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1. Introduction 

Discretization of a random field by the generalized polynomial chaos (GPC) begins with 
selecting a specific type of orthogonal polynomial (e.g. Legendre and Hermite polynomials) 
(e.g. Ghanem and Spanos, 1991). This selection of a type of orthogonal polynomial can be 
performed based on the reported experiences (e.g. Xiu and Karniadakis, 2003) or data 
revealing the distribution of a random field to be discretized. If such data or reported 
experiences are unavailable, a third way may be generating some pilot tests to study the 
performance of a specific type of orthogonal polynomial in discretizing this random field. This 
study tries to develop an evolutionary algorithm-based auxiliary tool for the implementation 
of such pilot tests. A similar tool (Allaix and Carbone, 2009), which is based on the single-
objective evolutionary algorithm, had been developed for constructing the Karhunen-Loève 
(KL) representation of a random field. Both KL and GPC expansions are two of the popular 
random field discretization methods (Ghanem and Spanos, 1991). But, the KL expansion 
should be applied under a prerequisite of knowing the covariance matrix of a random field to 
be discretized (e.g. Ghanem and Spanos, 1991); while, the GPC expansions can be applied 
without similar prerequisites (e.g. Xiu and Karniadakis, 2003). Therefore, the development of 
an auxiliary tool for constructing a GPC representation of a random field would be necessary. 
The succeeding research considers the derivation of an GPC representation of a random field 
as a multi-objective (MO) problem having two goals: (a) limiting the computational efforts 
spent in applying the resulting GPC representation; and (b) keeping the resulting GPC 
representation satisfying all accuracy standards (e.g. getting the sufficiently accurate 
prediction of statistical parameters of a random field). The former goal will be attained by 
limiting the highest order of polynomial term and total number of uncorrelated random 
variables used to construct a GPC representation; while the latter goal will be attained by 
minimizing multiple error estimators. Since there are multiple goals to be attained, a multiple 
objective evolutionary algorithm (MOEA) is required. Among all available MOEAs, the 
strength Pareto evolutionary algorithm II (SPEA 2) (Zitzler, et al., 2001) is chosen. The highest 
order of polynomial term and total number of uncorrelated random variables used to 
construct an GPC representation are considered as two parameters to be identified.  
The remainder of this study is organized into four sections. In Sec. 2, the theoretical 
backgrounds of GPC expansions (e.g. Xiu and Karniadakis, 2003) are briefly reviewed. In 
Sec. 3, the SPEA 2 (Zitzler, et al., 2001) is used to construct a parameter identification 
procedure to identify the aforementioned highest order of orthogonal polynomial and total 
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number of uncorrelated random variables. Two examples are introduced to study the 
performance of the resulting works are tested in Sec. 4. The test results are used to give 
some discussion and conclusion in Sec. 5. 

2. Generalized polynomial chaos expansion 

2.1 Definition 

The GPC (e.g. Xiu and Karniadakis, 2002) is a generalization of the classical Wiener’s PC 
(polynomial chaos). This Wiener’s PC is defined as the span of Hermite polynomials of a 
Gaussian process. A Cameron-Martin theorem states that the Wiener's PC can be used to 
approximate any functional in L2(C) and converges in the L2(C) sense in which C denotes the 
space of real functions, which are continuous over the interval [0, 1] and vanish at 0. The GPC 
further provides a mean of expanding second-order random fields having finite variance over 
a specific interval in terms of orthogonal polynomials. Most physical processes can be 
simulated by such second-order random fields. As compared to the Wiener’s PC, the GPC has 
better performance in representing some specific types of non-Gaussian inputs. 
Suppose θ is an event in the probabilistic space, and u(θ) is a continuous function of θ. The 
GPC representation of u is equated by (e.g. Xiu and Karniadakis, 2002) 
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where  
1 1 20 ,  ,  ,....i i ia a a  denote the coefficients to be determined and ψn, n = 0, 1, 2… are the 

polynomial chaos (PC) of order n of multi-dimensional independent random variables 

1 2
, ...  

ni i iandξ ξ ξ  having zero mean and unit variance. 
For the notational convenience, Eq. (1) is further modified to (e.g. Xiu and Karniadakis, 2002) 
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where ξ = 
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( , ... )
ni i iξ ξ ξ , Ψ0 = 1, and U0 is set to the mean value of u. There is a one-to-one 

correspondence between Ψi and ψn and between 
1 1 20 ,  ,  ,....i i ia a a  and Ui. For example, 

suppose u is as functions of x and ξ = 
1 2

( , )i iξ ξ . The relationship between Ψi, i = 0-9 and ψn, n = 0-3 is given by 
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In addition, because Ψi, i = 0-∞ and ψn, n = 0-∞ are orthogonal polynomials in terms of ξ, it 
can be obtained: 

 2 2,  and , ,    i,j 0-i j i ij i j i ijδ ψ ψ ψ δΨ Ψ = Ψ = ∀ = ∞  (4) 
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where δij is the Kronecker delta (i.e. δij = 1 if i = j and δij = 0 if i ≠ j), ,⋅ ⋅  is the ensemble 
average. If f and g are two orthogonal polynomials of ξ, ,⋅ ⋅  is computed by (Xiu and 
Karniadakis, 2002; Xiu and Karniadakis, 2003) 
a. Continuous case (i.e. 

1 2
, ...  

ni i iandξ ξ ξ vary continuously over the probabilistic space):  
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b. Discrete case  (i.e. 
1 2
, ...  

ni i iandξ ξ ξ vary discretely over the probabilistic space): 
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where 
1 2

( ),  w( )....w( )
ni i iw ξ ξ ξ  represent the weighting functions. 

Equation (4) can be used to get Ui, i = 0-∞. Multiplying Eq. (2) with Ψi, i = 0-∞ and 
simplifying the resulting equations according to Eq. (5a) or (5b) give 
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In practice, not all Ui are computed. Eq. (2) can be truncated as follows 
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where M is 
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1

n P

n P

+ − , n represents the total number of uncorrelated random variables, and P 

is the highest order of polynomial term used to equate Ψi. 

Tables 1-2 (e.g. Xiu and Karniadakis, 2002) list available choices of orthogonal polynomials 

and corresponding statistical distributions and weighting functions to generate Ψi, i = 0-∞, 

1 2
, ...

ni i iξ ξ ξ , and 
1 2

( ),  w( )....w( )
ni i iw ξ ξ ξ ; respectively. 

 

Distribution Polynomial w(ξ) Interval 

Gaussian 
gamma 

beta 
uniform 

Hermite polynomial Hn(x) 
Laguerre polynomial Ln(x) 

Jacobi polynomial Gn(p, q, x) 
Legendre polynomial Pn(x) 

exp(-ξ2) 

exp(-ξ) 

(1-ξ)p-qξq-1 
1 

(-∞,∞) 

[0, ∞] 
[a, b] 
[a, b] 

Table 1. Polynomials, weighting functions, and statistical distributions for generating an 
GPC expansion (Continuous case) (e.g. Xiu and Karniadakis, 2002) 
 

Distribution Polynomial w(ξ) Interval 

Poisson 
binomial 
negative 
binomial 

hypergeometric 

Charlier polynomial C(x, λ) 
Krawtchouk polynomial Kn(x, p, N)

Meixner polynomial Mn(x, β, c) 
Hahn polynomial Qn(x, α, β, N) 

exp(-λ)λξ/ξ! 
N!pξ (1-p)N-ξ/[ξ!(N-ξ)!] 

(β)ξ(1-c)βcξ/ξ! 
(α+ξ)!(β+N-ξ)!/[ξ!α!(N-ξ)!β!] 

{0, 1, 2…} 
{0, 1…N} 
{0, 1, 2…} 
{0, 1…N} 

Table 2. Polynomials, weighting functions, and statistical distributions for generating an 
GPC expansion (Discrete case) (e.g. Xiu and Karniadakis, 2002) 
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Furthermore, some references (e.g. Xiu and Karniadakis, 2002; Xiu and Karniadakis, 2003) 
had summarized useful properties about those orthgonal polynomials listed in Tables 1-2. 
Interested readers may refer to these papers and these properties are not repeatedly listed 
here. 

2.2 Discretization error estimator 
Discretizing u by Eq. (7) causes some discretization errors. These discretization errors can be 
quantified by some error estimators. For example, the exact value of standard deviation of u 
(or other statistical parameters) and the one provided by Eq. (7) can be used to equate an 
error estimator. However, the exact value of standard deviation of u may be unavailable or 
difficult to be obtained. At such a situation, a Monte Carlo simulation (MCS) is required. 
This MCS is performed by first generating some samples of u. The standard deviation of 
resulting samples of u is then computed. It had been concluded (e.g. Ghanem and Spanos, 
1991) that the standard deviation of u provided by an MCS will approach its exact value, if a 
sufficiently large amount of samples have been generated to implement the MCS. Thus, 
statistical parameters computed by an MCS, which is completed using a large amount of 
samples of u, can be used to understand the accuracy of Eq. (7). 
For simplicity, this study defines two types of error estimators to quantify the discretization 
errors. The values of these error estimators are kept within an acceptable range when 
constructing a GPC representation of a random field. The first type of error estimator is 
equated to quantify the error ε1 caused by truncating Eq. (2) to derive Eq. (7). At a specific ξ, ε1 is defined by  (Field and Grigoriu, 2004) 
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where the subscript ex denotes the exact value. 
The second type of error estimator is equated to quantify the errors between the exact value 
of standard deviation of u and the one computed based on Eq. (7). Suppose σex and σGPC 
denote the exact value of standard deviation of u and the one provided by Eq. (7); 
respectively. The latter σGPC is computed by ( Ghanem and Spanos, 1991) 
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Based on Eq. (9), the error ε2 between σex and σGPC is defined by 
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If σex is unavailable or diffcult to be obtained, σMCS is substituted for it where the subscript 
MCS denotes the Monte Carlo simulation. 
Equations (8) and (10) will be used to define the objective functions in the next section. 

3. Parameter identification procedure 

As stated in Sec. 1, this study considers the derivation of an GPC representation of a random 
field as an MO problem and applies the SPEA2 (Zitzler et al., 2001) to solve this MO 
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problem. Mathematically, an MO problem is defined by (Tan, et al., 2005) finding a set of 
vector, P such that 

 ( )∈ ∈ℜNMin
Θ Φ

F Θ Θ  (10) 

where Θ = {θ1, θ2... θN} is an N-dimensional vector having N parameters, Φ defines a feasible 

set of Θ, and F = {f1, f2...fm} is an objective vector with m objective functions fi (i = 1 to m) to 
be minimized. 

For the succeeding research, suppose the mean value and σ of a random field to be 
discretized have been known or computed by an MCS. It is intended to identify n and P for 

constructing the GPC representaton of this random field; thus, Θ is equal to {n, P}. 
Meanwhile, the goals are (a) limiting the computational efforts spent in applying the 
resulting GPC representation; (b) keeping the accuracy of resulting GPC representation 
satisfying all accuracy standards. The former goal can be attained by choosing n and P 
within an acceptable range; while, this sudy attains the latter goal by minimizing the next 
three objective functions fi, i = 1-3: 
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where ξa and ξb denote two specific values of ξ and Si, i = 1-3 are three constants. 
Based on those concepts (Tan, et al., 2005), which are frequently mentioned in solving an 
MO problem, Sec. 3.1 lists the general steps to identify n  and P. Secs. 3.2-3.3 explains the 
details of specific steps. 

3.1 General structure 

The identification of n and P is performed by next six steps: 

a. Initially, generating 2N random numbers for creating a population Θt (the subscript t 
denotes the generation number) containing N sets of candidate values of n and P. Since 
n and P should be integers, each random number is rounded to its nearest integer for 

producing a candidate n or P value. Besides, create an empty archive Ξt for storing the 

resulting Pareto optimal set. Limit the maximum size of Ξt to a number Nmax. 

b. Compute the fitness value of each individual of Θt ∪ Ξt. This fitness value is defined as 
the sum of the number of individuals dominating an individual and the density 
assessment at this individual in an objective space. The density assessment is used to 
speed up the convergence of Pareto optimal set until it contains only nondominated 
individuals. Sec. 3.2 further explains the computation of fitness values of an individual. 

c. Generate a temporary Pareto optimal set as follows (Tan, et al., 2005 and Zitzler, et al., 
2001): Nondominated individuals of Θt ∪ Ξt are first copied to Ξt+1. If there are less than 
Nmax individuals in the resulting Ξt+1, sort dominated individuals of Θt ∪ Ξt in an 
ascending order by their fitness values. Fill Qt+1 with first (Nmax - |Ξt+1|) dominated 
individuals (|Ξt+1| is the size of Ξt+1). If there are more than Nmax individuals in the 
resulting Ξt+1, sort Ξt+1 in a descending order by the distance of each individual to its k-
th nearest neighbor. Then, remove last (|Ξt+1| - Nmax) individuals from the sorted Ξt+1. 
A reference book (Tan, et al., 2005) gives the pseudo-codes to implement this step. 
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d. Test whether a stopping criterion is satisfied. For example, it can stop when a maximum 
generation number is reached. If the stopping criterion is satisfied, the final Pareto 
optimal set is Ξt+1. Then, go to Step (f). Otherwise, execute the tournament selection, 
crossover, and mutation genetic operators to fill Θt+1 with P offspring of individuals of Ξt+1. The implementation of these genetic operators is explained in Sec. 3.3. 

e. Increment the generation number t. Repeat Steps (a) to (d). 
f. Select manually the final values of n and P from Ξt+1. 

3.2 Fitness assignment 

Continuing Step (b) of Sec. 3.1, suppose the fitness value of each individual of Θt ∪ Ξt to be 
computed. The fitness value Fi of an i-th individual is obtained by (Zitzler, et al., 2001) 

 i i iF R D= +  (12) 

where Ri is the raw fitness value defined based on the total number of individuals 
dominating the i-th individual and Di denotes the density assessment at the i-th individual 
in an objective space. 
The total number of individuals dominating an i-th individual is represented by a strength 
value Si expressed in the form as 

 { }|i t tS j j i j= ∈ ∪ ∧Θ ZΞ  (13) 

where j denotes the j-th individual, |.| denotes the cardinality of a set, and Z denotes the 

Pareto dominance. Based on Eq. (13), Ri, is defined by 

 
t t

i jj j i
R S∈ ∪ ∧=∑ ZΘ Ξ  (14) 

However, Eq. (14) may fail when most individuals do not dominate each other. Therefore, 
Eq. (12) includes Di and it is computed by the distance k

id  to its k-th nearest neighbor. The 
method for calculating k

id  is as follows: First, calculate the distances of an i-th individual to 
all other j-th individuals of Θt ∪ Ξt. Thus 
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, ,
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d f f
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where the subscripts i and j denote the i-th and j-th individual; respectively. The resulting dij 
are then stored in a list. Sort this list and k

id  is the k-th element of sorted list. The resulting 
k
id  is used to define Di as follows: 

 1

1k
i

i d
D +=  (16) 

in which 1 in the denominator is to ensure Eq. (16) is less than 1. 

3.3 Genetic operators 
The tournament selection, crossover, and mutation operators are applied to produce the 
offspring of those random numbers generated for getting candidate n and P values. Those 
random numbers should be coded into chromosomes before applying those genetic 
operators (Tan, et al., 2005). 
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a.  n the tournament selection operation, two chromosomes are randomly selected. Discard 
the chromosome dominated by the other one. If else, two chromosomes are all 

conserved. Consider a population Ξ as an example. The tournament selection operation 

will repeat |Ξ| times (|Ξ| denotes the size of Ξ). 
b. In the crossover operation, the crossover probability pc is first defined. Two chromosomes, 

which have survived from the tournament selection operation, are chosen as the parents 
for producing the offspring. The offspring are generated by combining parts of the 

chromosomes contributed by each parent. Continuing using Ξ in Step (a), the crossover 

operation will repeat until Ξ is recovered to its original size. Figure 1(a) further illustrates 
this crossover operation in which chromosomes are represented by binary strings. 

c. In the mutation operation, the mutation probability pm is first set. A chromosome, 
which has survived from the tournament selection operation, is randomly selected. The 
structure of it is randomly changed to produce a new chromosome. Continuing using Ξ 

in Steps (a)-(b), the crossover operation will repeat 
| |

2

Ξ
 times. Figure 1(b) illustrates this 

mutation operator in which the chromosome to be mutated is also represented by a 
binary string. 

 

 

Fig. 1. Illustration of two genetic operators: (a) Crossover; (b) Mutation 

4. Results 

Two examples are generated to study the performance of resulting works in Sec. 3. The first 
example is discretizing a random field u varying with a lognormal distribution: 

 2

1

1 log 0.12
n

i
i

u ξ
=

⎛ ⎞= + ⎜ ⎟⎝ ⎠∑  (17) 
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where -1 ≤ ξi (i = 1-2) ≤ 1 denotes n random numbers. By implementing an MCS using 105 

samples of u, the mean μu and σu of u are calculated by 2 and 0.12; respectively. A GPC 
representation of u is constructed with satisfying the following accuracy standard: 

 10%;    j = 1-3jS =  (18) 

Essential parameters for identifying n and P are set by 
a. Find n and P within the range 1 ≤ n ≤ 3 and 1 ≤ P ≤ 10. 

b. Set ξa = 1 and ξb = -1.0. 
c. Set temporarily pc and pm are all equal to 1 and Nmax is 100. Study subsequently the 

convergence of fi, i = 1-3 with respect to different pc and pm values. 
d. Set N = 100 in producing candidate n and P values. (That is, total 200 random numbers 

are generated to produce candidate n and P values). Besides, generate 100 generations 
of candidate n and P values. 

e. Following temporarily Table 1 (e.g. Xiu and Karniadakis, 2002), apply the Hermite PC 
to construct an GPC representation of u. Introduce subsequently a different type of the 
GPC (e.g. the Legendre PC) to equate another GPC representation of u and compare the 
accuracy of two different GPC representations of u. 

Figures 2 shows the convergence of fi, i = 1-3. The diversity of 1st and 100th generations of 
random numbers for generating candidate n and P values is shown in Fig. 3. Note that less 
than 100 (= N) points are drawn in Fig. 2, since candidate n and P values are gotten by 
rounding some random numbers to their nearest integers. 
Sorting the data of fi, i = 1-3 depicted in Figs. 2-3 finds that the minization of f3 and fi, i = 1-2 
cannot be simultaneously attained. For example, if n and P are chosen to minimize f3 (= 
0.00319), the corresponding fi, i = 1-2 (f1 = 0.0012; f2 = 0.0082) are not equal to their minimum 
values (f1,min = 0.00079 and f2,min = 0.0001 (the subscript min denotes the minimum value)). In 
addition, examining Figs. 2-3 indicates that there may be two choices of final values of n and 
P. As listed in Table 3, if n and P are equal to 2 and 6; respectively, f3 is minimized but fi, i =  
 

 

Fig. 2. Convergence of fi, i = 1-3 (Using the Hermite PC, Lognormal distribution) 
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Fig. 3. Diversity of random numbers for generating candidate n and P values (Using the 
Hermite PC, Lognormal distribution) 

1-2 are not minimized. Meanwhile, if n and P are equal to 1 and 10;respectively, fi, i = 1-2 are 
minimized but f3 is not minimized. If only one set of final values of n and P is forced to be 
left, this study prefers the former set. Getting a sufficiently accurate predicted standard 
deviation is more important. 
 

n P M f1 f2 f3 

2 6 28 0.0012 0.0082 0.00319 

1 10 10 0.0427 0.0019 0.257 

Table 3. Two different choices of final values of n and P (Using the Hermite PC, Lognormal 
distribution) 

 

Fig. 4. Convergence of fi, i = 1-3 (Using the Legendre PC, Lognormal distribution) 
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One may suspect that f3 can be further minimized, if u is represented by another type of the 
GPC. As a test, Fig. 2 is modified by substituting the Legendre PC for the Hermite PC to re-
discretize u. Fig. 4 depicts the convergence of resulting fi, i = 1-3. 
It seems to be difficult to compare f3 values provided by the Legendre PC-based and 
Hermite PC-based representations of u by simply observing Figs. 2 and 4. Therefore, 
another set of n and P values, which minimize f3, are chosen from the data for depicting Fig. 
4. Table 4 lists the resulting n and P values. 
 

n P M f1 f2 f3 

3 2 10 0.0022 0.0778 0.08811 

Table 4. Final values of n and P (Using the Legendre PC, Lognormal distribution) 

Comparing Tables 3 and 4, this study suggests that a random field varying with a lognormal 
distribution is better represented by the Hermite PC. If the Legendre PC-based 
representation of u is applied, f3 is not further minimized. In other words, the accuracy of 

predicted σu is not further improved, if the Legendre PC-based representation of u is used. 
The second example is representing another random field v varying with a uniform 
distribution: 

 2

1

1 0.12
n

i
i

v ξ
=

= + ∑  (19) 

where -1 ≤ ξi (i = 1-2) ≤ 1 still denote n random variables. Another MCS using 105 samples of v 

is performed. The mean value μv and standard deviation σv of v are 1 and 0.12; respectively. 
Following Table 1 (e.g. Xiu and Karniadakis, 2002), the Legendre PC is applied to discretize 
v. With fixing other essential parameters for sketching Figs. 2-4, Fig. 5 shows the 
convergence of fi, i = 1-3. The diversity of 1st and 100th generations of random numbers for 
generating candidate n and P values is shown in Fig. 6. 
 

 

Fig. 5. Convergence of fi, i = 1-3 (Using the Legendre PC, Uniform distribution) 
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Fig. 6. Diversity of random numbers for generating candidate n and P values (Using the 
Legendre PC, Uniform distribution) 

Sorting the data of fi, i = 1-3 depicted in Figs. 5-6 still finds that the minization of f3 and fi, i = 
1-2 cannot be simultaneously attained. If n and P are chosen to minimize f3 (= 0.02635), the 
corresponding fi, i = 1-2 (f1 = 0.1363; f2 = 0.1934) are not equal to their minimum values (f1,min 
= 0.0103 and f2,min = 0.0266). Also examining Figs. 5-6 finds two choices of final values of n 
and P. Table 5 lists these two sets of final values of n and P. If n and P are equal to 3 and 10; 
respectively, f3 is minimized but fi, i = 1-2 are not minimized. Meanwhile, if n and P are 
equal to 2 and 8; respectively, fi, i = 1-2 are minimized but f3 is not minimized. This study 
still prefers the former set, although more computational efforts are required in applying 
this set of n and P values. 
 

n P M f1 f2 f3 

3 10 286 0.1363 0.1934 0.0264 

2 8 45 0.0103 0.0266 0.1422 

Table 5. Two different choices of final values of n and P (Using the Legendre PC, Uniform 
distribution) 

Furthermore, similarly manipulating Fig. 4, the Hermite PC is substituted for the Legendre 
PC to re-discretize v and the convergence of corresponding fi, i = 1-3 is depicted in Fig. 7. 
Then, a set of n and P values, which minimize f3, is chosen from the data for drawing Fig. 7. 
Table 6 lists the resulting n and P values.  
If it is desired that the GPC representation of v should be as accurate as possible, Tables 5-6 
confirms the reported conclusion (e.g. Xiu and Karniadakis, 2002) that a random field 
varying with a uniform distribution is better represented by the Legendre PC. Comparing 
Tables 5-6 indicates that the application of Hermite PC-based representation of v gives a less 

accurate predicted σv. However, if the computational efforts spent in applying a set of n and 
P values is the major concern, n = 2 and P = 10 may be used. The corresponding f3 value is 
not too worse. 
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Fig. 7. Convergence of fi, i = 1-3 (Using the Hermite PC, Uniform distribution) 

 

n P M f1 f2 f3 

2 10 66 0.053 0.027 0.066 

Table 4. Final values of n and P (Using the Hermite PC, Uniform distribution) 

Before closing this section, the effects of changing pc and pm on the determination of n and P 
values are studied. As an illustration, Figs. 3-4 are modified by changing pc = pm = 1.0 to pc = 
pm = 0.9. Figs. 8-9 depict the convergence of fi, i = 1-3 and diversity of 1st and 100th 
generations of random numbers for producing candidate n and P values. 
 

 

Fig. 8. Convergence of fi, i = 1-3 with pc = pm = 0.9 (Using the Hermite PC, Lognormal 
distribution) 
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Fig. 9. Diversity of random numbers for generating candidate n and P values with pc = pm = 
0.9 (Using the Hermite PC, Lognormal distribution) 

Observing Figs. 8-9 finds that the decease of pc and pm affects insignificantly the 
convergence of fi, i = 1-3 but diversifies the random numbers for generating candidate n and 
P values. 

5. Discussion and conclusion  

This study applies the SPEA2 (Zitzler, et al., 2001) to develop an auxiliary tool for 
identifying n and P values, which are two essential parameters for constructing a GPC 
representation of a random field. In Sec. 4, the proposed tool is tested to identify n and P for 
constructing GPC representations of two random fields varying with the lognormal and 
uniform distributions; respectively. The test results illustrate that an MOEA can be a good 
tool for constructing a sufficiently accurate GPC representation of a random field, 
irrespective of how many accuracy standards should be satisfied. Besides, the resulting GPC 
representation can be applied with keeping computational costs as few as possible. 
In addition, Sec. 4 demonstrates the need of generating some pilot tests for studying the 
performance of GPCs in discretizing a random field before choosing one type of the GPC to 
discretize this random field. Such pilot tests can be quickly implemented by applying an 
MOEA. Tables 5-6 and Figs 5 and 7 demonstrate that the Hermite PC may be used to discretize 
a random field varying with a uniform distribution, if it can be sacrificed some accuracy of 
predicted statistical parameters (e.g. the standard deviation) of this random field. 

Nevertheless, a disadvantage should be mentioned:  Ψi, i = 0-M may be difficult to be 
equated in case of n > 3. Although much computational efforts will be spent, n > 3 may give 
more accurate GPC representation of a random field. Fortunately, consulting with some 
references (e.g. Field, 2004) finds that 1 ≤ n ≤ 3 seems to be enough to generate sufficiently 
accurate GPC representations of random fields. 
As a conclusion, an MOEA can be an efficient auxiliary tool for constructing an GPC 

representation of a random field satisfying multiple accuracy standards. Only Ψi, i = 0-M at 
n > 3 may be complementally derived in the future. 
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