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1. Introduction 

This chapter is focused on the estimation of wind farm power fluctuations from the 

behaviour of a single turbine during continuous operation (special events such as turbine 

tripping, grid transients, sudden voltages changes, etc. are not considered). The time scope 

ranges from seconds to some minutes and the geographic scope is bounded to one or a few 

nearby wind farms. 

One of the objectives of this chapter is to explain quantitatively the wind power variability 

in a farm from the behaviour of a single turbine. For short intervals and inside a wind farm, 

the model is based on the experience with a logger system designed and installed in four 

wind farms (Sanz et al., 2000a), the classic theory of Gaussian (normal) stochastic processes, 

the wind coherence model (Schlez & Infield, 1998), and the general coherence function 

derived by Risø Institute in Horns Rev wind farm (Martins et al., 2006; Sørensen et al., 

2008a). For larger distances and slower variations, the model has been tested with 

meteorological data from the weather network. 

The complexities inherent to stochastic processes are partially circumvented presenting 

some case studies with meaningful graphs and using classical tools of signal processing and 

time series analysis when possible. The sum of the power from many turbines is a stochastic 

process that is the outcome of many interactions from different sources. The sum of the 

power variations from more than four turbines converges approximately to a Gaussian 

process despite of the process nature (deterministic, stochastic, broadband or narrowband), 

analogously to the martingale central limit theorem (Hall & Heyde, 1980). The only required 

condition is the negligible effect of synchronization forces among turbine oscillations. 

The data logged at some wind farms are smooth and they have good mathematical 

properties except during special events such as turbine breaker trips or severe weather. This 

chapter will show that, under some circumstances, the power output of a wind farm can be 

approximated to a Gaussian process and its auto spectrum density can be estimated from 

the spectrum of a turbine, wind farm dimensions and wind coherence. The wind farm 

power variability is fully characterized by its auto spectrum provided the Gaussian 

approximation is accurate enough. Many interesting properties such as the mean power 

fluctuation shape during a period, the distribution of power variation in a time period, the 

more extreme power variation expected during a short period, etc. can be estimated 

applying the outstanding properties of Gaussian processes according to (Bierbooms, 2008) 

and (Mur-Amada, 2009). 
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Since the canonical representation of a Gaussian stochastic process is its frequency spectrum 

(Karhunen–Loeve theorem), the analysis of wind power fluctuations is usually done in the 

frequency domain for convenience. An alternative to Fourier analysis is time series analysis.  

Time series are quite popular in stochastic models since they are well suited to prediction 

and their parameters and their properties can be easily estimated (Wangdee & Billinton, 

2006).  Even though the two mathematical techniques are quite related, the study of periodic 

behaviour is more direct through Fourier approach whereas the time series approach is 

more appropriate for the study of non-systematic behaviour.  

1.1 Sources of wind power fluctuation 
The fluctuations observed at the output of a turbine are the outcome of the interaction of 

wind turbulence with the complex turbine dynamics. For very slow fluctuations 

(corresponding to lower frequencies in the spectrum), the turbine regulation achieves its 

target and the turbine dynamics are negligible. Faster fluctuations (corresponding to higher 

frequencies) interact with the structural and drive-train vibrations. The complexity of the 

mechanical vibrations, the turbine control and the non-linearity of the generator power 

electronics interactions affects notably the generator electromagnetic torque and the turbine 

power fluctuations, especially in the frequency range from tenths of Hertzs to grid 

frequency. 

There are many dynamic turbine models described in the literature. Most megawatt 

turbines share the following behaviour, considering the aerodynamic torque as the system 

input and the power injected in the grid as the system output (Soens, 2005; Comech-Moreno, 

2007; Bianchi et al, 2006): 

•  Between cut-in and rated wind speeds, the turbine power usually behaves (with 

respect to the wind measured with an anemometer) as a low frequency first-order filter 

with a time constant between 1 and 10 s.  

• Between rated and cut-out wind speeds, the turbine power usually behaves (with 

respect to the measured wind) as an asymmetric band pass filter of characteristic 

frequency around 0,3 Hz due to the combined effect of the slow action of the 

pitch/ active stall and the quicker speed controllers. 

• At some characteristic frequencies, the turbine mechanical vibrations, the power 

electronics and the generator dynamics modify the general trend of the power output 

spectrum with respect to the wind input.  

There are many specific characteristics that impact notably the power fluctuations and their 

realistic reproduction requires a comprehensive model of each turbine. The details of the 

control, the structural details and the power electronics implemented in the turbines are 

proprietary and they are not publicity available. In contrast, the electrical power injected by 

a turbine can be measured easily. 

Moreover, some fluctuations in power are not proportional to the fluctuations in wind or 

aerodynamic torque. Thus, the ratio of the output signal divided by the input signal in the 

frequency domain is not constant. However, a statistical linear model in the frequency can 

be used (Welfonder et al., 1997) although the system output is neither proportional to the 

input nor deterministic. 

The approach taken in this chapter is primarily phenomenological: the power fluctuations 

during the continuous operation of the turbines are measured and characterized for 

timescales in the range of minutes to fractions of seconds. Thus, one contribution of this 
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chapter is the experimental characterization of the power fluctuations of three commercial 

turbines. Some experimental measurements in the joint time-frequency domain are 

presented to test the mathematical model of the fluctuations and the variability of PSD is 

studied through spectrograms. 

Other contribution of this chapter is the admittance of the wind farm: the oscillations from a 

wind farm are compared to the fluctuations from a single turbine, representative of the 

operation of the turbines in the farm. The partial cancellation of power fluctuations in a wind 

farm is estimated from the ratio of the farm fluctuation relative to the fluctuation of one 

representative turbine. Some stochastic models are derived in the frequency domain to link the 

overall behaviour of a large number of wind turbines from the operation of a single turbine. 

This chapter is based mostly on the experience obtained designing, programming, 

assembling and analyzing two multipurpose measuring system installed in several wind 

farms (Sanz et at., 2000a; Mur-Amada, 2009). This measuring system has been the first 

prototype of a multipurpose data logger, now called AIRE (Analizador Integral de Recursos 

Energéticos), that is currently commercialized by Inycom and CIRCE Foundation. 

1.2 Random and almost cyclic fluctuations 
Power output fluctuations can be divided into almost cyclic components (tower shadow, 

wind shear, modal vibrations, etc.), wind farm weather dynamics (turbulence, boundary 

layer atmospheric stability, micrometeorological dynamics, etc.) and events (connection or 

disconnection of the turbine, change in generator configuration, etc.). The customary 

treatment of these fluctuations is done through Fourier transform. 

Cyclic fluctuations due to tower shadow, wind shear, etc. present more systematic 

behaviour than weather related variations. Almost cyclic fluctuations are approximately 

periodic and they present quite definite frequencies. In this context, almost periodic means 

that the signal can be decomposed into a set of sinusoidal components with slow varying 

amplitudes (some of them non-harmonically related) and stationary noise (i.e., 

polycyclostationary signals). The frequencies in the signal vary slightly since the fluctuation 

amplitudes are not constant and the signal is not periodic in the conventional sense. 
 

 

Fig. 1. Active power of a 750 kW wind turbine for wind speeds around 6,7 m/ s during 20 s. 
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Cyclic variations are usually characterized with their Fourier transforms (Gardner, 1994). 

Moreover, turbulence is also characterized through its auto spectral density, which is basically 

the Fourier transform of its autocorrelation. Periodic fluctuations appear as narrow peaks at 

their harmonic frequencies in the spectrum, whereas random fluctuations (which have neither 

a periodic pattern nor a characteristic frequency) can be associated with the tendency of the 

smoothed spectrum. Thus, the magnitude and frequency of the cyclic fluctuations can be 

characterized for each turbine model and wind regime (Mur-Amada, 2009). 

Weather evolution is the outcome of slow and complex atmospheric processes. Since 

weather evolution has a strong non-linear behaviour, it will not be considered in this 

chapter. 

1.3 Fluctuations induced by the wind turbulence 
Many fluctuations in the power output are strongly related to wind fluctuations, especially at 

low frequencies (slow fluctuations). The wind spectrum is a common way to characterize the 

frequency content of the turbulence present in the wind as it flows around an anemometer. 

The wind is usually measured in a fixed point, but the wind varies along a wind farm, not only 

due to the obstacles and orography, but also due to the turbulent nature of wind. 

Taylor’s hypothesis of frozen turbulence is a simple model that relates spatial and temporal 

variations of the wind. This hypothesis can be used to reconstruct the approximate spatial 

structure of wind from measurements with an anemometer fixed at a point in space.  

In fact, wind irregularities experienced by a turbine are also perceived by the next turbines 

(usually with diverse magnitude and with some time delay). The area of influence of the 

turbulence is related to the value of wind speed deviations (Cushman-Roisin, 2007). Higher 

wind fluctuations usually imply larger spatial extent. Therefore, wind fluctuations are 

usually experienced in close turbines with some time lag/ lead Δt’  In Taylor’s Hypothesis of 

“ frozen turbulence” , the gust travel time in the wind direction Δt’ is the distance in 

longitudinal direction divided by the wind speed (see Fig. 2). The wind measured at the 

tower of Fig. 2 varies in 10 s due to a perturbation 100 m long travelling at the wind speed. 
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Fig. 2. Example of a idealized eddy of 100 m (represented by a cloud) passing through a 

meteorological mast according to Taylor’s Hypothesis of “ frozen turbulence” . 

If the fluctuation arrives to another turbine inside the time interval [–Δt , +Δt ],  then the phase 

uncertainty in the frequency domain is [–2π f Δt , +2π f Δt] radians, where f  is the considered 

frequency. When f > 0,5/ Δt, the phase is undetermined because the uncertainty of the phase 

excess [–π, +π] (i.e. a cycle). At frequencies a few times higher than 0,5/ Δt, the fluctuation of 
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frequency f is experienced by other turbines with a random phase difference almost uniformly 

distributed and with comparable amplitude. In other words, the phase of the fluctuations in 

the frequency domain are uncorrelated stochastically at f > 0,5/ Δt although the amplitude 

could show a systematic behaviour. The spatial and temporal coherence statistically quantifies 

the variations of wind in different points in space or in separate moments of time. 

For convenience, the wind is sometimes assumed barely uniform in the area swept by the 

turbine. Based on this approximation, the equivalent wind is defined as the one that produces 

the same effects that the non-uniform real wind field. Although the wind field cannot be 

directly measured, its effects can be deduced from an equivalent wind that is usually 

derived from the measurements of an anemometer, because variations in time and space are 

related by the air flow dynamics.  

The equivalent wind speed contains a stochastic component due to the effects of turbulence, 

a rotational component due to the wind shear and the tower shadow and the average value 

of the wind in the swept area, considered constant in short intervals. The rotational effects 

(wind shear and tower effect) are barely related to wind turbulence. Since they interact with 

the drive-train and control dynamics, they are modelled as an additional term in the 

oscillations. The rotational/ vibration/ control dynamics are introduced in the equivalent 

wind as a mathematical artifice to reproduce the power oscillations observed in the turbine 

output. This simplification works relatively well since the vibration turbine dynamics 

randomize the real dependence of the generator torque with the rotor angle. 

The turbulence does not show characteristic frequencies and the wind spectrum is quite 

smooth from very low frequencies up to tenths of Hertzs. In contrast, 

rotational/ vibration/ control oscillations in the power output exhibit a more repetitive 

pattern with determinate characteristic frequencies. Apart from their frequency distribution, 

turbulence and other oscillations have similar stochastic properties and they can be 

modelled with the same mathematical tools.  

The combination of the small signal model and the wind coherence permits to derive the 

spatial averaging of random wind variations. The stochastic behaviour of wind links the 

overall behaviour of a large number of turbines with the behaviour of a single turbine. 

It should be noted that the travel time of the turbulence between the turbines is the very 

reason why fast fluctuations of turbine power generated by the turbulence are smoothed in 

the wind farm output. That is also the reason why a Gaussian processes is well suited to 

model the power fluctuations across a wind farm. Thus, the analysis carried out in this 

chapter is in the frequency domain for convenience. Moreover, this behaviour also relates 

the dimensions and geometry of the wind farm with the cut-off frequency of the smoothing 

(the smoothing depends also on the wind coherence and direction). 

The auto spectral density of the equivalent wind of a cluster of turbines can be obtained 

from the wind spectra, the parameters of an isolated turbine, lateral and longitudinal 

dimensions of the cluster region and the decay factor of the spatial coherence.  

Fluctuations due to the real wind field along the swept area, vibrations and control effects 

are added to the equivalent wind modifying its spectra. Thus, they can be aggregated in the 

equivalent wind, provided a turbine transfer function among the power output and the 

equivalent wind is stated. The turbine transfer function transforms the equivalent wind 

oscillations into power oscillations. This simplification works relatively well since the 

turbine vibration dynamics randomize the turbine output and the high frequency 

turbulence at different turbines has a similar a stochastic behaviour than the 
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rotational/ vibration/ control oscillations: at high frequencies, fluctuations from turbulence, 

vibration, generator dynamics and control are fairly independent between turbines, 

statistically speaking. 

The combination of the small signal model and the wind coherence permits to derive the 

spatial averaging of random wind variations. Since fast turbulence and 

rotation/ vibration/ control oscillations are almost stochastically independent among the 

farm turbines, their outcome can be assessed analogously, although their respective sources 

are very different physical phenomena. 

Thus, the overall behaviour of a turbine cluster (with more than 8 turbines) can be derived 

from the behaviour of a single turbine using a Gaussian model. The wind farm admittance is 

the ratio of the fluctuations observed in the farm output respect the typical behaviour of one 

of its turbines. The wind farm admittance can be estimated from experimental 

measurements or from parameters of an isolated turbine, lateral and longitudinal 

dimensions of the cluster region and the decay factor of the spatial coherence. Although the 

model proposed is an oversimplification of the actual behaviour of a group of turbines 

scattered across an area, this model quantifies the influence of the spatial distribution of the 

turbines in the smoothing and in the frequency content of the aggregated power. This 

stochastic model is in agreement with the experimental data presented at the end of this 

chapter. 

1.4 Interaction of wind with turbine dynamics 
The interaction between wind fluctuations and the turbine is very complex and a thorough 

model of the turbine, generator and control system is needed for simulating the influence of 

wind turbulence in power output (Karaki et al., 2002; Vilar-Moreno, 2003). The control 

scheme and its optimized parameters are proprietary and difficult to obtain from 

manufacturers and complex to induce from measurements usually available.  

The turbine and micro-meteorological dynamics transform the combination of periodic and 

random wind variations into stochastic fluctuations in the power. These variations can be 

divided into equivalent wind variations and almost periodic events such as vibration, blade 

positions, etc. Turbulence, turbine wakes, gusts... are highly random and do not show a 

definite frequency (Sørensen et al., 2002; Sørensen et al., 2008). Non-cyclic power variations 

are usually regarded as the outcome of the random component of the wind. They concern 

the control (short term prediction) and the forecast (long horizon prediction). Artificial 

Intelligence techniques and advanced filtering have been used for forecasting. Power 

fluctuations of frequency around 8 Hz can eventually produce flicker in very weak networks 

(Thiringer et al., 2004; Amaris & Usaola, 1997). 

Both current and power can be measured directly, they can be statistically characterized and 

they are directly related to power quality. Current is transformed and its level depends on 

transformer ratio and actual network voltage. In contrast, power flows along transformers 

and networks without being altered except for some efficiency losses in the elements. That is 

why linearized power flows in the frequency domain are used in this chapter for 

characterizing experimentally the electrical behaviour of wind turbines. 

1.5 Major difficulties in the fluctuation characterization 
A priori estimation of power fluctuations requires thorough models of the wind turbines 

and turbulence. However, an empirical analysis is much simpler since distinct fluctuation 
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sources usually present characteristic frequencies or some trend in the spectrum. In the 

following sections, a phenomenological and pragmatic approach will be applied to draw 

some conclusions and to extrapolate results from empirical studies to general cases. 

The tower shadow, wind shear, rotor asymmetry and unbalance, blade misalignments 

produce a torque modulation dependent on turbine angle. This torque is filtered by turbine 

dynamics and the influence in output power can be complex. The signals cannot be 

considered truly periodic because neither the characteristic frequencies are constant (rotor 

speed is not constant and hence, the frequency of fluctuations induced by rotational effects) 

nor the frequencies are harmonically related. Some frequencies cannot be expressed as 

multiple of the others because the tower, blades and cinematic train present characteristic 

structural resonance frequencies different from the blade passing the tower frequency, fblade. 

Moreover, turbine control, electric generator and power electronics introduce oscillations at 

other frequencies. 

The turbulence adds a “coloured noise”  overimposed to the former oscillatory modes, 

modulating cyclic vibrations and influencing rotor speed. The actual power is the outcome 

of many processes that interact and the analysis in the frequency domain is a simplifying 

approximation of a system driven by stochastic differential equations. 

The first problem when analyzing power variations is that the contributions from rotor 

sampling, vibration modes and turbulence-driven variations are aggregated. 

The second difficulty is the fact that frequencies of almost cyclic contributions are neither 

fixed nor are they multiple. Fourier coefficients are defined for periodic signals, but the sum 

of periodic components not harmonically related is no longer periodic. 

The third difficulty is that frequencies of contributions are overlapped. Fortunately, 

characteristic frequencies (resonance and blade frequencies and its harmonics) have narrow 

margins for given operational conditions, producing peaks in the spectrum where one 

contribution usually predominates over the rest. 

The forth difficulty is the turbulence, that introduces a non-periodic stochastic behaviour 

interacting with periodic signals. Different mathematical tools are customarily used for 

periodic and stochastic signals, increasing the difficulty of the analysis of these mixed-type 

signals.  

The cyclic fluctuations of the turbine power can be considered in the fraction-of-time 

probability framework as the sum of sets of signals with different periods with additive 

stationary coloured noise and, hence, almost cyclostationary (Gardner et al, 2006). Since 

wind power is formed by the superposition of several almost cyclostationary signals whose 

periods are not harmonically related, wind power is polycyclostationary. 

2. Mathematical framework and notation 

2.1 Model assumptions 
According to (Cidrás et al., 2002), voltage drops can only induce synchronized power 

fluctuations in a weak electrical network with a very steady and a very uniformly 

distributed wind. Most grid codes have been modified to minimize the simultaneous loss of 

generation during special events such as breaker tripping, grid transients, sudden voltages 

changes, etc. Except during the previous events, the synchronization of power fluctuations 

from a cluster of turbines is primarily due to wind variations that are slow enough to affect 

several turbines inside a wind farm. 
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Experimental measurements have corroborated that blade synchronisation is unusual. In 

addition, fluctuations due to turbine vibration, dynamics and control can be considered 

statistically independent between turbines, whereas turbulence and weather dynamics are 

partially correlated. Fortunately, slow fluctuations can be linked to equivalent wind 

fluctuations through a quasi-static approximation based on the power curve of the turbines. 

As an outcome, the total fluctuation from an area is best characterized as a stochastic signal 

even though the fluctuations from single turbines have strong cyclic components. In other 

words, the transformation of cyclic components into stochastic components eases the 

treatment of wind farm power fluctuations. 

For convenience, the signal duration will be considered short enough to be stationary 

(atmospheric dynamics will be supposed not to change considerably during the sample). 

Therefore, the average power (which corresponds to the zero frequency component of the 

sample) will be considered a known parameter. 

a) Stochastic spectral phasor density of the active power 

If P(t) is the active power recorded in 0 ≤ t ≤ T , its conventional Fourier transform, denoted 

by F, is scaled by a factor 1/ √T  to achieve an spectral measure whose main statistical 

properties do not depend on the sample duration T .  

 { }( ) 2  

0

1 1
( ) ( ) ( ) ( )

Tj f j f tP f P f e P t e dt P t
T T

ϕ π−≡ ≡ =∫
f

F  (1) 

The factor 1/ √T   is between unity –used for pulses and signals of bounded energy– and 1/ T   

–used in the Fourier coefficients of pure periodic signals–.  

Fortunately, definition (1) has the advantage that the variance of ( )P f
f

 is the two-sided auto 

spectral density, 2| ( )|P f
f

= ( )PPSD f , which is independent of sample length T  and it 

characterizes the process. ( )P f
f

 will be referred as stochastic spectral phasor density of the 

active power or just the (stochastic) phasor for short. 

Historically, the term “power spectral density”  was coined when the signal analyzed P(t) 
was the electric or magnetic  field of a wave or the voltage output of an antenna connected 

to a resistor R. The power transferred to the load R at frequencies between - / 2f fΔ  and 

+ / 2f fΔ  was 2 · ( ) /Pf PSD f RΔ  –that is proportional to ( )PPSD f  and the frequency 

interval. If P(t) is the electric or magnetic  field of a wave, then the power density at 

frequency f of that wave is also proportional to · ( )Pf PSD fΔ . 

In this chapter, P(t) represents the power output of a turbine or a wind farm. The root mean 

square value (RMS for short) of power fluctuations at frequencies between - / 2f fΔ  and 

+ / 2f fΔ  is | ( )|· 2·P f fΔ
f

. Power variance inside the previous frequency range is 

( )·PPSD f fΔ . Hence, ( )PPSD f  in this chapter does not represent a power spectral density 

and this term can lead to misinterpretations. Therefore, ( )PPSD f  will be referred in this 

chapter as the auto spectral density although the acronym PSD (from Power Spectral 

Density) is maintained because it is widespread. Sometimes ( )PPSD f  will be replaced by 
2 ( )P fσ  to emphasize that it represents the variance spectral density of signal P at frequency f. 

Fig. 3. shows the estimated PSD from 13 minute operation of a squirrel cage induction 

generator (SCIG) directly coupled to the grid (a portion of the original data is plotted in Fig. 

1). The original auto spectrum is plotted in grey whereas the estimated PSD is in thin black 
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(linearly averaged periodogram in squared effective watts of real power per hertz). The 

trend is plotted in thick red, the accumulated variance is plotted in blue, and the tower 

shadow frequency is marked in yellow. 

The instantaneous output of a wind farm or turbine can be expressed in frequency 

components using stochastic spectral phasor densities. As aforementioned, experimental 

measurements indicate that wind power nature is basically stochastic with noticeable 

fluctuating periodic components.  

 

 

Fig. 3. PSDP+ (f) parameterization of active power of a 750 kW wind turbine for wind 

speeds around 6,7 m/ s (average power 190 kW) computed from 13 minute data. 

The signal in the time domain can be computed from the inverse Fourier transform: 

 
*

2

0( ) ( )
( ) ( ) 2 ( ) cos 2 ( )

j f t

P f P f
P t T P f e df T P f f t f df

π π ϕ
∞ ∞

−∞ = −

⎡ ⎤= = +⎢ ⎥⎣ ⎦∫ ∫f f
f

 (2) 

An analogue relation can be derived for reactive power and wind, both for continuous and 

discrete time. Standard FFT algorithms use two sided spectra, with negative frequencies in 

the last half of the output vector. Thus, calculus will be based on two-sided spectra unless 

otherwise stated, as in (2). In real signals, the negative frequency components are the 

complex conjugate of the positive one and a ½ scale factor may be applied to transform one 

to two-sided magnitudes. 

b) Spectral power balance in a wind farm 

Fluctuations at the point of common coupling (PCC) of the wind farm can be obtained from 

power balance equations for the average complex power of the wind farm.  

Neglecting the increase in power losses in the grid due to fluctuating generation, the sum of 

oscillating power from the turbines equals the farm output undulation. Therefore, the 

complex sum of the frequency components of each turbine ( )turbine iP f
f

 totals the 

approximate farm output, ( )farmP f
f

: 
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( )

1 1 1

( ) ( ) ( ) ( )
turbines turbines turbines

i

N N N
j ffarm

farm turbine i turbine ii i turbine i
i i iturbine i

P
P f P f P f P f e

P

ϕη η
= = =

∂
≅ ≈ =

∂∑ ∑ ∑
if if if

 (3) 

For usual wind farm configurations, total active losses at full power are less than 2% and 

reactive losses are less than 20%, showing a quadratic behaviour with generation level (Mur-

Amada & Comech-Moreno, 2006). A small-signal model of power losses due to fluctuations 

inside the wind farm can be derived (Kundur et al. 1994), but since they are expected to be 

up to 2% of the fluctuation, the increase of power losses due to oscillations can be neglected 

in the first instance. A small signal model can be used to take into account network losses 

multiplying the turbine phasors in (3) by marginal efficiency factors /i farm turbine iP Pη = ∂ ∂  

estimated from power flows with small variations from the mean values using 

methodologies as the point-estimate method (Su, 2005; Stefopoulos et al., 2005). Typical 

values of iη  are about 98% for active power and about 85% for reactive power. In some 

expressions of this chapter, the efficiency has been set to 100% for clarity in the formulas. 

In some applications, we encounter a random signal that is composed of the sum of several 

random sinusoidal signals, e.g., multipath fading in communication channels, clutter and 

target cross section in radars, interference in communication systems, wave propagation in 

random media and channels, laser speckle patterns and light scattering and summation of 

random current harmonics such as the ones produced by high frequency power converters 

of wind turbines (Baghzouz et al., 2002; Tentzerakis & Papathanassiou, 2007). 

Any random sinusoidal signal can be considered as a random phasor, i.e., a vector with 

random length and angle. In this way, the sum of random sinusoidal signals is transformed 

into the sum of 2-D random vectors. So, irrespective of the type of application, we encounter 

the following general mathematical problem: there are vectors with lengths | |i iP P=
f

 and 

angles ϕi = ( )iArg P
f

, in polar coordinates, where Pi and ϕi are random variables, as in (3) 

and Fig. 4. It is desired to obtain the probability density function (pdf) of the modulus and 

argument of the resulting vector. A comprehensive literature survey on the sum of random 

vectors can be obtained from (Abdi, 2000). 
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1( )·

j f
P f e

ϕ
2( )

2( )·
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P f e
ϕ

3( )
3( )·

j f
P f e

ϕ

4( )
4( )·

j f
P f e

ϕ
2w fπ=

[Im]Y

[Re]X

 

Fig. 4. Model of the phasor diagram of a park with four turbines with a fluctuation level 

P i(f ) and random argument ϕi(f ) revolving at frequency f.  

Average fasor modulus
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The vector sum of the four phasor in Fig. 4 is another random phasor corresponding to the 

farm phasor, provided the farm network losses are negligible. If some conditions are met, 

then the farm phasor can be modelled as a complex normal variable. In that case, the phasor 

amplitude has a Rayleigh distribution. The frequency f = 0 corresponds to the special case of 

the average signal value during the sample. 

c) One and two sided spectra notation 

One or two sided spectra are consistent –provided all values refer exclusively either to one 

or to two side spectra. Most differences do appear in integral or summation formulas – if 

two-sided spectra is used, a factor 2 may appear in some formulas and the integration limits 

may change from only positive frequencies to positive and negative frequencies. 

One-sided quantities are noted in this chapter with a + in the superscript unless the 

differentiation between one and two sided spectra is not meaningful. For example, the one-

sided stochastic spectral phasor density of the active power at frequency f is: 

 ( )P f+f = ( )P f
f

 + ( )P f−
f

= 2 ( )P f
f

 (4) 

In plain words, the one-sided density is twice the two-sided density. For convenience, most 

formulas in this chapter are referred to two-sided values. 

d) Case study 

Fig. 5 to Fig 8 show the power fluctuations of a wind farm composed by 27 wind turbines of 

600 kW with variable resistance induction generator from VESTAS (Mur-Amada, 2009). The 

data-logger recorded signals either at a single turbine or at the substation. In either case, 

wind speed from the meteorological mast of the wind farm was also recorded. 

The record analyzed in this subsection corresponds to date 26/ 2/ 1999 and time 13:52:53 to 

14:07:30 (about 14:37 minutes). The average blade frequency in the turbines was fblade≈ 1,48 ±0,03 Hz during the interval. The wind speed, measured in a meteorological mast at 40 m 

above the surface with a propeller anemometer, was Uwind = 7,6 m/ s ±2,0 m/ s (expanded 

uncertainty). 

The oscillations due to rotor position in Fig. 5 are not evident since the total power is the 

sum of the power from 26 unsynchronized wind turbines minus losses in the farm network. 

Fig. 6 shows a rich dynamic behaviour of the active power output, where the modulation 

and high frequency oscillations are superimposed to the fundamental oscillation. 

3. Asymptotic properties of the wind farm spectrum 

The fluctuations of a group of turbines can be divided into the correlated and the 
uncorrelated components.  

On the one hand, slow fluctuations (f < 10-3 Hz) are mainly due to meteorological dynamics 

and they are widely correlated, both spatially and temporally. Slow fluctuations in power 

output of nearby farms are quite correlated and wind forecast models try to predict them to 

optimize power dispatch.  

On the other hand, fast wind speed fluctuations are mainly due to turbulence and microsite 

dynamics (Kaimal, 1978). They are local in time and space and they can affect turbine 

control and cause flicker (Martins et al., 2006). Tower shadow is usually the most noticeable 

fluctuation of a turbine output power. It has a definite frequency and, if the blades of all 

turbines of an area became eventually synchronized, it could be a power quality issue. 
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Fig. 5. Time series (from top to bottom) of the active power P [MW] (in black), wind speed 

Uwind [m/ s] at 40 m in the met mast (in red) and reactive power Q [MVAr] (in dashed green). 

 

 

Fig. 6. Detail of the wind farm active power during 20 s at the wind farm. 

The phase ϕi(f) implies the use of a time reference. Since fluctuations are random events, 

there is not an unequivocal time reference to be used as angle reference. Since fluctuations 

can happen at any time with the same probability –there is no preferred angle ϕi(f)–, the 

phasor angles are random variables uniformly distributed in [-π,+ π] (i.e., the system 

exhibits circular symmetry and the stochastic process is cyclostationary). Therefore, the 

relevant information contained in ϕi(f) is the relative angle difference among the turbines of 

the farm (Li et al., 2007) in the range [-π,+ π], which is linked to the time lag among 

fluctuations at the turbines. 

The central limit for the sum of phasors is a fair approximation with 8 or more turbines and 

Gaussian process properties are applicable. Therefore, the wind farm spectrum converges 

asymptotically to a complex normal distribution, denoted by ( )0, ( )PfarmN fσ} .  In other 

words, Re[ ( )]farmP f+f  and Im[ ( )]farmP f+f  are independent random variables with normal 

distribution. 
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Fig. 7. PSDP+ (f) parameterization of real power of a wind farm for wind speeds around 

7,6 m/ s (average power 3,6 MW) computed from data of Fig. 5. 

 

 

 

Fig. 8. Contribution of each frequency to the variance of power computed from Fig. 5 (the 

area bellow f·PSDP+ (f) in semi-logarithmic axis is the variance of power). 

 ( )( ) 0, ( )farm farmP f N fσ+
f

∼ }  (5) 

Thus, the one-sided amplitude density of fluctuations at frequency f from N turbines, 

( )farmP f+
f

, is a Rayleigh distribution of scale parameter ( )Pfarm fσ  = | ( )| 2/farmP f π+〈 〉
f

, 

where angle brackets i  denotes averaging. In other words, the mean of ( )farmP f+
f

 is 

| ( )|farmP f+〈 〉
f

= / 2π ( )Pfarm fσ  where ( )Pfarm fσ  is the RMS value of the phasor projection. 

The RMS value of the phasor projection ( )Pfarm fσ  is also related to the one and two sided 

PSD of the active power:  
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 ( )Pfarm fσ = 2 ( )PfarmPSD f = ( )PfarmPSD f+  (6) 

Put into words, the phasor density of the oscillation, ( )PfarmP f+
f

, has a Rayleigh 

distribution of scale parameter ( )Pfarm fσ  equal to the square root of the auto spectral 

density (the equivalent is also hold for two-sided values). The mean phasor density 

modulus is: 

 
( ( ))

| ( )| ( )
2Pfarm

Pfarm Pfarm
Rayleigh f

P f f
σ

π
σ+〈 〉 =

f
 (7) 

For convenience, effective values are usually used instead of amplitude. The effective value 

of a sinusoid (or its root mean square value, RMS for short) is the amplitude divided by √2. 

Thus, the average quadratic value of the fluctuation of a wind farm at frequency f is: 

 
2 2 2

[ ( )]

( )/ 2 ( ) / 2 ( ) ( )

N

Pfarm Pfarm Pfarm Pfarm
Rayleigh f

P f P f f PSD f
σ

σ+ + += = =
f f

 (8) 

If the active power of the turbine cluster is filtered with an ideal narrowband filter tuned at 

frequency f and bandwidth Δf, then the average effective value of the filtered signal is 

( )
Pfarm

f fσ Δ  and the average amplitude of the oscillations is | ( )| ·farmP f f+〈 〉 Δ
f

 = 

( ) · / 2
Pfarm

f fσ πΔ . The instantaneous value of the filtered signal , , ( )Pfarm f fP tΔ  
is the 

projection of the phasor 2  ( )· j f t
farmP f e fπ+ Δ
f

 in the real axis. The instantaneous value of the 

square of the filtered signal, 2
, , ( )farm f fP tΔ ,  is an exponential random variable of parameter 

λ= 2 1[ ( ) ]farm f fσ −Δ   and its mean value is: 

 2 2
, , ( ) ( )farm f f Pfarm

Exp distribution
P t f fλ σΔ = = Δ  (9) 

 

For a continuous PSD, the expected variance of the instantaneous power output during a 

time interval T  is the integral of ( )Pfarm fσ  between Δf = 1/ T  and the grid frequency, 

according to Parseval’s theorem (notice that the factor 1/ 2 must be changed into 2 if two-

sided phasors densities are used): 

 2 2 2 2

1/ 1/ 1/

1 1
( ) | ( )| | ( )| ( )

2 2

grid grid gridf f f

farm farm farm farmT T T
P t P f df P f df f dfσ+ += = 〈 〉 =∫ ∫ ∫

f f
 (10) 

 

In fact, data is sampled and the expected variance of the wind farm power of duration T  can 

be computed  through the discrete version of (10), where the frequency step is Δf = 1/ T  and 

the time step is Δt= T / m: 

1 1 1
2 2 2 2

1 1 1

1 1
( ) | ( )| | ( )| ( )

2 2

m m m

farm farm farm Pfarm
k k k

P t P k f f P k f f k f fσ
− − −

+ +

= = =

= Δ Δ = 〈 Δ 〉Δ = Δ Δ∑ ∑ ∑
f f

 (11) 
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If a fast Fourier transform is used as a narrowband filter, an estimate of 2 ( )Pfarm fσ  for 

f = k Δf is { } 22 · | ( ) |k farmf FFT P i tΔ 〈 Δ 〉 . In fact, the factor 2 fΔ  may vary according to the 

normalisation factor included in the FFT , which depends on the software used. Usually,  

some type of smoothing or averaging is applied to obtain a consistent estimate, as in Bartlett 

or Welch methods (Press et al., 2007).  

The distribution of 2 ( )farmP t  can be derived in the time or in the frequency domain. If the 

process is normal, then the modulus and phase of ( )farm kP f+
f

 are not linearly correlated at 

different frequencies kf . Then 2 ( )farmP t  is the sum in (11) or the integration in (10) of 

independent Exponential random variables that converges to a normal distribution with 

mean 2 ( )farmP t  and standard deviation 22 ( )farmP t .  

In farms with a few turbines, the signal can show a noticeable periodic fluctuation shape 

and the auto spectral density 2 ( )Pfarm fσ  can be correlated at some frequencies. These 

features can be discovered through the bispectrum analysis. In such cases, 2 ( )farmP t  can be 

computed with the algorithm proposed in (Alouini et al., 2001). 

4. Sum of partially correlated phasor densities of power from several turbines 

4.1 Sum of fully correlated and fully uncorrelated spectral components 

If turbine fluctuations at frequency f of a wind farm with N turbines are completely 

synchronized, all the phases have the same value ϕ(f) and the modulus of fully correlated 

fluctuations , | ( )|i corrP f+
f

 sum arithmetically: 

 , ,  , 
1 1

| ( )| ( ) | ( )|
N N

farm corr i i corr i i corr
i i

P f P f P fη η+ + +

= =

= =∑ ∑
f f f

 (12) 

If there is no synchronization at all, the fluctuation angles ϕi(f) at the turbines are 

stochastically independent. Since , ( )i uncorrP f
if

 has a random argument, its sum across the 

wind farm will partially cancel and inequality (13) holds true.  

 , , , 
1 1

| ( )| ( ) | ( )|
N N

farm uncorr i i uncorr i i uncorr
i i

P f P f P fη η+ + +

= =

= <∑ ∑
f f f

 (13) 

This approach remarks that correlated fluctuations adds arithmetically and they can be an 

issue for the network operation whereas uncorrelated fluctuations diminish in relative terms 

when considering many turbines (even if they are very noticeable at turbine terminals).  

A) Sum of uncorrelated fluctuations 

The fluctuation of power output of the farm is the sum of contributions from many turbines 

(3), which are mainly uncorrelated at frequencies higher than a tenth of Hertz.  

The sum of N  independent phasors of random angle of N  equal turbines in the farm 

converges asymptotically to a complex Gaussian distribution, ( )farmP f
if

~ [0, ( )]PfarmN fσ} , 

of null mean and standard deviation ( )farm fσ = 1( )N fη σ , where 1( )fσ  is the mean RMS 

fluctuation at a single turbine at frequency f  and η  is the average efficiency of the farm 

network. To be precise, the variance 2
1 ( )fσ  is half the mean squared fluctuation amplitude 
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at frequency f, 2
1 ( )fσ

 
=

21
2 ( )turbine iP f
if

 = 2
 Re ( )turbine iP f⎡ ⎤

⎢ ⎥⎣ ⎦
if

= 2
 Im ( )turbine iP f⎡ ⎤

⎢ ⎥⎣ ⎦
if

. 

Therefore, the real and imaginary phasor components Re[ ( )]farmP f
if

 and Im[ ( )]farmP f
if

 are 

independent real Gaussian random variables of standard deviation ( )Pfarm fσ  and null 

mean since phasor argument is uniformly distributed in [–π,+π].  Moreover, the phasor 

modulus ( )farmP f
if

 has [ ( )]PfarmRayleigh fσ  distribution. The double-sided power spectrum 
2

( )farmP f
if

 is an 21
2 ( )Pfarm fExponential σλ −⎡ ⎤=⎢ ⎥⎣ ⎦  random vector of mean 

2
( )farmP f

if
 

= 22 ( )Pfarm fσ  = 1
2 ( )PfarmPSD f  (Cavers, 2003).  

The estimate from the periodogram is the moving average of Naver. exponential random 

variables corresponding to adjacent frequencies in the power spectrum vector. The estimate 

is a Gamma random variable. If the PSD is sensibly constant on NaverΔf  bandwidth, then the 

PSD estimate has the same mean as the original PSD and the standard deviation is 

.averN times smaller (i.e., the estimate has lower uncertainty at the cost of lower frequency 

resolution). 

4.2 Sum of partially linearly correlated spectral components  

Inside a farm, the turbines usually exhibit a similar behaviour for a given frequency f and 

the PSD of each turbine is expected to be fairly similar. However, the phase differences 

among turbines do vary with frequency. Slow meteorological variations affect all the 

turbines with negligible time lag, compared to characteristic time frame of weather systems 

(i.e., the phasors ( )turbineP f
f

have the same phase). Turbulences with scales significantly 

smaller than the turbine distances have uncorrelated phases. Fluctuations due to rotor 

positions also show uncorrelated phases provided turbines are not synchronized. 

 
2 2 2

, ,( ) ( ) ( )turbine turb corr turb uncorrP f P f P f+ + += +  (14) 

If the number of turbines N >4 and the correlation among turbines are linear, the central 

limit is a good approximation. The correlated and uncorrelated components sum 

quadratically and the following relation is applicable:   

 ( )
2 22 2

, ,( ) ( ) ( )farm turb corr turb uncorrP f N P f N P fη η+ + +≈ +
f f f

 (15) 

 

where N is the number of turbines in the farm (or in a group of close farms) and η is the 

average efficiency of the farm network (typical values are about 98% for active power and 

about 85% for reactive power). Since phasor densities sum quadratically, (14) and (15) are 

concisely expressed in terms of the PSD of correlated and uncorrelated components of 

phasor density: 

 ( )2 , ,( ) ( ) · ( )farm turb corr turb uncorrPSD f N PSD f N PSD fη η≈ +  (16) 

 , ,( ) ( ) ( )turb turb corr turb uncorrPSD f PSD f PSD f= +  (17) 
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The correlated components of the fluctuations are the main source of fluctuation in large 

clusters of turbines. The farm admittance ( )J f  is the ratio of the mean fluctuation density of 

the farm, ( )farmP f
if

, to the mean turbine fluctuation density, | ( ) |turbineP f+ .  

 ( )J f =
| ( )|

| ( ) |

farm

turbine

P f

P f

+

+
≈ ( )

( )

Pfarm

Pturbine

PSD f

PSD f
 (18) 

Note that the phase of the admittance ( )J f  has been omitted since the phase lag between 

the oscillations at the cluster and at a turbine depend on its position inside the cluster. The 

admittance is analogous to the expected gain of the wind farm fluctuation respect the 

turbine expected fluctuation at frequency f (the ratio is referred to the mean values because 

both signals are stochastic processes). 

Since turbine clusters are not negatively correlated, the following inequality is valid: 

 ( )N J f Nη ηP P  (19) 

The squared modulus of the admittance ( )J f  is conveniently estimated from the PSD of the 

turbine cluster and a representative turbine using the cross-correlation method and 

discarding phase information (Schwab et al., 2006): 

 ( )2 , ,2
( ) ( ) ( )

( )
( ) ( ) ( )

Pfarm turb corr turb uncorr

Pturb turb turb

PSD f PSD f PSD f
J f N N

PSD f PSD f PSD f
η η= = +  (20) 

If the PSD of a representative turbine, ( )PturbPSD f , and the PSD of the farm ( )PfarmPSD f  

are available, the components , ( )turb corrPSD f  and , ( )turb uncorrPSD f  can be estimated from (16) 

and (17) provided the behaviour of the turbines is similar.  

At f 2 0,01 Hz, fluctuations are mainly correlated due to slow weather dynamics, 

, ( )turb uncorrPSD f 2 , ( )turb corrPSD f , and the slow fluctuations scale proportionally 

( )PfarmPSD f  ≈ ,
2 ( )( ) turb corrPSD fNη . At f > 0,01 Hz, individual fluctuations are statistically 

independent, , ( )turb uncorrPSD f 4 , ( )turb corrPSD f , and fast fluctuations are partially attenuated, 

( )PfarmPSD f  ≈ , ( )· turb uncorrPSD fNη . 

An analogous procedure can be replicated to sum fluctuations of wind farms of a 

geographical area, obtaining the correlated , ( )farm corrPSD f  and uncorrelated , ( )farm uncorrPSD f  

components. The main difference in the regional model –apart from the scattered spatial 

region and the different turbine models– is that wind farms must be normalized and an 

average farm model must be estimated for reference. Therefore, the average farm behaviour 

is a weighted average of individual farms with lower characteristic frequencies (Norgaard & 

Holttinen, 2004). Recall that if hourly or even slower fluctuations are studied, meteorological 

dynamics are dominant and other approaches are more suitable. 

4.3 Estimation of wind farm power admittance from turbine coherence 

The admittance can be deducted from the farm power balance (3) if the coherence among 

the turbine outputs is known. The system can be approximated by its second-order statistics 
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as a multivariate Gaussian process with spectral covariance matrix ( )P fΞ . The elements of 

( )P fΞ  are the complex squared coherence at frequency f and at turbines i and j , noted as 

( )ij fγ
f

.  The efficiency of the power flow from the turbine i  to the farm output can be 

expressed with the column vector 1 2[ , , ..., ]TP Nη η η η= , where T denotes transpose. 

Therefore, the wind farm power admittance ( )J f  is the sum of all the coherences, 

multiplied by the efficiency of the power flow: 

 2 '
1 1

( ) ( ) ( )
N N T

i j ij P P Pi j
J f f fη η γ η η

= =
≈ = Ξ∑ ∑ f

 (21) 

The squared admittance for a wind farm with a grid layout of nlong columns separated dlong 

distance in the wind direction and nlat rows separated dlat distance perpendicular to the wind 

Uwind  is:    

1 2 1 2

2 2 2 2 2 2
2 1 2 12 2 2 1

1 1 1 1

2 ( - ) ( - ) + ( -
(

)
)

long longlat lat
long lat lat long long

wind wind

n nn n

i i j j

j j d f f A
J f Cos Ex

i i d d
p

A j j

U U
η

π

= = = =

≈
−⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑∑∑ ∑  (22) 

The admittance computed for Horns Rev offshore wind farm (with a layout similar to Fig. 

10) is plotted in Fig. 9. According to (Sørensen et al., 2008), it has 80 wind turbines disposed 

in a grid of nlat = 8 rows and nlong = 10 columns separated by seven diameters in each 

direction (dlat = dlong = 560 m), high efficiency (η ≈ 100%), lateral coherence decay factor 

A lat ≈ Uwind/ (2 m/ s), longitudinal coherence decay factor A long ≈ 4,  wind direction aligned 

with the rows and Uwind  ≈ 10 m/ s wind speed. 

4.4 Estimation of wind farm power admittance from the wind coherence 

The wind farm admittance ( )J f can be approximated from the equivalent farm wind 

because the coherence of power and wind are similar (the transition frequency between 

correlated and uncorrelated behaviour is about 10-2 Hz for small wind farms). According to 

(Mur-Amada, 2009), the equivalent wind can be roughly approximated by a multivariate 
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Fig. 9. Admittance for Horns Rev offshore wind farm for 10 m/ s and wind direction aligned 

with the turbine rows. 
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Gaussian process with spectral covariance matrix ( )Ueq fΞ . Its elements are the complex 

coherence of effective turbulence at frequency f and at turbines i and j, denoted by ' ( )ij fγ
f

. 

In this case, the column vector ' ' '
1 2[ , , ..., ]TUeq Nη η η η=  should be interpreted as the relative 

sensitivity of the farm power respect the equivalent wind in each turbine. Therefore, the 

wind farm power admittance ( )J f  is the sum of the complex coherence of effective 

quadratic turbulence among turbines: 

 2 ' ' '
1 1

( ) ( ) ( )
N N T

i j ij Ueq Ueq Ueqi j
J f f fη η γ η η

= =
≈ = Ξ∑ ∑ f

 (23) 

For the rectangular region shown in Fig. 10, the admittance is: 

 ( ){ }2 2( ) 1 ( 1)J f N N H fη η≈ + −  (24) 

where 

 
,

,

2
( )

( )

( + 2 )   
( ) Re

Ueq area

Ueq turbine

longlat

wind wind

PSD f

PSD f

A j a fA b f
H f g g

U U

π⎡ ⎛ ⎞⎤⎛ ⎞ ⎟⎜⎟⎜ ⎢ ⎥⎟⎜⎟= = ⎜ ⎟⎟ ⎜⎢ ⎥⎜ ⎟⎟⎜ ⎜ ⎟⎜〈 〉 〈 〉⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (25) 

 ( )x 22 1) x( /eg xx −− + +=  (26) 

windU〈 〉  is the mean wind during the sample, η  is the average sensitivity of the power 

respect the wind and a and b are the dimensions of the wind farm according to Fig. 10. The 

decay constants for lateral and longitudinal directions are, A long and A lat, respectively. For 

the Rutherford Appleton Laboratory, (Schlez & Infield, 1998) recommended A long ≈ (15±5) 

σUwind / windU  and A lat ≈ (17,5±5) (m/ s)-1σUwind, where σUwind is the standard deviation of 

the wind speed in m/ s. IEC 61400-1 recommends A ≈ 12; Frandsen (Frandsen et al., 2007) 

recommends A ≈ 5 and Saranyasoontorn (Saranyasoontorn et al., 2004) recommends 

A ≈ 9,7.  
2( )H f  is the quadratic coherence between the equivalent wind of the farm, relative to the 

turbine. ( )H f measures the correlation of the phase difference between the equivalent wind 

of the farm relative to the turbine at frequency f. If ( )H f  is unity, the turbine phasors have  
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b 
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Fig. 10. Wind farm dimensions for the case of frontal wind direction. 
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the same angle and the turbine fluctuations are synchronized at that frequency. If ( )H f  is 

zero, the phasors have uncorrelated arguments and hence, the turbine fluctuations are 

stochastically uncorrelated at that frequency. Hence, ( )H f  is the correlation level at 

frequency f  of the fluctuations among the turbines, measured from 0 to 1. 

The transition frequency from correlated to uncorrelated fluctuations is obtained solving 
2( )H f =1/ 4. Thus, the cut-off frequency of narrow wind farms with a « b is: 

 , 6.83 w
cut l

ind
at

lat

f
U

bA

〈 〉
=  (27) 

In the Rutherford Appleton Laboratory (RAL), A lat ≈ (17,5±5)(m/ s)-1σUwind and hence fcut,lat ≈ 

(0,42±0,12) windU〈 〉 /  (σUwind b). A typical value of the turbulence intensity σUwind/  windU〈 〉  is 

around 0,12 and for such value fcut,lat ~ (3.5±1)/ b, where b is the lateral dimension of the area 

in meters. For a narrow farm of b = 3 km, the cut-off frequency is in the order of 1,16 mHz. 

In Horns Rev wind farm, A lat= windU / (2 m/ s) and hence fcut,lat ≈ 13,66/ b, where b is a 

constant expressed in meters. For a wind farm of b = 3 km, the cut-off frequency is in the 

order of 4,5 mHz (about four times the estimation from RAL).  

In RAL, A long ≈ (15±5) σUwind / windU . A typical value of the turbulence intensity σUwind 

/ windU〈 〉  is around 0,12 and for such value A long ≈ (1,8±0,6). 

 ,
1,8 1.8

1,1839 0.6577
long long

win
cut long

A A
long

d windU U
f

a A a=

〈 〉 〈
= =

〉
∼

 (28) 

For a significative wind speed of windU〈 〉~10 m/ s and a wind farm of a = 3 km longitudinal 

dimension, the cut-off frequency is in the order of 2,19 mHz. 

In the Høvsøre wind farm, A long = 4 (about twice the value from RAL). The cut-off frequency 

of a longitudinal area with A long around 4 (dashed gray line in Fig. 11) is: 

 ,
4 4
2.7217 0.6804

long long

wi
cut long

A A
lon

n

g

nd wi dU
f

a

U

a A =

〈 〉 〈
= =

〉
∼

 (29) 

For a significative wind speed of windU〈 〉~ 10 m/ s and a wind farm of a = 3 km 

longitudinal dimension, the cut-off frequency is in the order of 2,26 mHz.  

In accordance with experimental measurements, turbulence fluctuations quicker than a few 

minutes are notably smoothed in the wind farm output. This relation is proportional to the 

dimensions of the area where the wind turbines are sited. That is, if the dimensions of the 

zone are doubled, the area is four times the original region and the cut-off frequencies are 

halved. In other words, the smoothing of the aggregated wind is proportional to the longitudinal 

and lateral lengths (and thus, related to the square root of the area if zone shape is 

maintained). 

In sum, the lateral cut-off frequency is inversely proportional to the site parameters A lat and 

the longitudinal cut-off frequency is only slightly dependent on A long. Note that the 

longitudinal cut-off frequency show closer agreement for Høvsøre and RAL since it is 

dominated by frozen turbulence hypothesis. 
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Fig. 11. Normalized ratio H2(f) for transversal a « b (solid thick black line) and longitudinal a 

» b areas (dashed dark gray line for A long = 4, long dashed light gray line for A long = 1,8). 

Horizontal axis is expressed in either longitudinal or lateral adimensional frequency 

a Along f / 〈Uwind〉 or b Alat f / 〈Uwind〉. 
However, if transversal or longitudinal smoothing dominates, then the cut-off frequency is 

approximately the minimum of ,cut latf  and ,cut longf . The system behaves as a first order 

system at frequencies above both cut-off frequencies, and similar to a ½ order system 

between ,cut latf  and ,cut longf . 

5. Case study: comparison of PSD of a wind farm with respect to one of its 
turbines during 12 minutes 

A literature review on experimental data of power output PSD from wind turbines or wind 

farms can be found in (Mur-Amada & Bayod-Rujula, 2007), with a parameterization and 

analysis of the data from very different locations. (Apt, 2007) shows an interesting 

comparison of the spectrum of the wind power from a wide area.  

In this sub-section, the analysis of a case based on (Mur-Amada, 2009) is presented. The 

similarity of the PSD at one turbine and at the overall output of a wind farm of 18 turbines 

is shown. If the fluctuations at every turbine are independent (i.e. the turbines behaves 

independently from each other), then the PSD of the wind farm is approximately the PSD of 

each turbine multiplied by the number of turbines and by the power flow efficiency. 

Each turbine experiments different turbulence levels and wind averages, so a representative 

turbine should be selected. The time lag between the variations measured in the farm and in 

the turbine depends on the farm layout. The phase information has been discarded because 

the phase of ergodic stochastic processes do not contain statistical information. 

Fig. 12 shows the power output of the wind farm and the scalled output of one turbine. 

Since the measured turbine is more exposed to the wind than others turbines, the ratio of the 

average power of the turbine to the farm is 14 (less than 18, the number of turbines in the 

farm). There is a clear reduction of the relative variability in the farm output and some slow 
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oscillations between the turbine and the farm seem to be delayed. In fact, this section will 

show that the ratio of the fluctuations is about √18 because the measured fluctuations are 

mainly uncorrelated, the duration of the sample is relatively short (less than 12 minutes) and 

the wind does not show a noticeable trend during the sample. 

If the turbines behave independently from each other and they are similar, then the PSD of 

the wind farm is the PSD of one turbine times the number of turbines in the farm and times 

a power efficiency factor. To test this hypothesis, the farm PSD is shown in solid black and 

the turbine PSD times 18 is in dashed green in Fig. 13, with good agreement. 

 

 

Fig. 12. Power output of the wind farm (in solid black) and the power of the turbine times 14. 

Fig. 13 shows that the farm PSDP
+(f) and the scaled turbine PSDP

+(f) agree notably, showing 

that fluctuations up to 10-2 Hz are almost uncorrelated (frequency bellow 10-2 Hz is shown in 

the figure, but its value is biased by the window applied in the FFT  and the relative short 

duration of the sample). However, the wind farm PSD is a bit lower than 18 times the 

turbine PSD, specially at the peaks and at f > 2fblade (fblade is the frequency of a blade crossing 

the turbine tower, about 1,54 Hz in this sample). On the one hand, this turbine experiences 

more cyclic oscillations, partly due to a misalignment of the rotor bigger than the farm 

average. On the other hand, this turbine produced an average of 1/ 14th of the wind farm 

power on the series #1 (see Fig. 12). This explain that PSD at f > 2fblade is primarily 

proportional to power output ratio (the farm PSD is 14 times the turbine PSD). 

The real power admittance is shown in Fig. 14. The admittance is the ratio of the farm 

spectrum to the turbine spectrum of real power and it can be estimated as the square root of 

the PSD ratios. The level √18 has been added in dash-dotted red line to compare with the 

theoretical value of uncorrelated fluctuations.  

In general terms, the assumption of uncorrelated fluctuations at frequencies higher than 

10-2 Hz is valid: the admittance is approximately √18, the square root of the number of 

turbines in the farm. At f > 2fblade, the admittance is more similar to √14 (the square root of 

the farm power divided by the turbine power). At f < 0,02 Hz, the admittance starts drifting 

from √18, indicating that oscillations at very low frequency are somewhat correlated.  
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Fig. 13. PSDPfarm
+(f) of a wind farm (in solid black) and PSDPturbine

+(f) of one of its 648 kW 

turbines times 18 (in dashed green), for time series #1. 

There is a peak in Fig. 14 at 2 Hz < f < 2,5 Hz. The analyzed turbine may have comparative 

less fluctuations in such range than the other turbines in the farm (the measured turbine 

may have better adjusted rotor and blades, while others turbines may suffer from more 

vibration effects). But other feasible reason is a higher correlation degree between the 

turbines at such frequency band, probably induced by turbine control or voltage variations. 

 

 

Fig. 14. Admittance of the active power (ratio of the farm PSD to the turbine PSD). 

In short, real power oscillations quicker than one minute can be considered independent 

among turbines of a wind farm because the PSD due to fast turbulence and rotational effects 

scales proportionally to the number of turbines. 
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The former section has analyzed values logged with high time resolution (each grid cycle, 

20 ms) but the duration was relatively short (a bit more than 10 minutes) due to storage 

limitations in the recording system. Ten-minute records with 20 ms time resolution allow 

studying fluctuations with durations between some tenths of second up to one minute 

However, this duration is insufficient for analyzing wind farm dynamics slower than 

0.016 Hz with acceptable uncertainty.  

6. Case study: comparison of PSD of a wind farm with respect to one of its 
turbines during a day 

In order to study the behaviour of fluctuations slower than one minute, the next section will 

analyze the mean power of each second during a day. Daily records with one second time 

resolution allow to study the fluctuations with durations from a few seconds up to an hour. 

Overall, the transition frequency from uncorrelated to correlated fluctuations is mild and, in 

fact, the ratio PSDfarm(f)/ PSDturbine(f) depends noticeably on atmospheric conditions and it 

varies from one wind farm to another. This is one of the reasons why the values of the 

coherence decay factors A long and  A lat may vary twofold among different sources. 

At higher frequencies, the control and generator technology influences greatly the 

smoothness of the power delivery. At low frequencies and under rated power, the 

variability is mainly due to the wind because any turbine tries to extract the maximum 

amount of power from the wind, regardless of their technology. During full power 

generation, the fluctuations have smaller amplitude and higher frequency. 

The case presented in this section corresponds to low/ mid wind speed, since this range 

presents bigger fluctuations. The wind direction does not present big deviations during the 

day and the atmospheric conditions can be considered similar during all the day.  

For clarity, the turbine and the farm is generating bellow rated power during all the day 

presented in this sections, without null, maximum power or unavailability periods. These 

operating conditions present quite different features, and each functioning mode should be 

treated differently. Moreover, some intermittent power delivery may occur during the 

transition from one operation condition to another, and this event should be treated as a 

transient. In fact, this chapter is limited to the analysis of continuous operation, without 

considering transitory events (such features can be better studied with other tools). 

6.1 Daily spectrograms 

The PSD in the fraction-of-time probability framework is the long term average of auto 

spectrum density and it characterizes the behaviour of stochastically stationary systems. The 

spectrogram shows the spectrum evolution and the stationarity of signals can be tested with 

it. Every spectrogram column can be thought as the power spectrum of a small signal 

sample. Therefore, the PSD in the classical stochastic framework is the ensemble average of 

the power spectrums. For stationary systems, the classical and the fraction-of-time 

approaches are equivalent. 

The analysis has been performed using the spectrogram of the active power. The frequency 

band is between 0,5 Hz (fluctuations of 2 second of duration, corresponding to 8,4·105 

cycles/ day) and 6 cycles/ day (fluctuations of 4 hours of duration).  
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Active power in turbine 1.4 (multiplied by 27) on a day 

 
Fig. 15. Spectrogram of the real power [MW] at a turbine (times the turbines in the farm, 27). 

Active power in wind farm on a day 

 

Fig. 16. Spectrogram of the real power [MW] at the substation. 
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Fig. 17. Squared relative admittance J2(f)/ N2 of the real power of the wind farm relative to 

the turbine computed as the spectrogram ratio. 

 

 

Fig. 18. Coherence models estimated by WINDFREDOM software. 
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Apart from the Short FFT (SFFT), the Wigner-Ville distribution (WVD) and the S-method 

(SM) have been tested to increase the frequency resolution of the spectrogram. However, the 

SFFT method has been found the most reliable since the amplitudes of the fluctuations are 

less distorted by the abundant cross-terms present in the power output (Boashash, 2003). 

Fig. 15 and Fig. 16 show the spectrogram in the centre of the picture, codified by the scale 

shown on the right. The plots shown in this subsection have been produced with 

WINDFREDOM software, which is freely available (Mur-Amada, 2009). The regions with 

light colours (gray shades in the printed book) indicate that the power has a low content of 

fluctuations of frequencies corresponding to the vertical axis at the time corresponding to 

the horizontal axis. The zones with darker colours indicate that fluctuations of the frequency 

corresponding to the vertical axis have been noticeably observed at the time corresponding 

to the horizontal axis. For convenience, the median, the quartiles and the 5% and 95% 

quantiles of the wind speed are also shown in the bottom of the figures. The periodogram is 

shown on the left and it is computed by averaging the spectrogram.  

Both the spectrogram and the periodogram show the auto-spectral density times frequency 

in Fig. 15 and Fig. 16, because the frequency scale is logarithmic (the derivative of the 

frequency logarithm is 1/ f ). Therefore, the shadowed area of the periodogram or the 

darkness of the spectrogram is proportional to the variance of the power at each frequency. 

Comparing Fig. 15 and Fig. 16, the fluctuations of frequencies higher than 40 cycles/ day are 

relatively smaller in the wind farm than in the turbine. The amount of smoothing at 

different frequencies is just the squared relative admittance J2(f)/ N2 in Fig. 17. For 

convenience, J2(f) has been divided  by the number of turbines because J2(f)/ N2~1 for 

correlated fluctuations  and J2(f)/ N2~ 1/ N for uncorrelated fluctuations, (N = 27 is the 

number of turbines in the wind farm. 

The wind farm admittance, corresponding to the periodogram and spectrogram of Fig. 16 

divided by Fig. 15 is shown in Fig. 17. The magnitude scale is logarithmic in this plot to 

remark that the admittance reasonably fits a broken line in a double logarithmic scale.  

In this farm, variations quicker than one and three-quarter of a minute (fluctuations of 

frequency larger than 800 cycles/ day) can be considered uncorrelated and fluctuations 

lasting more than 36 minutes (fluctuations of frequency smaller than 40 cycles/ day) can be 

considered fully correlated. In the intermediate frequency band, the admittance decays as a 

first order filter, in agreement with the spatial smoothing model. 

Fig. 17 shows that the turbine and the wind farm medians (red and blue thick lines in the 

bottom plot) are similar because slow fluctuations affect both systems alike. The interquartil 

range (red and blue shadowed areas) is a bit larger in the scaled turbine power with respect 

to the wind farm. The range has the same magnitude order because the daily variance is 

primarily due to the correlated fluctuations, since the frequency content of the variance is 

concentrated in frequencies lower than 40 cycles/ day (see grey shadowed area in the 

periodograms on the left of Fig. 15 and Fig. 16).  

In practice, the oscillations measured in the turbine are seen, to some extent, in the 

substation with some delay or in advance. The coherence # 1,# 2γ
f

 is a complex magnitude 

with modulus between 0 and 1 and a phase, which represent the delay (positive angles) or 

the advance (negative angles) of the oscillations of the substation with respect to the turbine. 

Since the spectrum of a signal is complex, the argument of the coherence ( )rc fγ
f

 is the 

average phase difference of the fluctuations. 
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The coherence ( )rc fγ
f

 in Fig. 18 indicates the correlation degree and the time pattern of the 

fluctuations. The modulus is analogous to the correlation coefficient of the spectrum lines 

from both locations. If the ratio among complex power spectrums is constant (both in 

modulus and phase), then the coherence is the unity and its argument is the average phase 

difference. If the complex ratio is random (in modulus or phase), then the coherence is null. 

The uncertainty of the coherence can be decreased smoothing the plot in Fig. 18. The black 

broken line is the asymptotic approximation proposed in this chapter and the dashed and 

dotted lines correspond to other mathematical fits of the coherence. 
 
 

 

Fig. 19. Time delay quantiles between the fluctuation delays estimated by WINDFREDOM 

software. 

 

 

Fig. 20. Estimated phase delay between the power oscillations at the turbine and at the wind 

farm output. The median value for each frequency f is presented on the left and the phase 

differences of the spectrograms in Fig. 15 and Fig. 16 are presented on the right. A phase 

unwrapping algorithm has been used to reconstruct the phase from the SFFT. 
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The shadowed area in Fig. 19 indicates the 5%, 25%, 50%, 75% and 95% quantiles of the time 

delay τ between the oscillations observed at the turbine and the farm output.  Fig. 19 shows 

that the time delay is less than half an hour (0.02 days) the 90% of the time. However, the 

time delay experiences great variability due to the stochastic nature of turbulence. 

Wind direction is not considered in this study because it was steady during the data 

presented in the chapter. However, the wind direction and the position of the reference 

turbine inside the farm affect the time delay τ between oscillations. If wind direction 

changes, the phase difference, Δϕ = 2πf τ, can change notably in the transition frequency 

band, leading to very low coherences in that band. In such cases, data should be divided 

into series with similar atmospheric properties. 

At frequencies lower than 40 cycles/ day, the time delays in Fig. 19 implies small phase 

differences, Δϕ = 2πf τ (colorized in light cyan in Fig. 20), and fluctuations sum almost fully 

correlated. At frequencies higher than 800 cycles/ day, the phase difference Δϕ = 2πf τ 

usually exceeds several times ±2π radians (colorized in dark blue or white in Fig. 20), and 

fluctuations sum almost fully uncorrelated. It should be noticed that the phase difference Δϕ 

exceeds several revolutions at frequencies higher than 3000 cycles/ day and the estimated 

time delay in Fig. 10 has larger uncertainty (Ghiglia & Pritt, 1998). Thus, the unwrapping 

phase method could cause the time delay to be smaller at higher frequencies in Fig. 11. 

This methodology has been used in (Mur-Amada & Bayod-Rujula, 2010) to compare the 

wind variations at several weather stations (wind speed behaves more linearly than 

generated power). The WINDFREDOM software is free and it can be downloaded from 

www.windygrid.org. 

7. Conclusions 

This chapter presents some data examples to illustrate a stochastic model that can be used to 

estimate the smoothing effect of the spatial diversity of the wind across a wind farm on the 

total generated power. The models developed in this chapter are based in the personal 

experience gained designing and installing multipurpose data loggers for wind turbines, 

and wind farms, and analyzing their time series.  

Due to turbulence, vibration and control issues, the power injected in the grid has a 

stochastic nature. There are many specific characteristics that impact notably the power 

fluctuations between the first tower frequency (usually some tenths of Hertzs) and the grid 

frequency. The realistic reproduction of power fluctuations needs a comprehensive model of 

each turbine, which is usually confidential and private. Thus, it is easier to measure the 

fluctuations in a site and estimate the behaviour in other wind farms. 

Variations during the continuous operation of turbines are experimentally characterized for 

timescales in the range of minutes to fractions of seconds. A stochastic model is derived in 

the frequency domain to link the overall behaviour of a large number of wind turbines from 

the operation of a single turbine. Some experimental measurements in the joint time-

frequency domain are presented to test the mathematical model of the fluctuations.  

The admittance of the wind farm is defined as the ratio of the oscillations from a wind farm 

to the fluctuations from a single turbine, representative of the operation of the turbines in 

the farm. The partial cancellation of power fluctuations in a wind farm are estimated from 

the ratio of the farm fluctuation relative to the fluctuation of one representative turbine.  
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Provided the Gaussian approximation is accurate enough, the wind farm power variability 

is fully characterized by its auto spectrum and many interesting properties can be estimated 

applying the outstanding properties of Gaussian processes (the mean power fluctuation 

shape during a period, the distribution of power variation in a time period, the most 

extreme power variation expected during a short period, etc.). 

8. References 

Abdi A.; Hashemi, H. & Nader-Esfahani, S. (2000). “On the PDF of the Sum of Random 

Vectors” , IEEE Trans. on Communications. Vol. 48, No.1, January 2000, pp 7-12. 

Alouini, M.-S.; Abdi, A. & Kaveh, M. (2001). “Sum of Gamma Variates and Performance of 

Wireless Communication Systems Over Nakagami-Fading Channels” , IEEE Trans. 

On Vehicular Technology, Vol. 50, No.  6, (2001) pp. 1471-1480.  

Amarís, H. & Usaola J. (1997). Evaluación en el dominio de la frecuencia de las fluctuaciones 

de tensión producidas por los generadores eólicos. V Jornadas Hispano-Lusas de 

Ingeniería Eléctrica. 1997. 

Apt, J. (2007) “The spectrum of power from wind turbines” , Journal of Power Sources 169 

(2007) 369–374  

Y. Baghzouz, R. F. Burch et alter (2002) “Time-Varying Harmonics: Part II—Harmonic 

Summation and Propagation”, IEEE Trans. On Power Systems, Vol. 17, No. 1 

(January 2002), pp. 279-285. 

Bianchi, F. D.; De Battista, H. & Mantz, R. J. (2006). “Wind Turbine Control Systems. 

Principles, Modelling and Gain Scheduling Design”, Springer, 2006. 

Bierbooms, W.A.A.M. (2009) “Constrained Stochastic Simulation Of Wind Gusts For Wind 

Turbine Design” , DUWIND Delft University Wind Energy Research Institute, 

March 2009. 

Boashash, B. (2003). "Time Frequency, Signal Analysis and Processing. A comprehensive 

Reference". Ed. Elsevier, 2003. 

Cavers, J.K. (2003). “Mobile Channel Characteristics” , 2nd ed., Shady Island Press, 2003. 

Cidrás, J.; Feijóo, A.E.; González C. C., (2002). “Synchronization of Asynchronous Wind 

Turbines”  IEEE Trans, on Energy Conv., Vol. 17, No 4 (Nov. 2002), pp. 1162-1169 

Comech-Moreno, M.P. (2007). “Análisis y ensayo de sistemas eólicos ante huecos de 

tension” , Ph.D. Thesis, Zaragoza University, October 2007 (in Spanish). 

Cushman-Roisin, B. (2007). “Environmental Fluid Mechanics” , John Wiley & Sons, 2007. 

Frandsen, S.; Jørgensen, H.E. & Sørensen, J.D. (2007) “Relevant criteria for testing the quality 

of turbulence models” , 2007 European Wind Energy Conference and Exhibition, 

Milan (IT), 7-10 May 2007. pp. 128-132. 

Gardner, W. A. (1994) “Cyclostationarity in Communications and Signal Processing” , IEEE 

press, 1994. 

Gardnera, W. A.; Napolitano, A. & Paurac, L. (2006) “Cyclostationarity: Half a century of 

research” , Signal Processing 86 (April 2006), pp. 639–697. 

Ghiglia, D.C. & Pritt, M.D. (1998). “Two-Dimensional Phase Unwrapping: Theory, 

Algorithms, and Software”, John Whiley & Sons, 1998. 

Hall, P.; & Heyde. C. C. (1980). Martingale Limit Theory and Its Application. New York: 

Academic Press (1980). 

Kaimal, J.C. (1978). “Horizontal Velocity Spectra in an Unstable Surface Layer”  Journal of 

the Atmospheric Sciences, Vol. 35, Issue 1 (January 1978), pp. 18–24.  

www.intechopen.com



Power Fluctuations in a Wind Farm Compared to a Single Turbine   

 

131 

Karaki, S. H. ; Salim B. A. & Chedid R. B. (2002). “Probabilistic Model of a Two-Site Wind 

Energy Conversion System”, IEEE Transactions On Energy Conversion, Vol. 17, 

No. 4, December 2002. 

Kundur, P. P.; Balu, N. J.; Lauby, M. G. (1994). “Power System Stability and Control” , 

McGraw-Hill, 1994. 

Li, P.; Banakar, H.; Keung, P. K.; Far H.G. & Ooi B.T. (2007). “Macromodel of Spatial 

Smoothing in Wind Farms”, IEEE Trans, on Energy Conv., Vol. 22, No 1 (March. 

2007), pp 119-128. 

Martins, A.; Costa, P.C. & Carvalho, A. S. (2006). “Coherence And Wakes In Wind Models 

For Electromechanical And Power Systems Standard Simulations”, European Wind 

Energy Conferences (EWEC 2006), February (2006), Athens. 

Mur-Amada, J. (2009) “Wind Power Variability in the Grid” , PhD. Thesis, Zaragoza 

University, October 2009.  Available at www.windygrid.org 

Mur-Amada, J. & Comech-Moreno, M.P. (2006). "Reactive Power Injection Strategies for 

Wind Energy Regarding its Statistical Nature", Sixth International Workshop on 

Large-Scale Integration of Wind Power and Transmission Networks for Offshore 

Wind Farm. Delft, October 2006. 

Mur-Amada, J. & Bayod-Rújula, A.A. (2007). "Characterization of Spectral Density of Wind 

Farm Power Output", 9th Conference on Electrical Power Quality and Utilisation 

(EPQU'2007), Barcelona, October 2007.   

Mur-Amada, J. & Bayod-Rújula, A.A. (2010). "Variability of Wind and Wind Power", Wind 

Power, Intech, Croatia, 2010. Available at: www.sciyo.com. 

Norgaard, P. & Holttinen, H. (2004). "A Multi-turbine Power Curve Approach", in Proc. 2004 

Nordic Wind Power Conference (NWPC 2002), Gothenberg, March 2004. 

Press, W. H.; Teukolsky, S. A.; Vetterling, W. T. & Flannery, B. P. (2007). “Numerical Recipes. 

The Art of Scientific Computing”, 3rd edition, Cambridge University Press, 2007. 

Sanz M.; Llombart A.; Bayod A. A. & Mur, J. (2000) "Power quality measurements and 

analysis for wind turbines", IEEE Instrumentation and Measurement Technical 

Conference 2000, pp. 1167-1172. May 2000, Baltimore. 

Saranyasoontorn, K.; Manuel, L. & Veers, P. S.  “A Comparison of Standard Coherence 

Models form Inflow Turbulence With Estimates from Field Measurements” , Journal 

of Solar Energy Engineering, Vol. 126 (2004), Issue 4, pp. 1069-1082  

Schlez, W. & Infield, D. (1998). “Horizontal, two point coherence for separations greater 

than the measurement height” , Boundary-Layer Meteorology 87 (1998), 459-480.  

Schwab, M.; Noll, P. & Sikora, T. (2006). “Noise robust relative transfer function estimation” , 

XIV  European Signal Processing Conference, September 4 - 8, 2006, Florence, Italy. 

Soens, J. (2005). “Impact Of Wind Energy In A Future Power Grid” , Ph.D. Dissertation, 

Katholieke Universiteit Leuven, December 2005. 

Sorensen, P.; Hansen, A. D. & Rosas C. (2002). “Wind models for simulation of power 

fluctuations from wind farms”, Journal of Wind Engineering and Ind. 

Aerodynamics 90 (2002), pp. 1381-1402 

Sørensen, P.; Cutululis, N. A.; Vigueras-Rodríguez, A; Madsen, H.; Pinson, P; Jensen, L. E.; 

Hjerrild, J. & Donovan M., (2008) “Modelling of Power Fluctuations from Large 

Offshore Wind Farms”, Wind Energy,Volume 11, Issue 1, pages 29–43, 

January/ February 2008. 

www.intechopen.com



 From Turbine to Wind Farms - Technical Requirements and Spin-Off Products 

 

132 

Stefopoulos, G.; Meliopoulos A. P.& Cokkinides G. J. (2005), “Advanced Probabilistic Power 

Flow Methodology” , 15th PSCC, Liege, 22-26 August 2005 

Su, C-L. (2005) “Probabilistic Load-Flow Computation Using Point Estimate Method”, IEEE 

Trans. Power Systems, Vol. 20, No. 4, November 2005, pp. 1843-1851. 

Tentzerakis, S. T. & Papathanassiou S. A. (2007), “An Investigation of the Harmonic Emissions 

of Wind Turbines”, IEEE Trans, on Energy Conv., Vol. 22, No 1, March. 2007, pp 150-

158.  

Thiringer, T.; Petru, T.; & Lundberg, S. (2004) “Flicker Contribution From Wind Turbine 

Installations” IEEE Trans, on Energy Conv., Vol. 19, No 1, March 2004, pp 157-163. 

Vilar Moreno, C. (2003). “Voltage fluctuation due to constant speed wind generators”  Ph.D. 

Thesis, Carlos III University, Leganés, Spain, 2003. 

Wangdee, W. & Billinton R. (2006). “Considering Load-Carrying Capability and Wind Speed 

Correlation of WECS in Generation Adequacy Assessment” , IEEE Trans, on Energy 

Conv., Vol. 21, No 3, September 2006, pp. 734-741. 

Welfonder, E.; Neifer R. & Spaimer, M. (1997) “Development And Experimental 

Identification Of Dynamic Models For Wind Turbines” , Control Eng. Practice, Vol. 

5, No. 1 (January 2007), pp. 63-73. 

 

www.intechopen.com



From Turbine to Wind Farms - Technical Requirements and Spin-
Off Products
Edited by Dr. Gesche Krause

ISBN 978-953-307-237-1
Hard cover, 218 pages
Publisher InTech
Published online 04, April, 2011
Published in print edition April, 2011

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

This book is a timely compilation of the different aspects of wind energy power systems. It combines several
scientific disciplines to cover the multi-dimensional aspects of this yet young emerging research field. It brings
together findings from natural and social science and especially from the extensive field of numerical
modelling.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Joaquin Mur-Amada and Jesús Sallán-Arasanz (2011). Power Fluctuations in a Wind Farm Compared to a
Single Turbine, From Turbine to Wind Farms - Technical Requirements and Spin-Off Products, Dr. Gesche
Krause (Ed.), ISBN: 978-953-307-237-1, InTech, Available from: http://www.intechopen.com/books/from-
turbine-to-wind-farms-technical-requirements-and-spin-off-products/power-fluctuations-in-a-wind-farm-
compared-to-a-single-turbine



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and
derivative works building on this content are distributed under the same
license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

