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1. Introduction  

Transforming growth factor (TGF)-beta consists of three isoforms (TGF-beta 1, TGF-beta 2 
and TGF-beta 3) and is synthesized and secreted in nearly every cell type (Massague, 1990), 
including in the kidneys and kidney transplants (Horvath et al., 1996; Ando et al., 1998). A 
variety of biological activities of TGF-beta have been demonstrated in different experimental 
systems, including stimulation of cellular proliferation and cellular differentiation, or 
oppositely induction of cell apoptosis and anti-proliferation (Siegel and Massague, 2003), 
suggesting that TGF-beta, particularly TGF-beta 1, is a key regulatory factor for tissue 
homeostasis. In cultured renal cells, these three TGF-beta isoforms have similar activities 
(Yu et al., 2003; Qi et al., 2006), but the activities of TGF-beta 2 and TGF-beta 3 may be 
partially mediated by TGF-beta 1 (Yu et al., 2003).  
Kidney transplantation is the best therapy for individuals who unfortunately have end-stage 
kidney disease; individuals with kidney transplants live longer with a better quality of life 
compared to those on dialysis (Port et al., 1993; Laupacis et al., 1996; Schnuelle et al., 1998). 
However, the progressive loss of kidney transplants remains an elusive objective in clinical 
care of these patients as indicated by 2009 OPTN/SRTR annual report; the unadjusted 
kidney graft survival for deceased donors was decreased to 95.3% after 3 months, 91.0% 
after 1 year, 69.3% after 5 years and 43.3% after 10 years, whereas the similar trend was seen 
for living donors. It has been shown in numerous studies that ischemia-reperfusion injury, 
acute rejection episodes, chronic rejection and/or nephrotoxicity of immunosuppressive 
drugs are the risk factors for this problem (Li and Yang, 2009; de Fijter, 2010), and evidence 
in literature suggests that there is a possible association of up-regulation of TGF-beta 
expression and its signaling with poor outcomes in kidney transplantation (Pribylova-
Hribova et al., 2006; Einecke et al., 2010). In this chapter, the role of TGF-beta in each of these 
factors in the progression of kidney transplant dysfunction is discussed. 

2. The beneficial effects of TGF-beta on kidney transplant survival 

2.1 TGF-beta, a growth and survival factor for renal regeneration after ischemia-
reperfusion injury 

Graft ischemia-reperfusion injury in kidney transplants is an inevitable event that occurs 
following the disruption of blood supply to a donor kidney when harvested, and 
reperfusion with recipient’s blood after transplanted. Ischemia-reperfusion injury to kidney 
grafts is associated with delay graft function that has a negative impact on graft survival 
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and worsens both acute and chronic rejection episodes (Peeters et al., 2004; Chapman et al., 
2005). The loss of functioning tubular epithelial cells in renal ischemia-reperfusion injury is 
caused by both apoptosis and necrosis (Savill, 1994; Gobe et al., 1999a). Thus, its severity 
may depend on the resistance of renal cells to cell death during the injury, and recovery on 
cellular regeneration after the damage.  
A significant up-regulation of TGF-beta 1 expression has been detected in regenerating renal 
tubules following ischemic injury in the kidneys (Basile et al., 1996), as well as in renal 
biopsies of kidney transplants from cold ischemic donors or at five days post-
transplantation (Lario et al., 2003). However, the role of TGF-beta in cellular process of 
ischemia-reperfusion injury or its repair is still contradicted. In cultured renal epithelial 
cells, addition of TGF-beta 1 directly induces cell apoptosis (Bhaskaran et al., 2003) or 
promotes angiotensin II- or staurosporine-mediated cell death (Bhaskaran et al., 2003; Dai et 
al., 2003), while in contrast renal protection of TGF-beta 1 has been reported by several 
recent studies; TGF-beta 1 is required for renal protection of volatile anesthetics in the 
protection from H2O2-induced apoptosis in cultured human proximal tubular epithelial cells 
(Lee et al., 2007), and reduces cellular necrosis and inflammation in renal ischemia-
reperfusion injury (Lee et al., 2004). Our recent study demonstrates that a deficiency in TGF-
beta 1 expression worsens the severity of renal ischemia-reperfusion injury in mice, and 
overexpression of TGF-beta 1 increases the resistance of cultured human tubular epithelial 
cells to TNF-alpha-mediated apoptosis (Guan et al., 2010).  
The renal protection of TGF-beta in renal ischemia-reperfusion injury may be contributed by 
its two activities: stimulation of cellular growth and induction of anti-apoptosis. It has been 
known that many growth factors, such as epidermal growth factor (Danielpour et al., 1991), 
platelet-derived growth factor (Phillips et al., 1995; Di Paolo et al., 1996; Yamabe et al., 2000) 
and basic fibroblast growth factor (Phillips et al., 1997; Yamabe et al., 2000), stimulate TGF-
beta 1 production in various renal cell cultures, and co-upregulated with TGF-beta in the 
proliferating or regenerating tubular cells during renal ischemia-reperfusion injury 
(Schaudies et al., 1993; Toubeau et al., 1994; Nakagawa et al., 1999; Villanueva et al., 2006). 
The treatment with epidermal growth factor or basic fibroblast growth factor or disruption 
of platelet-derived growth factor signaling indicate that these factors enhances renal tubule 
cell regeneration or repair and consequently accelerates the recovery of renal function after 
renal ischemia-reperfusion injury (Humes et al., 1989; Nakagawa et al., 1999; Villanueva et 
al., 2006). In addition, TGF-beta 1 in renal cells is upregulated by an autoinduction 
mechanism (Nowak and Schnellmann, 1996; Grande et al., 2002; Dockrell et al., 2009). Data 
from all these studies simply imply that TGF-beta may be one of key growth factors for 
renal regeneration or repair post ischemia-reperfusion injury.  
In the kidney, anti-apoptotic Bcl-2 may be pivotal for renal cell survival as in fetal kidneys, 
the distribution of apoptotic cells is inversely correlated with expression of Bcl-2, and 
augmented metanephric apoptosis occur in Bcl-2–deficient mice (Winyard et al., 1996). In a 
rat model of renal ischemia-reperfusion injury, Bcl-2 expression markedly increases in the 
distal tubules and is associated with increased survival of both the distal and adjacent 
proximal segment at acute phases (0 to 2 days). After renal injury, expression of both TGF-
beta 1 and Bcl-2 is enhanced in regenerating proximal tubule cells relining the basement 
membrane (Gobe et al., 1999b). Our data also indicate that in cultures of renal TECs, TGF-
beta 1 induces Bcl-2 expression and prevents TNF-alpha-mediated apoptosis (Guan et al., 
2010). All these studies suggest that Bcl-2 may mediate renal protective role or anti-
apoptotic activity of TGF-beta in renal ischemia-reperfusion injury.  
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2.2 TGF-beta, a FOXP3
+
 Treg cells inducer for suppression of alloimmune response 

It has been well-known for a while that TGF-beta is a potent immunosuppressive cytokine 
with multiple suppressive actions on a variety of immune cells including T cells, B cells, 
macrophages, and other cells, and acts with some other inhibitory molecules to maintain a 
state of immune tolerance in peripheral tissues (Prud'homme and Piccirillo, 2000). Mice with 
homozygous for Tgfb1 gene mutation die due to a massive multifocal mixed inflammatory 
cell infiltration and tissue necrosis in numerous organs (Shull et al., 1992; Christ et al., 1994) 
through autoimmune responses, such as antibody deposit in renal glomeruli (Yaswen et al., 
1996). However, the cellular mechanisms by which TGF-beta suppresses immune responses 
are not fully understood. Recent findings suggest that TGF-beta is required for regulatory T 
(Treg) cell development; TGF-beta induces FOXP3 (forkhead box P3) expression in 
nonregulatory CD4+CD25- T cells, and consequently converts these cells to CD4+CD25+FOXP3+ 
Treg cells in vitro (Chen et al., 2003), and in vivo is required for expansion of this phenotype 
of Treg cells  (Peng et al., 2004). TGF-beta-dependent FOXP3+ Treg cells, including both 
CD4+ and CD8+ phenotypes, can induce immune tolerance to allografts in animal models 
(Cobbold et al., 2004; Kapp et al., 2006). However, it is also suggested that in the presence of 
IL-6, TGF-beta induces differentiation of naïve CD4+ T cells to effector interleukin (IL)-17-
producing Th17 cells (Bettelli et al., 2006; Veldhoen et al., 2006), but the evidence for TGF-
beta-dependent Th17 cell development in vivo has not been confirmed yet. Indeed, recent 
studies suggest that TGF-beta does not directly stimulate Th17 cell differentiation, instead it 
inhibits Th1 cells development that indirectly favors Th17 cell expansion (Santarlasci et al., 
2009), and Th17 cells can be generated in the absence of TGF-beta signaling (Ghoreschi et al., 
2010). Thus, TGF-beta may not have any direct effect on effector Th17 cells, and it may only 
act as an immuno-down regulatory cytokine by its induction of FOXP3+ Treg cell as well as 
directly and indirectly in the suppression of other types of immune cells. 
The positive correlation of TGF-beta expression at early phase of transplantation with 
kidney transplant survival has reported in literature. A higher level of TGF-beta in the 
biopsies within 6 months of transplantation or during acute rejection episodes is associated 
with a decreased risk of chronic rejection development (Eikmans et al., 2002), and better 
graft function (Ozdemir et al., 2005). In the early antibody-mediated rejection, occurring 
within the first 3 weeks after transplantation, there is a strong correlation of intrarenal 
expression of TGF-beta 1 with FOXP3 mRNA, and importantly the low intrarenal TGF-beta 
1 and FOXP3 have significantly shorter graft survival, implied by an increased risk for renal 
graft failure within next 12 months (Viklicky et al., 2010). The beneficial effect of 
immunoregulatory TGF-beta on early survival of kidney transplants is further supported by 
a recent experimental study, demonstrating that only the early renal allograft acceptance is 
associated with TGF-beta-induced immune regulation, both peripherally by splenocytes as 
well as locally by graft-infiltrating cells (Cook et al., 2008). All these studies may indicate 
that TGF-beta may benefit kidney transplant survival at the early phase of transplantation 
by its immunoregulatory activities, including induction of FOXP3-expressing Treg cells. 

3. The adverse effects of TGF-beta on kidney transplant survival 

3.1 TGF-beta, a fibrotic factor for chronic rejection of kidney transplants 

Chronic rejection in kidney transplants is a major cause of long-term graft dysfunction and 
ultimate failure, and is characterized as a progressive process of interstitial fibrosis, tubular 
atrophy, and glomerulosclerosis and vascular sclerosis (Racusen et al., 1999; Nankivell et al., 
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2003). Although the pathogenesis of chronic rejection is not fully understood, it is proposed 
that these pathologies may result from chronic repair response towards injurious and 
inflammatory stimuli. As a result, extracellular matrix (ECM) accumulates in functional 
tissue leading to successive tissue fibrosis in the vascular (vascular sclerosis), 
tubulointerstitium (interstitial fibrosis) and glomeruli (glomerulosclerosis), and the 
excessive interstitial fibrosis progressively consequently leads to tubular atrophy in kidney 
transplants. It has been reported that much of this ECM is produced by alpha-smooth 
muscle actin (alpha-SMA)-expressing myofibroblasts (Simonson, 2007; Wynn, 2008), and 
early presence of alpha-SMA expression predicts the progression toward pathologic changes 
for chronic rejection in kidney transplants (Badid et al., 2002; Hertig et al., 2008), suggesting 
that myofibroblasts are the primary effector cells for chronic rejection of kidney transplants. 
Numerous studies have reported a significant correlation of the up-regulation of intragraft 
TGF beta 1 and active plasma TGF-beta 1 with chronic rejection in kidney transplants 
(Sharma et al., 1996; Ozdemir et al., 2005; Harris et al., 2007; Del Prete et al., 2009) and with 
cyclosporine A (CsA) toxicity (Ozdemir et al., 2005). In kidney cell cultures, in addition to 
the growth factors as discussed above, many injury or pro-inflammatory factors (e.g. 
platelet-activating factor, hydrogen peroxide, IL-1beta and TNF-alpha) and CsA induce 
TGF-beta 1 expression (Ruiz-Ortega et al., 1997; Iglesias-De La Cruz et al., 2001; Vesey et al., 
2002a; Vesey et al., 2002b; Slattery et al., 2005; Guan et al., 2010). Thus, TGF-beta has been 
considered as a fibrogenic cytokine, involved in fibrosis or chronic rejection of kidney 
transplants (Morris-Stiff, 2005), and has been proposed as a therapeutic target for this 
problem (Mannon, 2006). However, the pathways of fibrotic activity of TGF-beta in chronic 
rejection of kidney transplants are not completely understood.  
TGF-beta is a pivotal factor for the normal process of tissue homeostasis in every part of our 
body (Siegel and Massague, 2003). Hence, it is easy to understand why TGF-beta is up-
regulated and involved in chronic tissue repair when kidney transplants are exposed to 
chronic inflammation/injury as well as nephrotoxicity of immunosuppressive drugs, but how 
TGF-beta-mediated chronic repair responses leads to the pathologic changes of chronic 
rejection in kidney transplants is not exactly known. It has been documented that epithelial-to-
mesenchymal transition (EMT) can be induced by TGF-beta and is considered as a continuous 
supply to myofibroblast population during the progression of renal fibrosis (Iwano, 2010). 
Indeed, EMT has been detected in kidney transplant biopsies with chronic rejection but not in 
those with stable function (Vongwiwatana et al., 2005). However, recent experimental studies 
demonstrates that in the kidneys with unilateral ureteral obstruction a large majority of 
myofibroblasts for kidney fibrosis actually comes from the phenotypic transition of existing 
normal interstitial fibroblasts, whereas there is no evidence indicating that epithelial cells 
migrate outside of the tubular basement membrane and differentiate into interstitial 
myofibroblasts or EMT (Humphreys et al., 2010), and overexpression of TGF-beta 1 in renal 
TECs induces fibrosis in the kidney that is associated with interstitial fibroblast proliferation 
but not with EMT (Koesters et al., 2010). This notion may be also applied to the chronic 
rejection of kidney transplants that remains further elusive. At the molecular level, TGF-beta 
stimulates ECM production and/or inhibits ECM degradation in various kidney cells 
including TECs, interstitial fibroblasts and mesanglial cells (Ruiz-Ortega et al., 1997; Iglesias-
De La Cruz et al., 2001; Bottinger and Bitzer, 2002; Vesey et al., 2002a; Vesey et al., 2002b; Tian 
et al., 2006; Huang et al., 2008). All these data suggest that the fibrotic effect of TGF-beta in the 
chronic rejection of kidney transplants may be mediated simply by its stimulation of fibroblast 
growth and ECM remodeling leading to ECM accumulation or fibrosis. 
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Fig. 1. A simple scheme for cellular pathways of TGF-beta in renal repair/regeneration, 
immune-modulation and renal fibrosis in kidney transplants. 

Following ischemia-reperfusion injury, renal tubular epithelial cells and other types of 
renal cells are programmed to death (apoptosis and necrosis). TGF-beta may protect cells 
from apoptosis and stimulate proliferation of surviving renal cells to repair or regenerate 
the damaged tissue of kidney transplants. When naïve T cells are primed by alloantigens 
from the kidney transplants, TGF-beta may induce the development of FOXP3+ Treg cells 
that suppress alloimmunity against the kidney transplants. However, chronic up-
regulation of TGF-beta production in the kidney transplants may induce ECM-producing 
myofibroblasts and chronic stimulation of cell growth of myofibroblasts in the 
tubulointerstitium, glomeruli and vascular tissue may result in chronic rejection, 
indicated by interstitial fibrosis, tubular atrophy, glomerulosclerosis, and vascular 
fibrosis. DC: dendritic cells; NT: naïve T cells; Th: T helper cells; B: B and plasma cells; 
CTL: CD8+ cytotoxic T cells. 
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4. Conclusion 

TGF-beta affects kidney transplant survival in many ways; it is a growth factor for tissue 
regeneration and tissue remodeling when kidney transplants are damaged, and is an 
immunosuppressive factor when cellular immune response to kidney transplants is 
activated. At the beginning of transplantation, when kidney transplants are damaged by 
ischemia-reperfusion injury and recipient’s immune response is activated, TGF-beta may 
repair kidney transplants by stimulation of tissue regeneration, protection of renal cells from 
apoptosis and negatively regulates cellular immune response to kidney transplants by 
induction of FOXP3+ Treg cells. Later on, when kidney transplants are attacked by chronic 
inflammation including drug-resistant immune response and virus infection, and 
nephrotoxicity of immune suppressive drugs, the chronic repair response of TGF-beta may 
induce tissue remodeling of kidney transplants leading to chronic rejection (Figure 1). Thus, 
despite of the short-term beneficial effects of tubule-repairing and immune-down-regulation 
immediately posttransplantation, the long-term effects of TGF-beta on kidney transplant 
survival under current immune therapies seem to be negative as increased expression of 
TGF-beta1 promotes growth of fibroblasts and ECM accumulation leading to tissue 
remodeling in the tubulointerstitium, vascular tissue and glomeruli or chronic rejection. 
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