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1. Introduction 

Down Syndrome (DS) is the most frequent live born aneuploidy and recognizable form of 

mental retardation among all the ethnic groups of human population across the globe. The 

overwhelming majority of this birth defect is caused by trisomy 21 due to nondisjunction 

(NDJ), i.e., failure of chromosomes to separate properly during meiosis at parental 

gametogenesis and the fact was initially reported by Lejeune et al. (1959). Since that time 

attempts were made to explore the etiologic factors that are associated with the underlying 

mechanism of NDJ of chromosome 21(Ch21). Like that of other autosomal aneuploidy, the 

errors during maternal oogenesis accounts for about 90% of DS births (Antonarakis, 1991; 

Freeman et al. 2007), of which majority occurs at first meiotic division(MI) (Antonarakis et 

al. 1992; Yoon et al. 1996). In searching the maternal risk factors for DS birth, researchers 

have identified advanced maternal age (Hassold and Chiu, 1985) and altered meiotic 

recombination (Warren at al. 1987; Sherman et al. 1991) as two strong correlates associated 

with underlying mechanism of Ch21 NDJ in oocyte and the risk factors are preferentially 

present in oocyte due to its mode of development in the lifetime of women.  

The meiosis in fetal ovary initiates at about 11-12 weeks of gestation (Gondos et al. 1986) and 

becomes arrested at late prophase I following pairing, synapsis and recombination. The 

process resumes at the onset of puberty after the follicle receives proper hormonal signal 

and immediately completes the MI and progress through metaphase of meiosis II (MII) 

where it pauses until it is fertilized and the meiosis is then completed. Thus the individual 

oocyte remains arrested in prophase I for 10 to 50 years, depending on the time of ovulation 

in reproductive life. This protracted event of oocyte growth includes three distinct error 

prone phases (Hassold et al., 2007). First, the prophase event in fetal ovary, at which change 

in usual pattern of recombination might lead to subsequent aneuploid oocyte formation. 

The second risk prone phase is the follicular growth during which the meiosis remains 

arrested and the genetic and environmental challenges get chance to accumulate in ovarian 

milieu. The third and the final risk phase is the maturation of oocyte which is associated 

with the adverse effect of advancing maternal age on protein components involved in 
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chromosome separation system and rapidly deteriorating endocrine environments. In 

contrast, spermatogenesis begins at puberty and spermatogonial cells complete both MI and 

MII without any delay (Sherman et al. 2007). 

As mentioned earlier, the overwhelming majority of Ch21 NDJ is maternal in origin among 

all the ethnic varieties of human population studied to date. Based on results from the US 

(Allen et al. 2009) and other population-based studies (Mikkelsen et al., 1995; Gomez et al., 

2000), it has now been estimated that over 90% of NDJ errors leading to trisomy 21 arise in 

the oocyte and the majority of those occur at MI.  

We carried out similar study on Indian trisomy 21 samples, particularly from eastern part 

of the country and obtained strong replication of those observations (Table 1). This study 

was started from the year 2001 and till date we included about 400 families having free 

trisomy21 child. Our STR(short tandem repeat)-PCR analyses estimated over 88% maternal 

errors with majority of cases (~77%) having NDJ events at MI. The paternal errors account   

for about 10 % with almost equal distribution of MI and MII NDJ events. The post zygotic 

mitotic error was estimated about 2%. Very concordant results were also reported for 

Ukraine and Russian cohorts (Machatkova et al. 2005), and Spanish cohort (Gomez et al. 

2000).  Little difference among these datasets that does exist is probably due to sampling 

variation. In this article we discuss the maternal stress factors responsible for the origin of 

nondisjunction. 

2. Effect of advanced maternal age 

The effect of ‘maternal age’ remains as ‘black-box’ for DS birth. Initially Penrose identified 

that advanced maternal age as risk for DS birth (Penrose 1933, 1934) and postulated that the 

maternal age dependent increase in birth rate of DS is in some way associated with the NDJ 

mechanism. But this effect is restricted only to NDJ that occur in the oocyte (Antonarakis et 

al., 1992; Ballesta et al., 1999; Muller et al., 2000; Sherman et al., 2005). That is, adverse effect 

of advanced maternal age is not evident among mothers whose offspring received an extra 

copy of chromosome 21 as a result of: (1) a NDJ error in spermatogenesis i.e., paternal errors 

(Yoon et al., 1996; Sherman et al., 2005), (2) a post zygotic mitotic error (Antonarakis et al., 

1993; Sherman et al., 2005), or (3) a translocation (inherited or de novo) (Hook, 1983).  

The results of earlier studies (Antonarakis et al. 1992; Ballesta et al. 1999; Muller et al. 2000), 

revealed that the average age of mother at the time of conception of a fetus with DS is 

significantly higher than that of mothers with normal euploid baby. This observation was 

confirmed further in the population based study in the Atlanta Down syndrome project 

(Allen et al. 2009) for US population and recently by us (Ghosh et al. 2010a) for Indian 

population. All these reports suggest that the advanced maternal age is risk factor for both 

the MI and MII errors and both  types of error are potentially related in respect to their 

association with risk factors. Further, Atlanta Down syndrome project suggests (Allen et al. 

2009) that maternal age specific incidence rate for live birth with free trisomy 21 may differ 

between MI and MII errors: the increasing risk for MII errors is shifted to the older maternal 

ages compared with MI errors. Interestingly, the women with MII errors are in average 

older than mothers with MI errors, as evident in both US (Allen et al. 2009) and Indian 

cohorts (Table 1). All these observations led the workers to propose several hypotheses to 

explain the intriguing association between advanced maternal age and an increasing chance 

of Ch21 nondisjunction. 
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Parental 
Origin 

Meiotic Stage 
of Nondis-

junction 

Sample 
size 

Proportion Frequency Maternal 
Age at 

Conception 
(Years+SD) 

Paternal 
Age at 

Conception 
(Years+SD) 

Maternal Meiosis I 
(MI) 

242 MI/(MI+MII)=242
/314 

77.07% 29.91+6.12 33.95+2.04 

Meiosis II 
(MII) 

72 MII/(MI+MII)=72
/314 

22.9% 31.01+ 
3.44 

34.01+4.66 

Stage 
Unknown 

17     

Subtotal 331 Maternal/All=331
/373 

88.73%   

Paternal Meiosis I (PI) 11 PI/(PI+PII)=11/27 40.74% 24.55+3.02 31.85+5.6 

Meiosis II 
(PII) 

16 PII/(PI+PII)=16/
27 

59.25% 26.92+4.91 33.98+4.4 

Stage 
Unknown 

7     

Subtotal 34 Paternal/All=34/
314 

10.82%   

Post 
Zygotic 
Mitotic 
Error 

 8 8/373 2.14% 25.66+3.26 31.76+5.21 

Origin 
Unknown 

 19 19/392 4.8%   

Total  
Informative 

Cases 

 373     

Total 
Cases 

 392     

Control  206   24.82+3.9 32.01+4.04 

Table 1. Origin of Trisomy 21 in Indian Cohort and Parental Age at conception of Trisomy 
Foetus 

3. Biological aging hypothesis 

The hypothesis was originally proposed by Brook et al (1984). The central idea of this 
hypothesis is that the increasing rate of meiotic errors and subsequent aneuploid birth is 
related to ‘biological aging’ of ovary not to the chronological age of women. Two different 
views do exist about how the biological aging is implicated for increased incidence of 
trisomic birth. The first view relates the suboptimal level of hormonal signal with higher 
rate of meiotic errors in aging ovary. The number of antral follicle at various stages of 
development also declines with increasing maternal age as the fact has been confirmed in 
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several studies (Reuss et al. 1996; Gougeon 1998; Scheffer et al. 1999; Kline et al. 2004). This 
decline in antral follicle count, together with the accompanying decrease in total oocyte pool 
generates an imbalance in the hormonal environment in ovary (Warburton, 2005) which 
predisposes the women for aneuploid conception. Support to this postulate came from the 
studies on human and mouse (Freeman et al., 2000; Roberts et al. 2005). Alternate to this 
concept has been proposed by Warburton (1989) in her “limited oocyte pool” hypothesis 
which suggests a more direct effect of antral oocyte pool size on the risk of aneuploidy. 
Among older women available antral follicles are limited and ovary has to compromise in 
selecting a suboptimal or erroneous oocyte for ovulation.  
The ‘biological aging’ can also be interpreted in term of senescence associated degradation 
of ovarian protein components that are implicated in chromosome separation system in 
oocyte (Sherman 2005).  Interestingly, level of hundred of transcripts, including cell cycle 
genes have been reported to decrease with increased maternal age in mice and women 
(Hamatani et al., 2004; Steuerwald et al., 2007). 

4. Genetic aging hypothesis 

We proposed ‘genetic aging’ hypothesis (Ghosh et al. 2010b), which states that some of the 
mothers who have DS baby are genetically older than the mothers of same chronological age 
who have euploid  baby (Ghosh et al. 2010b) and this genetic aging is the underlying cause 
of biological aging in ovary. In this analyses we estimated the telomere length (TL) of age 
matched controls and cases to get insight into the state of molecular aging, stratifying the 
mothers by stage of NDJ and their age of conception (young ,<29 years; middle ,29-35 years; 
and old ,>35 years). Our results showed that all three groups(M1,MII & control) have similar 
TL on average for younger mothers. As age increases, all groups show telomere loss, but 
that loss is largest in the meiosis II mother group and smallest in the euploid mother group 
with the meiosis I mother group in the middle(Figure 1). Our results do not support the 
theory that younger women who have babies with Down syndrome do so because they are 
‘genetically older’ than their chronological age, but we proposed that older mothers who have 
DS baby are “genetically older” than controls, who have euploid babies at the same age. This 
finding, however, is consistent with the previous result (Dorland et al. 1998), showing no 
difference in genetic age among young DS mothers and young controls. 
The fact of telomere shortening among women with DS child can be explained in several 
ways. Apparently, the result suggests a possible functional link between telomere 
maintenance system and chromosome segregating apparatus at molecular level. 
Degradation of this possible ‘molecular link’ with age may affect the both system 
simultaneously. In this regard BubR1 is most promising candidate as mutation in this gene 
causes rapid senescence and high rate of aneuploidy in mouse (Baker et al., 2004) and the 
protein shows rapid fall with age. Alternatively, the environmental factor that induces rapid 
telomere loss at advanced reproductive age might simultaneously affect the chromosome 
separation system in oocyte. (Chen et al.,2007; Sebastián et al., 2009; Eichenlaub-Ritter et al,. 
2007; Susiarjo et al., 2007).   

5. Reduced meiotic recombination and its interaction with maternal age 

Aside from maternal age, only single factor that has been identified unambiguously to be 
associated with maternal NDJ is altered pattern of meiotic recombination. The first evidence 
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for association of reduced recombination with the events of NDJ of Ch21 was provided by 
Warren et al. (1987). Chiasmata are physical connections between homologous 
chromosomes at the site of recombination and they function to stabilize the paired 
homologues or tetrad at MI along with sister chromatids and centromere cohesion. It aids in 
proper chromosome orientation on the meiotic spindle (Carpenter 1994) and ensure their 
proper segregation to opposite poles. Absence of chiasma formation left the homologous 
pair free to drift randomly to the poles and if they move together to same pole aneuploidy 
results. As far as chromosome 21 NDJ is concerned, achiasmate meiosis is the major cause of 
reduction in recombination frequency (Lamb et al., 2005a, 2005b), although fall in double 
exchange frequency was reported too (Hawley et al. 1994).  
In our analysis of etiology of DS birth in Indian cohort, we recorded only ~22% detectable 

crossover on MI nondisjoined chromosome in maternal meiosis (Ghosh et al., 2009). This 

observation was very consistent with the previous observation by Sherman et al. (2007), who 

reported 45% achiasmate meiosis associated with MI NDJ of Ch 21 in US population.  

Sherman and her co-workers constructed the linkage map of nondisjoined Ch21 (1994) and 

estimated 55% reduction in map length than the control CEPH map (39.4cM in contrast to 

72.1cM). With similar approach for Indian DS population (Ghosh et al. 2010a), we scored 

30.8cM map length of  maternal MI nondisjoined Ch 21, which further confirmed the fact 

that reduced recombination due to absence of chiasma or less recombination frequency in 

some way increases the risk of  NDJ. 

In elucidation of the relationship between reduced recombination and maternal age, 

Sherman et al. (1994) hypothesized that the trisomy 21 conception at advanced maternal age 

is strongly associated with reduction in recombination frequency. The authors estimated 

shorter map length of Ch21 for mothers of >35 years with their linkage analysis approach. 

Very recently, Oliver et al. (2008) also reported a highest occurrence of non-exchange Ch21 

pair among the old age (>34 years) women in compare to young (<29 yrs) and middle (29-35 

yrs.), although the frequency of non-exchange tetrads remain most frequent among all the 

risk factors when only young mothers (<29 years) were considered. The authors proposed a 

model for explaining the risk of Ch21 NDJ in relation to maternal age categories. Among the 

young mothers risks related to aging is minimum and therefore absence of recombination 

becomes the predominant cause of NDJ in total risk scenario. If this remains true, then lack 

of recombination is an age-independent risk factor for Ch21 NDJ. This hypothesis was 

supported by our previous studies (Ghosh et al. 2009; 2010a) in which we estimated about 

80% of younger mothers with achiasmate Ch21 who had NDJ at MI.  

The highest frequency of non-exchange Ch 21 among older mothers is difficult to explain as 

the events of chiasma formation and recombination take place in foetal ovary. The fact led 

workers (Oliver et al. 2008; Ghosh et al. 2009) to speculate presence of maternal age 

dependent NDJ mechanism which gains support from the studies on model organisms. 

Mutation in the gene nod (no distributive disjunction) in Drosphila causes high frequency of 

NDJ of non-exchange chromosome (Knowles and Hawley, 1991) and it suggests existence of 

the genetic component that acts as surveillance system to ensure proper segregation of non-

exchange meiotic chromosomes. Presence of such ‘back-up system’ is also evident in yeast in 

which, the gene Mad3 performs the same function (Gillett et al. 2004). Interestingly, proteins 

with similar function in human have been shown to be down regulated with increasing 

ovarian age (Baker et al. 2004; Steuerwald et al. 2001). Thus, age-dependent down-regulation 

of these essential proteins may lead to the decreased ability to segregate properly the non-
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exchange chromosomes in aging oocyte. However, more direct evidence is needed to 

establish this speculation as fact.   

6. Susceptible chiasma formation and its interaction with maternal age 

Aside reduced recombination, unusual chiasma placement is another risk for Ch21 NDJ. 
Chiasma formation usually takes place at the middle of normally disjoining chromosomes 
(Lynn et al. 2000). This medially placed chiasma probably maintains the proper balance by 
counteracting the pull from opposite poles which is needed for proper segregation of 
chromosomes. But a chiasma  close to centromere or close to telomere seems to confer 
instability and makes the Ch21 susceptible for random segregation and subsequent NDJ 
(Lamb et al. 1996; 2005a, 2005b). The increased risk of NDJ due to sub-optimally placed 
chiasma on the chromosome is also evident in model organisms such as Drosophila (Rasooly 
et al.1991; Moore et al. 1994; Koehler et al. 1996a), yeast (Sears et al. 1995;Krawchuk and 
Wahls,1999) and Caenorhabditis elegans (Zetka and Rose, 1995). The study of Lamb et al. 
(1996), suggested for the first time that a single telomeric chiasma is a risk for 
malsegregation of Ch21 at MI in oocyte in contrast to single pericentromeric chiasma which 
increases risk of MII NDJ.  
Very recently, Oliver et al.(2008) and we (Ghosh et al.2009) independently conducted 
population based studies on US and Indian DS populations respectively to get an insight 
into the interaction between susceptible chiasma configuration on Ch21 in oocyte and 
maternal age. In doing so we used family linkage approach to detect exchange pattern on 
nondisjoined Ch21, using set of microsatellite markers and all the analyses were done by 
stratifying the participating mothers into three age groups:young (>29 yrs.), middle (29-34 
yrs) and old (>34 yrs). Surprisingly, the two sets (US set and Indian set) of results were very 
concordant and revealed that single telomeric exchange is prevalent among younger 
mothers whose Ch21 nondisjoined at MI. In contrary, single centromeric chiasma is risk for 
MII NDJ, particularly at older age. For Indian DS sample, we recorded susceptible single 
chiasma within the 3.1Mb peri-telomeric and 4Mb peri-centromeric segment of 21q for MI 
younger and MII older categories, respectively (unpublished data). These observations led 
us (Oliver et al. 2008; Ghosh et al. 2009) to propose a hypothesis which states that maternal 
age independent risk factor is one which affects all the age groups equally and be detected 
in highest frequency among younger mothers for whom aging related risk factors are 
minimum. Alternately, age-dependent risk factors usually intensify with advancing age and 
so one would expect highest frequency of such factors among older age group (Figure 2). If 
our prediction is true, the telomeric single chiasma is maternal age independent risk, 
whereas, the single peri-centromeric chiasma is maternal age dependent factor. 
The relationship between centromeric exchange and advancing maternal age can be 
interpreted in two different ways: 1) pericentromeric exchange set up a sub-optimal 
configuration that initiates or exacerbates the susceptibility to maternal age-related risk 
factors, or 2) a pericentromeric exchange protect the bivalent against age related risk factor 
allowing proper segregation of homologues, but not the sister chromatids at MII (Oliver et 
al., 2008). A chiasma very close to centromere may cause ‘chromosomal entanglement’ at 
MI, with the bivalent being unable to separate, passing intact to MII metaphase plate (Lamb 
et al.1996). Upon MII division, the bivalent divides reductionally, resulting in disomic 
gamete with identical centromeres. In this manner, proximal pericentromeric exchange, 
which occurred during MI, is resolved and visualized as MII error. According to an 
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alternate model, studied in Drosophila (Koehler et al. 1996b), proximal chiasma lead to 
premature sister chromatid separation just prior to anaphase I. Resolution of chiasma 
requires the release of sister chromatid cohesion distal to the site of exchange (Hawley et al., 
1994). Attempt to resolve chiasmata that are very near to centromere could result in 
premature separation of chromatids. If  the sister  chromatids  migrate to a common pole at 
MI, they have 50% probability to move randomly into the same pole  at MII, resulting in an 
apparent MII NDJ. Similar observation is evident in yeast in which centromere-proximal 
crossover promotes local loss of sister-chromatid cohesion (Rockmill et al., 2006). One of the 
members of centromeric cohesion complex shugoshin, when down regulated due to aging 
shows high frequency of MII NDJ of bivalent with peri-centromeric exchange (Marston et al. 
2004). Alternatively, a pericentromeric exchange may protect the bivalent from maternal age 
related risk factors. The effect of degradation of centromere or sister chromatid cohesion 
complexes or of spindle proteins with age of oocyte may lead to premature sister chromatid 
separation. Perhaps the pericentromeric exchanges help to stabilize the compromised tetrad 
through MI. This would lead to an enrichment of MII errors among the older oocytes. 
Although there is no specific model system in favor of this mechanism, but some findings in 
model organisms can be interpreted in this way. 
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Fig. 1. Telomere length (Kbp) among control and meiotic outcome groups stratified by age 
categories. 

A telomeric chiasma imparts its susceptibility for MI NDJ probably due to recruitment of 
minimal amount of sister chromatid cohesion complex remaining distal to the exchange 
event (Orr-Weaver, 1996). Specifically, when the exchange is too far from kinetochore, this 
could prevent the bi-orientation of the homologues on the meiotic spindle (Nicklas 1974; 
Hawley et al.1994; Koehler et al.1996b). Alternatively, the integrity of chiasma may be 
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compromised when a minimum amount of cohesin remains to hold homologue together. 
Thus bivalent may act as pair of functional univalents during MI, as has been evident in 
human oocyte (Angell 1994, 1995). 
 

 

Fig. 2. Risk factor model for Down syndrome birth showing consistent presence of maternal 
age independent risk factors (Age Indepnt) among all the ages and gradual increased 
incidence of age dependent risk factors (Age Depnt) with increasing age. 

Further, we evaluated the interaction between maternal age and multiple chiasmata on MI 
nondisjoined Ch21 and found that there is a linear increase in multiple chiasama frequency 
with advancing age (Ghosh et al.2010a). Interestingly, similar trend is also evident for 
chromosome 15, 18 and X chromosome (Robinson et al. 1998; Thomas et al. 2001; Bugge et 
al.1998). This finding suggests two important possibilities. The first one is that the multiple 
chiasmata might be protective and chromosomes with multiple recombinants probably 
more resistant to NDJ at least at MI because of an increase in bivalent stability. Secondly, 
instead of enjoying multiple recombinations some bivalents segregate improperly, 
particularly in older oocyte, which suggests presence of some aging associated factors that 
impart risk to these otherwise recombination perfect chromosomes.  

7. Summary and conclusion 

We have paved half of a century after the initial discovery of cause of DS, but we are still in 
dark regarding etiology of DS. Although advanced maternal age has been identified 
unambiguously as risk, its molecular relation with chromosome separation  system  is 
enigmatic. It is still elusive whether or not some women are genetically predisposed to 
altered meiotic recombination and subsequent chromosomal NDJ. Very recently, the gene 
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PRDM9 has drawn the interest. The gene controls the recombination hotspot of meiotic 
homologues (Parvanov et al. 2010). The variant of this gene has been reported to make the 
women susceptible for recurrent miscarriages, infertility and aneuploid pregnancy (Cheung 
et al. 2010). So PRDM9 is prospective candidate gene whose altered functional state might 
increase susceptibility of Ch21 NDJ. Similarly, genetic variant of any component of meiotic 
chromosome separation system could increase the risk  for chromosome missegregation in 
oocyte.   Intuitively, the gene BubR1 is of special interest as it is a member of centromere 
cohesion complex and also known for its role in cellular aging (Baker et al. 2004). In 
Drosophila hypomorphic bubR1 causes high rate of NDJ at MII due to premature sister 
chromatid separation and these nondisjoined chromosome exhibited centromeric exchange. 
All these findings suggest the possibility of BubR1 to be a ‘missing link’ between the 
molecular mechanism of cellular aging and higher incidence of chromosomal NDJ at 
advanced age.  
The effect of environmental agents on chromosome segregation, particularly in connection 
with maternal age and recombination remains unexplored. As environmental aneugens 
have great opportunity to become accumulated within the ovarian microenvironment 
during protracted oocyte growth phase, their probable effects cannot be underestimated. 
Although epidemiologic association of some environmental agents with DS birth have been 
identified, their influence on meiotic recombination and aging is intriguing. The 
periconceptional smoking and contraceptive use have been identified as potential risk for 
Ch21 NDJ (Yang et al. 1999), but this observation needs further confirmation. We conducted 
an epidemiological study on the risk of chewing tobacco and contraceptive use among 
mothers having DS baby and found some association of chewing tobacco with MI NDJ and 
contraceptive for both MII and MI (unpublished data). Moreover, the fetal incidence of 
chiasma formation and recombination make us curious to the probable ‘grand maternal’ 
influence on DS birth. Presently we are in position to realize at least that the risk factors 
associated with DS birth is multidimensional and several mechanisms are involved for 
chromosome 21 NDJ in women. At this point, it is worth mentioning that the etiology of  
maternal Ch21 NDJ and subsequent DS birth may be similar across the human population 
divides irrespective of ethnic and socio-cultural differences. The future investigations 
should be focused to resolve all these pending issues so that we could move towards 
complete understanding of risk factors associated with DS birth. 
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