, the transformer produces
vibrations in the windings and the core, and these vibrations vary according to certain
operative conditions. Also, in the presence of mechanical failures, the vibration pattern is

different than in normal conditions. One advantage of this alternative method for detecting
failures, with respect to the mentioned methods is that it is possible to design an on-line
diagnosis system. This implies that the detection of the incipient failures can be achieved
at all times, while the transformer is working.
This chapter presents the development of a probabilistic model of the vibrations in a
transformer given all the possible combinations of operating conditions. The probabilistic
models are Bayesian networks (BN). The BN are directed acyclic graphs that represent the
probabilistic relation between the variables in a domain. In this case, we obtain a Bayesian
network that codifies the relation between the vibration signals with all the variables that
conform the operative conditions. The model is obtained using automatic learning algorithms
applied to historical data of the transformer working at different conditions. The BN is used
to calculate the probability of a failure, given the evidence from the operative conditions.
The next section establishes the central problem in this project, namely the vibrations in a
power transformer. Also, section 2 reviews reviews some of the related work reported in the
literature.

2. Power transformers

The transformer is an electrical device without moving parts, that is used to transfer energy
from one circuit to another through a common magnetic field, with no direct electrical
connection between the two circuits, (Harlow, 2007).
Basically consists of two or more windings (coils) and a common core of steel. When a voltage
is applied in the exciting coil, the coils exchange energy via magnetic induction that occurs

when an electric current variation in time is passed in one of them.
Figure 1 shows the idealized model of a two windings transformer with steel core. When
applied an alternating voltage (V1) to the exciting winding, a current (I1) flows and generates
a magnetic flux (φ). The flux circulates in the steel core so that the voltage (V2) is induced
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Probabilistic Vibration Models in the Diagnosis of Power Transformers 3

in the second winding. The ratio of applied voltage and induced voltage ideally depends
on the number of turns of each coil. For example, if the number of turns in the primary
winding is twice that of the secondary winding, then the voltage V2 induced in the secondary
is half of V1. This considering that almost 100% of the flow is driven by the core. In power
transformers is commonly used steel laminated core for high capacity that has to drive the
magnetic flux (steel core laminated from very thin sheets, such as .23 mm for reduced eddy
and hysteresis losses). The ability of a material to conduct magnetic flux is called permeability.
Currently, there are electrical steels for power applications with permeability in the order of
1,500 compared with 1.0 for air.

Fig. 1. Ideal transformer: two coils applied on steel core.

Transformers can be classified according to their application, construction or power
capabilities. In the electricity transmission process, the utilized power transformers are
characterized by the high levels of voltage and current that they handle. Power transmission
requires power transformers to transmit energy from voltage production centers over long
distances to consumption areas. Here, power transformers decrement the voltage down again
for distribution to consumers. The distribution process requires transformers with less voltage
and current. They are called distribution transformers.
For the design and construction of power transformers, regardless of size and power, various
materials are used such as:

• Thin magnetic steel plates in the core.

• Copper or aluminum as conductor material in the coils (see Fig. 2).

• Cellulose products like high density paper and pressboard as solid insulation material.

• Mineral oil as liquid insulating material, which also functions as a coolant.

• Steel for the tank.

Additionally, the transformer has several external accessories such as (see Fig. 3):

• Radiators, fans and oil circulating pumps for the cooling function.

• Bushings as an insulating structure, for connection of windings to the outside.

• Oil temperature indicators.

• Oil Level Indicator
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4 Vibration Analysis

Fig. 2. Inner part of the transformer. The core and coils assembly is shown at the
manufacturing stage. (Courtesy of Prolec GE ).

• Pressure relief devices.

• Winding temperature indicator.

• Sudden pressure relay.

• Desiccant breathers.

• Liquid preservation systems.

2.1 Vibration in transformers

Transformers always vibrate while operating. Vibration can be detected at different
frequencies, in different places of the transformer and caused by different sources. According
to the literature, vibration below 100 Hz. is caused by cooling fans and oil pumps. Vibrations

above 1000 Hz. are caused by small elements not related to the state of the core or
winding (Golubev et al., 1999). Thus, the vibration frequency range of interest in transformer
diagnosis is between the power frequency of 60 Hz (50 in Europe) and multiples of this up to
960 Hz.
In normal operating conditions, the main sources of vibration are the core and the winding
of the power transformers. This vibration is transmitted to the transformer tank through the
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Probabilistic Vibration Models in the Diagnosis of Power Transformers 5

Fig. 3. Power transformer at the electrical substation. (Courtesy of Prolec GE ).

cooling oil and through the solid structure. Different levels of vibration can be measured at
different locations of the transformer.
Vibration in the winding is caused by Lorenz forces that depend on the current density
and the leakage flux density. Since the leakage flux and the current density have different
directions, the winding force density has components in the radial and axial directions. Also,
both components are a function of loading current, so the total Lorenz forces are quadratic
functions of the current. It is worth to mention that the vibration caused by the winding is not
too significant under normal operating conditions, but it is significant under several kinds of
failures.
Vibrations at the core are caused by the magnetostriction process. It consists of changes
of the dimension of core laminations, made by ferromagnetic materials, due to changes of

orientation of the material crystals for magnetic fields. Thus, magnetostrictive effects are
function of the magnitude of the applied field. Also, it is known that these magnetostrictive
forces have a fundamental frequency of 120 Hz. i.e., twice the exciting frequency. Other source
of core vibration is the air gap produced by the magnetic repulsion among laminations. This
repulsion forces are mostly present at the corner joints of the core legs with the jokes, and it
has also a fundamental frequency of 120 Hz (Lavalle, 1986).
In case of a failure like a short circuit, the mechanical integrity of the transformer can be
altered. Certain changes, such as loss of winding clamping pressure, will lead to insulation
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6 Vibration Analysis

deterioration, and therefore, the vibrational response will be altered. In general, most of the
failures occurring in the transformer, produce mechanical deformations in the winding, and
hence, a change in the vibrational signature of the transformer. Typical failures occurring
at the transformer core are caused by short circuits between core laminations or between
the core and the tank. Since the tank is grounded, if several contact points between core
and tank exist, a current will flow and temperature will rise. Also with laminations short
circuits, the temperature increases. In general, temperature changes will produce changes
in the insulation system that will produce mechanical changes that provoke changes in the
vibrational signature of the transformer.
Summarizing, most of the failures in the winding and core of the transformer, will produce
mechanical changes and will turn out in changes in the vibration pattern of the transformers.

2.2 Related work in transformers diagnosis by vibrations

Several technical groups have worked in the study of vibrations for identifying and
diagnosing mechanical faults. The basic approach followed by all the research groups is
the development of a model that represents the behavior of the transformer under different

conditions. Later, when new readings are obtained, the model estimates or predicts the
behavior of the transformer and a comparison with the current behavior can identify abnormal
events. The key question here is how can this model be defined?. This question has been answered
differently by some research groups.
The Electrical Engineering and Computer Science Department at the Massachusetts Institute
of Technology (MIT) elaborated a series of Master of Science thesis devoted to the
development of vibration models for faults identification in transformers (Crowley, 1990;
Lavalle, 1986; McCarthy, 1987). First, they utilized an analytical model that relates the
harmonic content of one input (square of the current) to one output (the vibration in the
winding). The basic model has the form y = Cu where y is a vector whose components
are the amplitude of the vibrations discomposed at frequencies multiple of 120Hz. u is the
current squared vector at the some frequencies and C is the matrix with parameters that relate
them. The elements cij of C are estimated in a set of experiments made to a transformer free
of faults at different conditions of load. For a given load condition, and for each frequency,
several measurements were averaged and related with a Least-Squares algorithm to define
the cij parameters. Other experiments were made to relate effects of the temperature in the

same structure of measures. A third set of experiments was carried out in presence of a fault:
a loosened up the windings. Other experiments consider the effects of the core vibrations
in the winding vibrations. When both the winding and the core are excited simultaneously,
the sources of vibration may have phase differences. They proposed a model that includes
linear compensation for winding temperature, weighted by the harmonic amplitudes of the
loading current squared, and linear compensation terms for core temperature and excitation
voltage. Summarizing, the MIT theses propose a model that requires the acquisition of certain
parameters from experiments implemented off-line. Later, these parameters are compared
with the on-line parameters to detect changes in the normal behavior of the transformer.
Spanish Unión Fenosa proposes a model that is also based on vibrations (García et al.,
2006a;b). They measure vibrations at the tank of the transformer, claiming that the vibrations
are transmitted to the tank from two sources: the winding and the core. Thus, the vibration at
the tank results from the vibration of the windings plus the vibration of the core, multiplied
by a coefficient of transmission. The winding vibration is proportional to the square of the
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Probabilistic Vibration Models in the Diagnosis of Power Transformers 7

current, and the vibration at the core is proportional to the square of the voltage. They also
consider the temperature of the transformer as an important parameter in their model, so
they complemented their analytical model with complex variables that represent the real and
imaginary part of the amplitude of the vibration, the current and the voltage respectively, at
the main frequency component. Other parameters are the oil temperature, and the geography
of the transformer. These parameters must be defined through measurements taken off-line
for each kind of transformer. Their diagnosis method consists of the estimation of the tank
vibration and its comparison with the real measure. If the difference is greater that certain
threshold, then a fault is detected.
The Russian experiments (Golubev et al., 1999) install accelerometers in both sides of the
transformer in order to acquire vibration measurements while the transformer is working
properly. They executed two sets of experiments. In the first experiments, no load is included
in order to detect the vibration pattern due to the core. In the second set of experiments,
load is included for detecting vibration from both, core and winding. Thus, they subtract
the effect of both minus the effect of the core to deduce the effects of the winding. With

this information, they calculate four coefficients that reflect the clamping pressures. If these
coefficients exceed 90%, then the clamping pressure is in a good state. Between 80% and
90%, the pressure is in a fair state but the transformer can continue operating. Below 80%,
the pressure is critical and requires immediate attention. This approach has been tested in
more than 200 transformers 110-500 kV to 50 MVA in Russia with a rate of more than 80%
confirmed diagnosis. Also, Manitoba Hydro power plants in Canada tested their large power
transformers with this methodology with good results.
The approaches commented above, and our approach have similar basis. All utilize vibration
measures in the tank of the transformer. All transform the vibration signals to the frequency
domain in order to process the vibration components at the different frequencies. All
propose a model that is utilized to estimate vibration amplitude values, and then compare
with real measurements in order to detect changes in the behavior. In the revised work,
models are deduced with analytical equations to define certain parameters that have to
be acquired off-line over a testing transformer. Experiments are required over different
operating conditions and also, in presence or absence of different faults. All these approaches
deduce a general model for all kind of transformers where the experiments define the specific

parameter for each kind of transformer.
The approach proposed in this chapter also utilizes a model. However, this model
represents the probabilistic relations between condition operational variables and vibration
measurements. This implies some special advantages:

• several automatic learning algorithms are available for model construction,

• empirical human expertise can be included in the models,

• the models can be adapted constantly for each kind of transformer in its real operational
condition. This means that the diagnosis may still work even if the transformer is old and
vibrates more that when new, but still working properly.

• other sources of information can be included, for example, structural characteristics of a
transformer.

The next section describes basis for the proposed model.

109Probabilistic Vibration Models in the Diagnosis of Power Transformers

www.intechopen.com



8 Vibration Analysis

3. Probabilistic modeling

The basic idea in this work is the representation of the vibration behavior of the transformer
under different operational conditions. This allows detecting deviations of the normal
behavior of the transformer. Therefore, the idea is to calculate the probability of an abnormal
behavior, given the operational conditions and the vibration measured. The representation of
the behavior is built using probabilistic models and specifically Bayesian networks.
The basic idea is the following. Calculating the probability of an abnormal behavior
(hypothesis H) can be made using the evidence recollected (E) and the Bayes theorem as
follows:

P(H | E) =
P(E | H)P(H)

P(E)
(1)

For example, if we want to calculate the probability of a windings loosened up hypothesis
(P(H | E)) given that we observe high vibration as evidence, we could easily calculate by
counting the times that we observe high vibration given that we knew that the transformer

has loosened up windings (P(E | H)). However, if multiple hypotheses exist, and multiple
evidence can be obtained, then the Bayes theorem in this form is not practical. What is needed
is a practical representation of the dependencies and independences between the variables in
an application. This representation is formed by the Bayesian networks (BN).
Formally, a Bayesian network is defined as a directed acyclic graph, whose nodes represent
the variables in the application, and the arcs represent the probabilistic dependency of
the connected nodes (Pearl, 1988). The Bayesian network represents the joint probability
distribution of all variables in the domain. The topology of the network gives direct
information about the dependency relationship between the variables involved.
As an example, assume that some application deals with the following variables: temperature
(temp), excitation with voltage (voltage), load (load), amplitude of the acceleration (amplitude)
and frequency (freq). Suppose for this example that voltage excitation of the transformer
produces an increase of the temperature and a variation on the load fed. Also, the load
produces an increment on the acceleration and variations of the frequency of this acceleration.
This knowledge can be represented in a Bayesian network as shown in Fig.4. In this case,

the arcs represent a relation of causality between the source and the destination of the arcs,
according to the text above. Variables load and temperature are probabilistically dependent of
variable voltage. Also, variables frequency and amplitude are dependent on load. Notice that
besides the representation of the dependencies, the representation of the independences is an
important concept in BN. In this example, frequency is probabilistically independent of voltage
given load. Also, amplitude is independent of temperature.
Using the dependency information represented in the network, and applying the chain rule,
the joint probability function of the set of variables in the application is given by:

P(t, l, v, f , a) = P( f req | load)P(amplitude | load)P(load | voltage)P(temp | voltage)P(voltage)

This corresponds to the product of P(nodei | parents(nodei)).
Besides the knowledge represented in the structure, i.e., dependencies and independencies,
some quantitative knowledge is required. This knowledge corresponds to the conditional
probability tables (CPT) of each node given its parent (corresponding to the term P(E | H)
in the Bayes theorem) and a-priori probability for the root nodes (corresponding to the term
P(H) in the Bayes theorem).
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Probabilistic Vibration Models in the Diagnosis of Power Transformers 9

Fig. 4. Example of a Bayesian network with 5 variables.

Thus, a complete probabilistic model using Bayesian networks is formed by the structure of
the network, and the CPT tables corresponding to each arc, and a-priori vectors corresponding

to the root nodes (nodes without parent).
One of the advantages of using Bayesian networks is the three forms to acquire the required
knowledge. First, with the participation of human experts in the domain, who can explain the
dependencies and independencies between the variables and also may suggest the conditional
probabilities. Second, with a great variety of automatic learning algorithms that utilize
historical data to provide the structure, and the conditional probabilities corresponding to
the process where data was obtained (Neapolitan, 2004). Third, with a combination of the
previous two, i.e., using an automatic learning algorithm that allows the participation of
human experts in the definition of the structure.
Once that the probabilistic model has been constructed, it can be used to calculate the
probability of some variables given some other input variables. This consists of assigning
a value to the input variables, and propagating their effect through the network to update the
probability of the hypotheses variables. The updating of the certainty measures is consistent
with probability theory, based on the application of Bayesian calculus and the dependencies
represented in the network.
For example, in the network in Fig. 4, if load and temp are measured and freq is unknown, their

effect can be propagated to obtain the posterior probability of freq given temp and load.
Several algorithms have been proposed for this probability propagation. For singly connected
networks, i.e., networks in what all nodes have at most one parent as in Fig. 4, there is
an efficient algorithm for probability propagation (Pearl, 1988). It consists on propagating
the effects of the known variables through the links, and combining them in each unknown
variable. This can be done by local operations and a message passing mechanism, in a time
that is linearly proportional to the diameter of the network. The most complete and expressive
Bayesian network representation is multiply connected networks. For these networks, there
are alternative techniques for probability propagation, such as clustering, conditioning, and
stochastic simulation (Pearl, 1988).
This project obtains historical data from different accelerometers collocated in different parts
of the prototype transformer. The transformer is operated at different conditions of load,
temperature, and excitation. The data acquired is fed to an automatic learning algorithm
that produces a probabilistic model of the vibrations in the transformer working under
different conditions. Thus, given new readings in a testing transformer, the model calculates
through probabilistic propagation, the probability of certain vibration amplitudes at certain
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10 Vibration Analysis

frequencies. Therefore, a deviation of this behavior can be detected when reading the current
values of acceleration and frequency. The next section explains this process detailed.

4. Probabilistic vibration models

Two approaches were considered for the diagnosis of transformers based on vibration signals.
The first approach consists of inserting failures in a transformer and measures the vibration

pattern according to the operational conditions. The diagnosis becomes a pattern recognition
procedure according to the set of failures registered. Some examples of common failures are
loosening the core or loosening the windings. These failures are similar to those failures
caused by strikes or short circuits. The second approach consists of the measurement of
vibration signals of a correct transformer working at different operational conditions. These
measures allow the creation of a vibrational pattern of the transformer working properly. Only
one model is obtained in this approach. Only measures in a correct transformer are required.
As a consequence, this second approach is reported in this chapter, i.e., the construction of a
model for the correct transformer.
Additionally, two sets of experiments were conducted. In the first, experiments considered
the operational tests performed at the factory in the last steps of the construction of the
transformers. These tests increments the number of factory acceptance tests (FAT). The second
set of experiments considers the normal operational conditions of the transformer and detects
abnormal behavior in site (SAT).
In the next section, we include a description of the experiments conducted, and the
construction of the model of correct transformer. Finally, we discuss the difference between

FAT and SAT models.

4.1 Experiments

The creation of a model for the correct functioning of the transformer requires correct
transformers. The experiments were done at the Prolec-General Electric transformer factory
in Monterrey, Mexico. We had access to the production line at the last step of the new
transformers tests. We installed 8 sensors around the transformer as shown in Fig. 5: two in
each side, one in the lower and the other in the upper part of every side. This array of sensors
permits us to identify the specific points of the transformer where the vibrations signals can
be detected properly.
Experiments in Prolec GE factory consisted in 19 different types of operational conditions.
Table 2 shows the operational conditions and the effect we wanted to study.

Temperature

Excitation Cold Hot Condition

Voltage Effect of voltage Effect of voltage 70%, 80%, 90%,
in core vibrations and temperature 100%, 110%

in core vibrations

Current Effect of current in Effect of current and 30%, 60%, 100%, 120%
winding package vibrations temperature in

winding package vibrations

Table 2. Type of experiments in factory.
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Probabilistic Vibration Models in the Diagnosis of Power Transformers 11

Fig. 5. Location of the sensors in the transformer. Two in the low voltage side (B.T.), the
following in the right side (L.D), two in high voltage side (A.T) and the last in the left side
(L.I).

Fig. 6. Transformer in Prolec GE factory with the sensors (Courtesy of Prolec GE ).

The experiments combine temperature and excitation. The experiments with cold transformer
excited with voltage and no current are used to study the effects of voltage in core vibrations.
Cold transformers excited with current and no voltage are used to study the effects of
current in winding packages. Hot transformers with voltage study effects of temperature and
vibration in the core. Finally, hot transformers and current study the effects of temperature
and vibrations in the winding. Additionally, the experiments that study the effects when
excited with current and no voltage, included variations between 30%, 60%, 100% and 120%
of the nominal current for each transformer. Every transformer report its nominal current and
nominal voltage. Similarly, the effects when excited with voltage and no current included
variations between 70%, 80%, 90%, 100% and 120% of the nominal voltage. In total, 19

different types of experiments were conducted to all the transformers.
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12 Vibration Analysis

For each experiment, once that the transformer is prepared to a specific test, our data
acquisition system collects vibration data at 5 K samples per second during two seconds for
each sensor. Later, we apply the discrete Fourier Transform (DFT) and extracts the frequency
content of the data set acquired. This is repeated ten to twelve times for each operational
condition.
Repeating this procedure for all operational conditions, for all the sensors, we obtain the
graphs as shown in Figures 7 to 10. Notice that the only information that we need to extract
with the DFT is the frequency content of the vibration at frequencies multiple of 60Hz. In fact,
we find no other components in frequencies different than these multiples.

Fig. 7. Vibration signals when excited with current at 120 Hz. in all sensors.

Fig. 8. Vibration signals when excited with current at sensor 2 in all frequencies.

Figures 7 to 10 show some examples of the experiments corresponding to cold transformer
excited first with current and no voltage, and then excited with voltage and no current,
i.e., windings excited or core excited. The vertical axis represents the magnitude of the
vibration measured in terms of acceleration and expressed in g, the gravity. The horizontal
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Probabilistic Vibration Models in the Diagnosis of Power Transformers 13

Fig. 9. Vibration signals when excited with voltage at 120 Hz. in all sensors.

Fig. 10. Vibration signals when excited with voltage at sensor 2 in all frequencies.

axis represents each one of the ten (or twelve) repetitions of each experiment with the same
operational condition.
Figure 7 shows the vibration signals when excited with current at 120 Hertz in all sensors.

Notice that the steps shown in the figure correspond to excitations of 30% of the nominal
current (lower amplitudes) and then 60%, 100% and 120%. Figure 8 shows the vibration
signals captured at sensor 2 in all the frequencies of the same experiment. Notice that the
amplitude of the vibration increases when current increases. Notice also that the frequencies
of 120 and 240 Hertz are the only representatives of the vibrations compared to other multiples
of 60 Hertz.
Figures 9 and 10 show the experiments with voltage and no current. Figure 9 shows the
vibration signals at 120 Hetrz in all sensors, and Fig. 10 shows the vibration at sensor 2 in all
frequencies.
These graphs are examples of the kind of variations that we found in the vibrational pattern,
under different operational conditions.
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14 Vibration Analysis

Following the transformation of the vibration signals in their frequency components, a
normalization procedure is applied. Normalization in this context means that all variable
values lie between 0 and 1. This is because we only need to compare the behavior between all
the vibration signals. The normalization is obtained dividing all the vibration signals by the
highest measure of each sensor. Figure 11 shows an example of normalized signals. Notice
that all signals detected at all sensors behave similar even if their amplitude are different as
was shown in Fig. 7.

Fig. 11. Comparison between the behavior of all the signals when normalized.

Finally, a discretization is required since the probabilistic model utilizes Bayesian networks
with discrete signals. Discretization is the division of the complete range of values in a fixed

number of intervals. In our experiments, the vibration signals were discretized in 20 intervals
or states S0, S1, . . . , S19. Since normalized, the states consists in 5% of the normalized signals,
i.e., 0 − 0.05, 0.05 − 0.1 and so on.
Table 3 resumes the variables utilized in the diagnosis and the values that they can take.

Variable Values

Temperature Cold, hot
Excitation Voltage, Current

Nominal Voltage 70%, 80%, 90%, 100%, 110%
Nominal Current 30%, 60%, 100%, 120%

Sensors A1, A2, . . . , A8

Frequencies 60 Hz., 120 Hz., 180 Hz., . . . , 900 Hz., 960 Hz.

Table 3. Variables utilized in the diagnosis.

The next section utilized these variables to build the probabilistic models.

4.2 Model of correct transformers

In the first stage of this project, the variables available for constructing the model are sensors,
frequencies, temperature and excitation of the transformer (voltage or current). Following
the experts’ advice, we consider two possible set of models. The first is a model relating
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operational conditions and frequencies. One model for each sensor. The second possible set
of models relates operational conditions and sensors. One model for each frequency. We
decided to try a set of models that relates conditions and sensors, i.e, operational conditions
and vibrations detected in certain parts of the transformer. Figure 12 shows one instance of
the resulting model.

 

 

 

Fig. 12. Model that relates operational conditions with the amplitude measured by each
sensor.

Actually, the complete model is formed by two BNs like the one shown in Fig. 12. One
corresponding to the 120 Hz component and the second corresponding to 240 Hz. Once
defined the structure, the EM (Estimation-Maximization) algorithm (Lauritzen, 1995) is
utilized to obtain the conditional probability tables. We used 10 experiments of each type as
indicated in Table 2 and applied in 5 transformers. The structure and the parameter learned,
complete the models for the diagnosis. Next section describes the diagnosis procedure in the
factory floor.

4.3 Diagnosis procedure in FAT

Utilizing the models described above, the algorithm 1 is applied to identify abnormal
vibrations in the sensors given certain operational conditions:

Algorithm 1 Detection of abnormal vibrations.

Require: Operational conditions of temperature and excitation.
assign a value (instantiate) to the temperature and excitation nodes
for all sensors (frequencies) in the network do

propagate probabilities and obtain a posterior probability of all sensors (frequencies)
nodes
compare the real value measure and the estimated value
evaluate if there is an error in the sensor (frequency)

end for

As an example, Table 4 shows the measures that have been obtained and normalized in the
sensors of a cold transformer excited with 100% of nominal current.

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8

0.3284 0.3710 0.0895 0.4161 0.0811 0.7084 0.6531 0.2333

Table 4. Example of vibration measured in the sensors.

According to the algorithm 1, one sensor vibration is estimated using the rest of the sensor
signals and the operational conditions. The probabilistic propagation in the BN produces a
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16 Vibration Analysis

posterior probability distribution of the estimated sensor value. The problem is to map the
observed value and the estimated value to a binary value: {correct, f aulty}. For example,
Fig. 13 left shows an example of a posterior probability distribution, and Fig. 13 right shows
a wider distribution. In both cases, the observed value of the estimated sensor is shown by
an arrow. Intuitively, the first case can be mapped as correct while the second can be taken as
erroneous.

Fig. 13. Example of two posterior probabilistic distributions and the comparison with the
value read.

In general, this decision can be made in a number of ways including the following.

1. Calculate the distance of the real value from the average or mean of the distribution, and
map it to faulty if it is beyond a specified distance and to correct if it is less than a specified
distance.

2. Assume that the sensor is working properly and establish a confidence level at which this
hypothesis can be rejected, in which case it can be considered faulty.

The first criterion can be implemented by estimating the mean μ and standard deviation σ of
the posterior probability of each sensor, i.e., the distribution that results after the propagation.

Then, a vibration can be assumed to be correct if it is in the range μ ± nσ, where n = 1, 2, 3.
This criterion allows working with wider distributions where the standard deviation is high
and the real value is far from the mean μ value as shown in Fig. 13 right. However, this
technique can have problems when the highest probability is close to one, i.e., the standard
deviation is close to zero. In such situations, the real value must coincide with that interval.
The second criterion assumes as a null-hypothesis that the sensor is working properly. The
probability of obtaining the observed value given this null-hypothesis is then calculated.
If this value, known as the p-value (Cohen, 1995), is less than a specified level, then
the hypothesis is rejected and the sensor considered faulty. Both criteria were evaluated
experimentally. Here, it is worth mentioning that using the p-value with a 0.01 rejection level,
works well.

4.4 Experiments for FAT

We designed a computational program that utilize the measurements obtained in the
experiments described in Table 2. We run experiments and identify if there is a failure.
An experiment consists in establishing the operational conditions of excitation and
temperature. Next, the system obtain the measurements of the sensors, and executes the
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algorithm for detection of abnormal vibrations. Since we have 16 indicators of fault (eight
sensors in two frequencies), a sensor fusion technique is required. We decided to make a
weighted sum of the conclusion of each sensor. If one sensor is sensible and detects deviations
easily, then a low weight is assigned. Other less sensible sensors may have higher weights.
Given the sum of each frequency, we can configure ranks for declare a transformer as {correct,
suspicious, faulty}.

 

Fig. 14. User interface of the diagnosis software (in Spanish).

Figure 14 shows the results of one experiment (in Spanish). In the upper left of the window,
the operational conditions are indicated. First, load (carga en %) with 100% of current, and
cool transformer temperature (frio). In the middle left of the window, there are two lights. One
corresponds to a model for 120 Hz. and the other corresponds to 240 Hz. As mentioned above,
we are using one model for each frequency. These lights become green if the transformer is
correct, yellow if the transformer is suspicious and red if there is definite a failure. Below, in
the lower left of the window, there are a little box for each sensor in the transformer. The first
8 corresponding to 120Hz and the last corresponding to 240 Hz. If the posterior probability
obtained in a node (sensor) corresponds to the vibrational value currently detected, then an
OK mark is described, and a NO-OK mark otherwise. Notice that the sixth sensor detected
a deviation in the model of 240 Hz. In the upper right of the window, four rows of data
are included. The first two correspond to the current vibration amplitude measured in the

8 sensors in the transformer. The next two rows correspond to the normalized information.
They are actually the inputs to the BNs. The lower right part of the window displays other
prototype information.
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Several transformers have been tested in factory and some faults have been detected. The next
section describes the changes made to the model in order to run SAT tests.

4.5 Preliminary experiments for SAT

Experiments in site have certain differences with FAT experiments. The main difference is that
transformers always operate at their fixed nominal voltage but variable current. The current
value corresponds to the demanded power by the consumers.
In order to utilize the information acquired in FAT experiments, one assumption was
necessary: vibration corresponds to the sum of vibration by current (produced at the winding)
plus vibration by fixed voltage at 100% of nominal value (produced at the core). This
assumption is valid at the transformer operational condition below the saturation condition.
Voltage is always fixed at its nominal value (controlled by the grid), and the current is always
tried to keep in normal conditions. In reality, we use all the information acquired for FAT
experiments, modified with this assumption.
Additionally, we run experiments in power transformers working on site. Of course, we could
not modify the working conditions and we took only data in certain loads.

Table 5 shows an example of the experiments carried out at the power transformer in Prolec
GE substation. The transformer provides power to the entire plant. Columns indicate the
measurement obtained by all every sensor. The first row indicates the real amplitude obtained
by the sensor and normalized. Once normalized, the signals are discretized in 20 intervals.
The second row indicates the interval number, from 0 to 19. Third row indicates the posterior
probability obtained after the propagation in the probabilistic model. This number indicates
the probability of being a normal measurement, so the fourth row decides if there is a failure
(1 value) or there is no failure (0 value). This decision is based on the assumption that the
posterior probability distribution is Gaussian given certain operational conditions. Thus, the
real value measured is compared with ±σ from the media.

S1 S2 S3 S4 S5 S6 S7 S8

Real value measured 0.159 0.121 0.184 0.178 0.083 0.016 0.729 0.141

Corresponding interval 3 2 3 3 1 0 14 2
Posterior probability 0.312 0.312 0.0 0.0 0.687 0.0 0.0 0.375

Decision 0 0 1 0 0 0 1 0

Table 5. Example of one experiment.

For example in Table 5 , sensor 2 measured a normalized value of 0.121 that corresponds to

the interval number 2. Propagation indicates 31% of the value that corresponds to no failure.
On the contrary, sensor 7 reads a normalized value of 0.729, corresponding to interval 14 and
there is no probability of being correct. The decision is 1. Notice however, that sensor 6 has
the same 0 probability but the standard deviation may be very wide and the decision marked
0.
The prototype was constructed using the hugin platform (Andersen et al., 1989), so the off–line
automatic learning and the on–line propagation are carried out with the Java APIs of this
package.
Several tests were made in this Prolec GE substation transformer and the model resulted in a
correct tool for transformer diagnosis.
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5. Conclusions and future work

The main contribution of this work is the construction of a probabilistic vibration model
obtained with the vibration signals measured in a power transformer. Thus, if a model of
correct behavior can be obtained, then early deviations of this behavior can also be achieved.
Our approach utilizes Bayesian networks as the formalism for constructing and utilizing the
models. We used 8 sensors situated all around the tank of the transformer. Every measure
was transformed to the frequency domain and only amplitude multiples of the 60 Hz were
considered. Experiments were carried out at different operational conditions to construct the
models. Finally, a diagnosis program receives vibration data from a transformer, inserting it
as evidence and probability propagation allows calculating the probability of proper behavior.
Bayesian networks have the advantage of generate conclusions even when the evidence is
incomplete. This means that even with less sensors or less frequencies, a conclusion can be
obtained. Also, BNs include several algorithms that automatically adapt the models, based on
vibration in the normal life of the transformer. This means we can detect the normal behavior
of old transformers even if they vibrate much more that their vibration when new.

Future work is needed in the determination of additional operation conditions variables, like
parameters in the construction of each transformer. We can detect the vibration transmission
between different parts of the transformer and identify more clearly if the behavior is normal
or not.
Final results will be available after months of tests in new and old transformers, in site and at
the factory.
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